
Ongoing learning renders cortical representations ceaselessly plastic.
This poses two problems for memory. First, the patterns of activity
that should inspire the recall of a particular memory are nonstation-
ary. Second, the information recalled from memory has to be inter-
preted (decoded) in an ever-mutating code. Although these
stability-plasticity1 issues of input and output accessibility have been
suggested to underlie the phenomenon of infantile amnesia2, they are
neglected by most current theories of long-term memory. Here, we
study the replay of hippocampal-neocortical patterns during sleep
and quiet wakefulness, and suggest that it is crucial to ensuring that
old memories can be appropriately retrieved and understood in the
current representational coordinates.

We investigated storage, access and decoding of episodic memory
(autobiographical event memory) and semantic memory (here, the
storage and retrieval of structured information not specific to one
particular episode). These two subtypes of declarative memory are
known to depend on the hippocampus and adjacent cortical areas of
the medial temporal lobes (MTL)3. Damage to these regions results in
amnesia, whereby the acquisition of new declarative memories is
impaired (anterograde amnesia) and some memories acquired before
the damage are lost (retrograde amnesia). However, the detailed char-
acteristics of these deficits are controversial.

Two issues dominate the debate. First, it is unclear whether episodic
and semantic memory are affected similarly in amnesia and, gener-
ally, whether different subtypes of declarative memory are processed
in the same way by the hippocampus and neocortex4,5. Second, it is
controversial whether the hippocampus has a temporary or a perma-
nent role in episodic memory. According to the temporary view,
which we call the transfer model and which has been a popular target
of computational studies6,7, memories are reorganized (or consoli-

dated) over a potentially long period (from several days in rats to
decades in humans), so that memories ultimately lose their initial
dependence on MTL areas8–10. According to the permanent view, the
MTL is always required for recalling episodes11,12, although not nec-
essarily for recalling semantic information.

Though there is no direct experimental evidence, transfer has been
proposed to depend on hippocampally initiated reinstantiation dur-
ing slow-wave sleep (and perhaps also rapid eye movement sleep
and/or quiet wakefulness) of distributed cortical activity patterns
characterizing previous active behavioral states13–17. Indeed, sleep
between training and testing can significantly enhance performance
in various learning tasks18,19, with slow-wave sleep seeming to have a
particular effect on declarative memory20.

Here, we built a combined hippocampal-neocortical model of
episodic and semantic information, and studied the relationship
between hippocampally initiated replay and storage, access and
decoding of declarative memory in the face of representational
change. First, we showed that replay does not establish in neocortex
durable episodic memories that are independent of the hippocam-
pus. Next, we demonstrated a possible role for replay as helping main-
tain access to episodes in the presence of the hippocampus. Finally, we
examined the acquisition, consolidation and maintenance of statisti-
cally rich general semantic information and compared it with
episodic memory.

RESULTS
Transfer
Our model (Fig. 1) follows a widely accepted abstraction scheme.
The neocortex represents sensory inputs as patterns of activity dis-
tributed over large neuronal populations. Memories recalled, either
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Off-line replay maintains declarative memories in a
model of hippocampal-neocortical interactions
Szabolcs Káli1 & Peter Dayan2

During sleep, neural activity in the hippocampus and neocortex seems to recapitulate aspects of its earlier, awake form. This
replay may be a substrate for the consolidation of long-term declarative memories, whereby they become independent of the
hippocampus and are stored in neocortex. In contrast to storage, other crucial facets of competent long-term memory, such as
maintenance of access to stored traces and preservation of their correct interpretation, have received little attention. We
investigate long-term episodic and semantic memory in a theoretical model of neocortical-hippocampal interaction. We find that,
in the absence of regular hippocampal reactivation, even supposedly consolidated episodic memories are fragile in the face of
cortical semantic plasticity. Replay allows access to episodes stored in the hippocampus to be maintained, by keeping them in
appropriate register with changing neocortical representations. Hippocampal storage and replay also has a constructive role in
the recall of structured, semantic information.
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directly or via the hippocampus, should be represented by the same
patterns of activation over the same populations. Distributed neo-
cortical representations are acquired and continually adjusted
through an unsupervised learning process that alters synaptic con-
nections within and between neocortical areas to reflect the (ever-
changing) statistical structure of the input21. Plasticity affecting the
representation of one stimulus inevitably also affects the representa-
tion of many other stimuli.

Our neocortical model has two layers. The lower layer consists of
higher-order association areas from different (sub-)modalities
(labeled A, B and C), representing highly processed sensory inputs. A
given pattern of activities of neurons in one of the lower-level areas
encodes a particular stimulus; in principle, we may encounter any
combination of the possible patterns in each input area. The upper
layer models areas in medial temporal neocortex (MTNC): entorhi-
nal, perirhinal and parahippocampal cortices. MTNC is separated
because of the cross-modal integrative nature of these areas and
because they form the exclusive cortical conduit to the hippocampal
formation. The two layers are connected in a reciprocal and hierarchi-
cal manner22,23. MTNC activity can inspire hippocampal recall,
which in turn affects MTNC activity and thus activity in areas A–C.
Each neocortical area contains a large number of abstract neuron-like
units, which form independent cleanup networks24 in the input areas.
These are not explicitly simulated, but (in the absence of feed-forward
activation of the area) have the effect of converting top-down input
that closely resembles one of the valid input patterns in that area into
an exact version of that pattern.

The neocortex acts as a probabilistic generative model25.
Unsupervised learning26,27 extracts categories, tendencies and corre-
lations from the statistics of the input into the weights W between
area MTNC and the input areas. We refer to this information as
semantic knowledge or semantic memory, even though it probably
best corresponds to general semantics, which is not always considered
part of declarative memory despite sharing important characteristics
with, for instance, fact memory. After training, the network is capable
of recognizing, completing and cleaning up novel, partial and noisy
inputs by statistical sampling (see Methods for details). If some input

units (say, those in areas A and B) are clamped, the samples produced
in area C represent the network’s inferences about probable comple-
tions of the pattern in A and B.

We first examined the long-term storage and recall of episodic
memories within this framework. In our scheme, episodes are spe-
cific items—that is, completely specified patterns of activity over
the units in areas A, B and C. The quality of episodic recall is judged
according to whether the pattern in one area (say C) for an episode
can be recalled through successive sampling iterations (possibly
involving the hippocampus) starting from the correct activities for
that episode in areas A and B but completely corrupt (random)
activities in area C. Recall stops after a fixed number of iterations
(usually 20), or if the pattern in area C comes within the local basin
of attraction (taken to be a Hamming distance of 5) of a valid input
pattern in that area.

Under appropriate conditions, the hippocampus is assumed to
(i) store a representation of a hitherto unfamiliar current MTNC
pattern so that (ii) it can be autoassociatively reinstated when
MTNC activity inspired by a new cue is sufficiently similar28–34. We
used an arbitrary threshold of 20 on the bitwise Hamming distance
to judge similarity. Once the mapping between the input areas and
MTNC has been established, reinstating the original set of MTNC
activities suffices to reinstate the whole cortical pattern, provided
that the neocortical and hippocampal representations are appro-
priately in register. This allows sampling in the neocortex to con-
verge instantaneously. Further, (iii) the patterns stored in the
hippocampus are assumed to be activated intrinsically and ran-
domly (for instance during sleep13,14,16) and this, via the top-down
generative model, permits replay.

For comparison with experimental data9,35–37 and earlier model-
ing6,7, we first confirmed that our model could capture basic phe-
nomena of hippocampal-dependent consolidation as in the transfer
model3,10,38. We modeled consolidation by alternating learning
between ‘experience’ and ‘replay’. The first corresponded to continued
exposure to regular input stimuli. The second started from hip-
pocampal reactivation in MTNC of a random stored memory pat-
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Figure 1 Model architecture. All units in neocortical areas A, B and C are
connected to all units in area MTNC through bidirectional, symmetric
weights (W). Connections between units in the input layer are restricted to
the same cortical area and are treated as weak local attractors (dashed
arrows). xA,xB,xC and y denote activity vectors in the corresponding
neocortical areas. The hippocampus is not directly implemented, but it can
influence and store the patterns in MTNC. All communication between the
hippocampus and the input areas is through area MTNC.

Figure 2  Replay transfers episodic memories to neocortex. The graphs
show average recall performance (as percentage of successful recall) on
episodic patterns as a function of time. The upper curves (with crosses)
represent normal controls, and the lower curves (with circles) are for the
case when the hippocampal module is inactivated for testing. (a) Episodic
patterns were stored sequentially, and their strength decayed exponentially.
The curves are averages over all episodic patterns used, aligned at the
initial presentations (also the start of consolidation) of the particular
patterns. (b) The set of input patterns changed in time according to the four
phases of training described in the text. All episodic patterns were stored in
the hippocampus (and thereby became eligible for replay) simultaneously
at the end of phase 1 (which is why the upper curve starts there).
Hippocampal patterns did not decay in these simulations.
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tern. The resulting MTNC activation led to the reactivation of the
input areas (also taking into account the effect of local attractors in
each input area). The combined activity induced weight modifica-
tions in the neocortex according to the same learning algorithm used
for external input-driven learning27. Blocks of 900 hippocampally
initiated learning events alternated with blocks of 100 input-initiated
(general training) events. Such a substantial degree of imbalance was
required for robust episodic consolidation.

In these simulations, the inputs consisted of 20 possible random
binary patterns in each input area (A, B and C), with all 203 = 8,000
combinations initially equally likely. In a first phase of semantic train-
ing, 200,000 patterns selected at random were presented to the neo-
cortical module, establishing the relationship between the activities in

A–C and MTNC. We then simulated a common paradigm for animal
studies of retrograde amnesia9,35–37, in which several different sets of
stimuli are presented at different times before the hippocampus is
lesioned. In our case, 18 specific input patterns (involving all three
areas) were designated as episodic patterns to be memorized. These
were introduced sequentially (each separated by 50,000 pattern pre-
sentations). Recall of all stimuli was tested in the absence (and also in
the presence) of the hippocampus. Normal forgetting arose through
the exponential decay of hippocampal memory strength (with a time
constant of 200,000 pattern presentations), affecting the probabilities
of a pattern being selected for replay and of successful hippocampal
pattern completion during recall.

The averaged time-performance curves for the full and hippocam-
pally inactivated models (hereafter referred to as ‘normals’ and ‘hip-
pocampals’; Fig. 2a) replicated many important characteristics of the
experimental data. Normals performed best directly after training
and forgot gradually over time. Hippocampals performed at floor for
patterns learned just before hippocampus removal, but were more
proficient when more time intervened between training and lesion.
The difference between hippocampals and normals became negligible
for the most remote time periods. This has been taken as a signal of
successful consolidation in several animal experiments and all previ-
ous models of memory consolidation6,7,9,35–37.

The remaining simulations qualified and extended these results.
They were carried out in a single standard framework differing in
some respects from the simulation described above. First, we treated
semantic as well as episodic memory, which required a richer collec-
tion of input patterns. We considered four different domains. In
each, ten random binary patterns were generated for each input
area. In all but one domain, all 1,000 possible combinations of the
valid patterns in areas A, B and C were considered equally likely. The
remaining, semantically ‘structured’ domain had inter-areal seman-
tic structure, in that each of the ten possible patterns in area A
always appeared with a (different) associated pattern in area C. Any
of these A-C pairs could appear with any of the patterns in area B.
All 100 possible combinations of patterns in this domain were
equally likely. The unstructured domains allowed the study of
episodic memory, uncontaminated by semantic knowledge, whereas
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Table 1 Simulation summary

a

Figure(s) Input domains Stored patterns Hippocampal recall Replay (1) Replay (2)

2b 1,2 1,2 1,2 1,2 − 10 10 10 − + + +* − + + + − − − −
4a (7a) 1,2 1,2 1–3 1–4 − 50 50 50 − + + +* − − − − − − − −
4b (7b) 1,2 1,2 1–3 1–4 − 50 50 50 − + + +* − − − − − + + +

4c (7c) 1,2 1,2 1–3 1–4 − 50 50 50 − + + +* − + + + − − − −
4d (7d) 1,2 1,2 1–3 1–4 − 50 50 50 − + + +* − + + + − + + +

b

Curve (Fig. 6) Input domains Stored patterns Hippocampal recall Replay (1) Replay (2)

Open circles 1,2 1,2 1,2 − 50 50 − − − − − − − − −
Crosses 1,2 1,2 1,2 − 50 50 − + + − − − − − −
Filled circles 1,2 1,2 1,2 − 50 50 − − − − + − − − −
Triangles 1,2 1,2 1,2 − 50 50 − + + − + − − − −

Shown is a schematic representation of some basic characteristics of the various simulations. Each column contains a separate entry for each phase of every simulation listed.
(a) The first column refers to the figure(s) showing the basic results from a particular, four-phase simulation; the second column shows the domains from which the input patterns
originate; and the third shows the number of episodic patterns stored in the hippocampus. The remaining columns indicate the presence or absence of hippocampal pattern
completion, neocortical learning during replay, and updates of hippocampal-MTNC connections, respectively. *Figures 2b and 7a–d also show the results in the absence of hippocampal
recall. (b) This table refers to the four different conditions in Figure 6, which shows results from a three-phase paradigm.

Figure 3 Episodic memories stored in neocortex are extinguished by
subsequent semantic training. The curve marked with crosses (‘one-shot’)
is for an isolated neocortical network trained to asymptotic performance on
a particular episodic pattern. The other two curves show recall performance
in the neocortical network as a function of time after the removal of the
hippocampus. The curve marked with open circles (‘consolidated (a)’) is for
a single pattern from among those used to construct Figure 2a, which has
been hippocampally ‘consolidated’ for 250,000 presentations. The curve
marked with filled circles (‘consolidated (b)’) is an average over the same
patterns that were used in Figure 2b, and starts from the state of the
network after 1,250,000 presentations illustrated in that figure (a time
near the highest overall degree of consolidation).
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the structured domain was used in later sections to study semantic
memory. Finally, because we were studying the effects of neocortical
rather than hippocampal plasticity, we ignored the decay of hip-
pocampal memory traces.

To study the effects of changing the input statistics, we separated
learning and recall into four separate phases, each of 500,000 presen-
tations (Table 1). In general, patterns from domains 1 and 2 were used
for general semantic training in phase 1. The same patterns were pre-
sented in phase 2, typically after episodic experience. Patterns from
domain 3 and 4 were added in phases 3 and 4, respectively. Different
experiments involved different aspects of storage, recall and replay in
the hippocampus. To provide a fair test of semantic representation,
patterns from the structured domain (domain 2) always comprised
1% of the patterns presented during experience epochs; the remain-
ing patterns were uniformly drawn from all the other domains pres-
ent during a phase.

After general semantic training with the patterns of domains 1 and 2,
ten episodic patterns from domain 1 were
simultaneously stored in the hippocampus
(with nondecaying traces). Recall of these was
monitored with constant hippocampal replay
(as above) and either with or without hip-

pocampally aided recall just at the time of test
(Fig. 2b). This allowed us to determine how
well replay instructs the neocortex about the
episodic patterns and thereby obviates the
need for itself in recall. The upper curve shows
that, as might be expected, with hippocampal
help, recall was exemplary. The lower curve,
for which the hippocampus was inactivated
during test, shows that hippocampal replay
could indeed embed the memories in the neo-
cortex. In the model, this result again required
a rather extreme (90:10) imbalance between
replay and experience epochs (data not
shown). In fact, the marked improvement in

performance at the start of phase 3 occurred because the addition of
domain 3 to awake experiences decreased the frequency of domain 1
experiences, and thereby indirectly increased the relative frequency and
impact (within domain 1) of the episodes that participated in 
replay (because the proportions of experience and replay epochs
remained fixed).

Such consolidation does not, by itself, lead to long-term stability
of episodic memory traces in neocortex (Fig. 3). Recall probabili-
ties dropped rapidly in the absence of the hippocampus for
episodes that were stored in neocortex, either directly (through
repeated presentations of the patterns to the input layer) or
through the consolidation process described above (for ‘consoli-
dated’ patterns taken either from Fig. 2a or from Fig. 2b).
Comparing the curves shows that recall performance on the ‘con-
solidated’ patterns of Figure 2 decayed when the hippocampus was
switched off in the model and the network was subjected to general
training on all valid input patterns, and did so at speeds compara-

A R T I C L E S

NATURE NEUROSCIENCE VOLUME 7 | NUMBER 3 | MARCH 2004 289

Figure 5 Analysis of the reasons why episodic
recall breaks down in Figure 4a. (a) Distance
between the MTNC pattern currently associated
with the representation of the episode in the
input areas and the MTNC pattern associated
with the stored hippocampal memory trace. 
(b) Percentage of correct recall in the input areas
if we start the recall process from the stored
MTNC representation of the episode.

Figure 4 Replay protects episodic memories
against representational change. (a–d) Effects of
changes in neocortical representations on the
recall of previously stored episodes (a) in the
absence of hippocampally initiated replay; (b) if
the correspondence between hippocampal and
MTNC representations of the episode is updated
during off-line replay; (c) if neocortical
connections are updated during replay episodes
but hippocampal-MTNC connections are not; and
(d) if both neocortical and hippocampal-MTNC
connections are updated. Within these panels,
the larger graphs are averages over all stored
episodes and the smaller graphs are examples of
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previously acquired, richly structured semantic knowledge7.
However, the computational goal of episodic learning is storing
individual events rather than discovering statistical structure,
seemingly rendering consolidation inappropriate. If initial hip-
pocampal storage of the episode already ensures that it can later be
recalled episodically, then, barring practical advantages such as
storage capacity (or perhaps efficiency), there seems little point in
duplicating this capacity in neocortex.

Index maintenance
One might conclude from the previous section that, provided the hip-
pocampus stores the essence of episodes permanently, as suggested in
the multiple trace model12, episodic memory will be unaffected by
neocortical plasticity. However, this scenario was actually overly opti-
mistic, as the statistics of the general neocortical patterns remained
constant, with no refinement of the existing semantic representation,

change in input statistics or acquisition of
new semantic domains. All these can occur,
to some extent, even in the face of hippocam-
pal insult4,40–44. Such plasticity will change
the cortical representations associated with
past episodes. Wherever these episodes are
stored, be it in the hippocampus, as discussed
above, or the neocortex, semantic cortical
plasticity will erode the relationship between
inputs coded in the current representation
and episodes coded in past representations.

Successful recall of an episode stored in the
hippocampus depends in two ways on the
correspondence between low- and high-level
cortical areas embodied by the neocortical

ble to that for a nonconsolidated pattern. Indeed, forgetting was
much faster than for normals (Fig. 2a; note the different time
scales), indicating that the decay rate of hippocampal traces deter-
mined the normal forgetting rate in our complete model.

True consolidation of episodes was prevented by a previously
unknown type of interference between episodic and (general)
semantic memories coming from the ongoing semantic plasticity in
neocortex. This interference could be countered by frequent hip-
pocampal reactivation of the episodes. It was asymmetric in that
storing new episodes had less effect on previously stored general
information (data not shown), probably because the episodes con-
formed to the statistical structure observed by the network during
semantic training. These results contrast sharply with standard
forms of catastrophic interference7,39, which concern representa-
tional competition between different semantic memories.
Consolidation there is required to integrate new information with
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Figure 7 Neocortical plasticity during replay
maintains semantic memory. (a–d) Graphs show
the percentage of correct recall of the area C
pattern associated with the recall cue in area A,
averaged over all possible recall cues in area B.
All testing was done within input domain 2. The
larger graphs are averages over all possible area
A patterns; the small graphs are for individual
area A patterns. In all plots, the upper trace
(marked with crosses in the main plots) is with
hippocampal involvement in recall; the lower
trace (marked with circles) is purely neocortical
recall. Otherwise, training protocol, replay
conditions and figure layout are as in Figure 4.
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Figure 6 Hippocampal replay and recall aid the acquisition and consolidation
of semantic information. The curves show the percentage of correct pattern
completion in area C for patterns from domain 2. Input patterns are drawn
from domains 1 and 2 throughout. Forty episodic patterns from domain 2
(and ten from domain 1) are stored after 500,000 presentations, and there is
hippocampally initiated replay of episodic patterns between time points
500,000 and 1,000,000 in some conditions. The different curves represent
different training conditions, and are marked by different symbols: open
circles represent pure neocortical learning; crosses stand for neocortical
learning supplemented by hippocampal learning and recall of episodes (but
no replay); filled circles mark the condition with replay, but without
hippocampal involvement in recall; and the line with triangles is for
simulations with both hippocampal replay and recall.
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network. First, the high-level (MTNC) representation of the recall cue
needs to be effective in activating the correct hippocampal memory
trace; second, the high-level representation activated by hippocampal
recall should effect the recall of the appropriate components of the
corresponding episode in lower-level areas. Replay may prevent the
damaging consequences of continued neocortical plasticity by main-
taining the proper correspondence between hippocampal and neo-
cortical representations.

To assess the effect of neocortical learning on the recall of previ-
ously stored episodes, we modified the presentation paradigm for
patterns that we used in Figure 2b. For the remaining simulations, at
the end of phase 1, 50 episodic patterns were stored in the hippocam-
pus. Ten of these patterns were from the unstructured domain 1, and
were used in all tests of episodic memory. The other 40 patterns
included each of the 10 valid A-C pairings from the structured
domain 2, presented together with 4 of the possible area B patterns—
these allowed us later to test the effects of episodic storage and replay
on semantic memory within the same setup. Changes in input statis-
tics were implemented by appending phases 3 and 4 to the simulation.
We first did this without replay, to establish a baseline, and then
included replay (Fig. 4). Unlike the extreme biasing toward replay that
was necessary to show (temporary) transfer (Fig. 2b), replay and
experience were equally balanced. In all cases, the quality of recall for
the stored episodes was monitored throughout.

Even though the episode remained perfectly stored in the hip-
pocampus throughout and the MTNC-hippocampus pattern-
matching process was just as described in the previous section, on
average, neocortical learning came to erase the route to recall
(Fig. 4a). There were two primary reasons for this. First, continued
semantic learning after the storage of the episode caused its MTNC
representation to move away from the version with which the stored
hippocampal trace was associated (Fig. 5a). This drift was markedly
enhanced by the substantial changes in neocortical representations
that followed the expansion in the input patterns (at 1 million and
1.5 million presentations), whereupon even the full original episode
may have failed to activate the corresponding hippocampal memory
trace. The effect of representational change on hippocampally
directed recall in the input areas was also considerable (Fig. 5b). In
phase 4, even if the correct hippocampal trace became activated, the
full episode could be successfully recalled only about 40% of the
time, with a large variability between patterns.

Episodic memories were clearly fragile. To test how hippocampally
initiated replay might help, input-driven training was interleaved
with epochs of replay, assumed to take place during sleep. Replay hap-
pened just as described in the previous section (including the use of
the cleanup connections within each lower cortical area, which effec-
tively restricted activity to legitimate input patterns). With plasticity
just in the neocortex, replay prevented degradation (Fig. 4c; compare
Fig. 4a). Detailed analysis of the representational changes (analogous
to the results in Fig. 5; data not shown) indicated that replay in our
model worked by preventing the MTNC representations of episodes
from changing, thereby assuring a continued perfect fit with the
stored hippocampal trace.

However, it is very stringent, and potentially deleterious to neocor-
tical capabilities, to constrain new neocortical learning such that the
internal representation of all hippocampally stored episodes remains
fixed. Therefore, we introduced a different sort of plasticity during
replay. Here, once the stored representation of the episode was reacti-
vated in MTNC and the representation of the episode was recon-
structed in the lower-level areas, the present feed-forward mapping
between the input areas and MTNC was used to determine the up-to-

date MTNC representation of the episode. This MTNC pattern was
then associated with the stored hippocampal episode that initiated
the replay, so that the hippocampal and input-level representations of
the episode were again in register. This also maintained episodic recall
at a high level (Fig. 4b), despite substantial changes in the neocortical
network. For replay to work, it was essential that the episodic patterns
be representationally refreshed sufficiently frequently so that the hip-
pocampus and MTNC remained tied.

Combining both forms of replay also resulted in good preservation
of old episodes in the face of neocortical representational change
(Fig. 4d). However, there was no obvious gain over the previous cases.

Acquisition and consolidation of semantic information
It is hotly debated whether different subtypes of declarative memory
depend in similar ways on the hippocampus. We argued that episodic
and semantic memory present quite different computational chal-
lenges: the rapid, interference-free learning capabilities of hip-
pocampus seem especially relevant for episodic learning, whereas the
slower, integrative plasticity of neocortex could by itself be sufficient
to support semantic learning. However, substantial evidence from
amnesic patients indicates that semantic memory can be strongly
affected by hippocampal lesions (although generally less so than
episodic memory)10,42–45. We consider two (nonexclusive) possibili-
ties for the contribution of the hippocampus to semantic memory.
First, the hippocampus might aid semantic recall through the
episodic storage and retrieval of examples. Second, off-line replay of
stored examples might facilitate the acquisition of (hippocampal-
independent) semantic memories.

Semantic memory was measured by testing pattern completion in
the structured domain 2. Recall that, within this domain, every pat-
tern in area A has a single associated pattern in area C, independent of
the pattern in area B. To test the degree to which the model acquired
an internal representation of this statistical regularity (our simple
model of semantic knowledge), all possible combinations of patterns
in areas A and B (from within domain 2) were presented multiple
times with random initial activity in area C, and we measured the per-
centage in which the semantically correct A-C pairing was recovered
by the usual pattern-completion process (with hippocampal involve-
ment when appropriate).

First, we examined the acquisition and consolidation of semantic
memories in a paradigm similar to that of Figures 2b and 3. In the
baseline simulation, general neocortical training on patterns from
domains 1 and 2 continued throughout, without any hippocampal
involvement. We also tested three other conditions, with the hip-
pocampus being involved either in recall, replay or both, for 50
episodic patterns from domains 1 and 2 stored at the end of phase 1.
We monitored semantic recall during phases 1 and 2 and then during
a subsequent 500,000 presentations of patterns just in
domains 1 and 2 (Fig. 6). During the latter there was no hippocampal
replay (to test the permanence of semantic consolidation—analogous
to the procedure illustrated in Fig. 3).

Under these conditions semantic learning without hippocampal
involvement was very slow and never reached high levels. Episodic
storage and recall of examples in the hippocampus brought an
immediate increase in semantic recall performance, going beyond
the level expected from simply getting right those queries involving
the exact patterns stored. Hippocampal replay of these examples
resulted in a less immediate but equally pronounced gain in per-
formance, even if the hippocampus was then disabled for testing.
Enabling hippocampal pattern completion during recall led to a
further substantial performance increase. Finally, in the replay con-
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ditions, there was a slow, moderate decrease in performance once
replay stopped. This was surprising because, unlike in the episodic
case earlier, the pattern-completion task for the network remains
statistically constant, so decay occurs despite the absence of contra-
dictory input and the presence of some reinforcement. We believe
that decay resulted from indirect competition from patterns in
other domains (in our case, the more frequent ‘background’ pat-
terns) for the internal representational resources of the neocortical
network. However, this is not a direct capacity issue, because dou-
bling the number of units in area MTNC did not affect the qualita-
tive behavior (data not shown).

We also examined the effect of neocortical representational
change on semantic memories. Semantic maintenance was meas-
ured in the same simulations (consisting of four phases) that were
used to demonstrate episodic maintenance, but here we tested
semantic memory on patterns from structured domain 2 in the way
described above.

Replay could also help maintain semantic memories in the face of
changes in input statistics (Fig. 7). Without replay, introduction of a
new ‘background’ semantic domain disrupted the recall of semantic
information from the structured domain (Fig. 7a). However, the
extent to which the two different types of plasticity during replay that
had been introduced earlier contributed to acquisition and mainte-
nance was different from that seen for episodes. For episodes, either
kind of replay by itself resulted in a similar high level of performance.
For semantics, the best performance was afforded by combining dur-
ing replay the update of neocortical-hippocampal connections with
neocortical processing of the patterns recalled (Fig. 7d). However, as
indicated in previous accounts of catastrophic interference in seman-
tic memory7, the most important contribution came from neocorti-
cal learning on the recalled patterns (which is absent in Fig. 7b) rather
than the regular updating of the mapping between hippocampus and
neocortex (absent in Fig. 7c).

DISCUSSION
The problem of maintaining access to, and readout from, memory
traces in the light of representational change, as well as our replay-
based solution, apply wherever the episodic memory is ultimately
located. Partly because of the extreme imbalance of replay and experi-
ence epochs required to achieve adequate transfer in our model, we
had episodes reside permanently in the hippocampus, consistent with
one standard set of views of amnesia11. Nevertheless, our results may
also be compatible with the view that episodic memories consolidate
just like semantic ones38, provided that neocortically stored episodes
can be prevented from degrading by a non-hippocampal mechanism,
such as active maintenance, ‘freezing’ certain neocortical synapses, or
(as a result of MTL lesion) a pathological slowdown of neocortical
plasticity. However, none of these mechanisms by itself alleviates the
indexing problem (Fig. 4a).

Our model is consistent with evidence showing that the hip-
pocampus can have an important role in normal semantic learn-
ing44,45 and a temporary role in semantic recall46,47. As in previous
accounts7, replay allows the slow integration of information from
episodes into neocortical memory systems. Semantic knowledge that
remains consistent with the observed statistical structure of the
world is not greatly affected by subsequent neocortical plasticity; this
is in contrast with episodes, whose instability arises because they cor-
respond to extremely peaked probability distributions that are not
statistically representative. Thus, our model predicts that remote
memories in patients with hippocampal lesions (and possibly also
normal individuals) are semantic—even those that concern person-

ally experienced events. This is broadly consistent with the available
data12,48. In early phases of acquisition, the hippocampus can tem-
porarily aid semantic memory through recall of episodes that pro-
vide possible answers to general semantic queries34. These instances
of recall could even provide further opportunities for neocortical
learning.

Replay may also serve other purposes—for instance, extending to
semantically related stimuli the set of cues that can directly elicit the
retrieval of an episode49. Hippocampal recall depends on the similar-
ity between MTNC codes for cues and stored episodes. However,
semantic relationships are implicit in neocortical synaptic weights,
and only a fraction is directly reflected in MTNC codes. During
replay, semantic cousins of existing episodes can be generated, and
associations made between their MTNC representations and the hip-
pocampal traces. Then, in normal operation, the episodes can subse-
quently be retrieved when the semantic associates are presented.

Different aspects of replay impose different requirements on the
coordination between hippocampus and neocortex, and it is
tempting, though highly speculative, to relate these to systematic
differences found in different sleep phases. For instance, index
extension requires extensive stochastic exploration of cortical
semantic knowledge, which it is tempting to associate with rapid
eye movement sleep. By contrast, autonomous reactivation of hip-
pocampal memory traces leading to reactivation of the correspon-
ding neocortical representation, which is a common element in all
of our replay-based algorithms, may preferentially take place dur-
ing slow-wave sleep. If so, slow-wave sleep may be required for the
long-term maintenance of episodic memories and may (at least
partially) underlie the hippocampal-dependent enhancement of
semantic learning.

One direct experimental prediction is that episodic recall will
degrade given continued cortical plasticity and no replay, irrespective
of the state of neocortical consolidation of those episodes.
Unfortunately, post-lesion forgetting rates for retrograde memories
are rarely measured experimentally. Quantitative studies on the speed
of neocortical learning in the face of hippocampal insult are also
important to assess whether neocortical learning is slowed. Even
without hippocampal insult, episodic recall should be fragile in the
face of reversible blockade of activity or plasticity in the hippocampus
for a prolonged period after acquisition, or selective blockade of hip-
pocampally initiated replay (perhaps through sleep manipulations).
Indeed, inactivation of AMPA and kainate glutamate receptors in the
hippocampus disrupts the retention of spatial memory50. We predict
that the degree of impairment should correlate with the degree of
neocortical learning during the blockade and that, paradoxically,
concurrent blockade of neocortical plasticity should help.
Physiologically, we predict that replay should result in (perhaps rather
subtle) changes in the connections between the hippocampus and
entorhinal cortex, particularly the perforant path.

METHODS
Network architecture. Each of the four neocortical areas in our model (A, B, C
and MTNC; see Fig. 1) had 100 binary units. Connections between areas in
adjacent layers were all-to-all and symmetric. For each of A, B and C, 20 ran-
dom binary vectors (denoted xA

1−xA
20, xB

1−xB
20 and xC

1−xC
20, each bit of

which is turned on with probability 0.5) were generated to represent possible
stimuli in the modality of that area. Activity in MTNC is denoted by y.

Neocortical dynamics. This model network functions as a Boltzmann
machine25. The Boltzmann machine uses weights and biases W = {W,w} to
parameterize a probability distribution P[xA,xB,xC; W] over the inputs, in such
a way that the Monte Carlo sampling method called Gibbs sampling can be
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used to perform inferences such as pattern completion. Because the within-
area connections are not explicitly simulated, for the purposes of learning, the
network becomes a restricted Boltzmann machine, for which units within each
layer can be updated synchronously, so the dynamics of activity in the network
consists of updates alternating between the two layers. Unit xi in the input
layer is set as

(1)

where σ(x) = 1/(1 + exp(−x)) is the standard logistic sigmoid function; an
analogous rule is used for units in area MTNC. Our model of the local cleanup
connections specifies that, in the absence of feed-forward input, if the local
activity pattern is within a bitwise Hamming distance of five of one of the pre-
viously experienced input patterns in that area, the activation pattern is
changed (locally) to that pattern.

Neocortical learning. During input-driven activity in the network, and also
during replay episodes when neocortical plasticity is enabled, the weights W
are updated using Hinton’s recent modification27 of the standard
Boltzmann machine learning rule25, which involves two phases. In the
Hebbian phase, a complete input pattern is presented to the input layer; the
corresponding activities in MTNC are determined stochastically according
to the equivalent of equation (1); and the weights between the two layers are
increased in proportion to the product of the activities of the nodes con-
nected. The units in the input layer and then once more in the MTNC layer
are then sampled, and, in the anti-Hebbian phase, the weights are decreased
in proportion to the product of these new, internally generated activities. In
this simple version of the architecture, weights are allowed to take both pos-
itive and negative real values.
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