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Humans and animals can perform much more complex tasks than they can acquire using
pure trial and error learning. This gap is filled by teaching. One important method of
instruction is shaping, in which a teacher decomposes a complete task into sub-compo-
nents, thereby providing an easier path to learning. Despite its importance, shaping has
not been substantially studied in the context of computational modeling of cognitive learn-
ing. Here we study the shaping of a hierarchical working memory task using an abstract
neural network model as the target learner. Shaping significantly boosts the speed of
acquisition of the task compared with conventional training, to a degree that increases
with the temporal complexity of the task. Further, it leads to internal representations that
are more robust to task manipulations such as reversals. We use the model to investigate
some of the elements of successful shaping.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Humans and animals acquire an extensive and flexible
repertoire of complex behaviors through learning. How-
ever, many tasks are too complex to be amenable to simple
trial and error learning, and therefore external guidance or
teaching is critical. Three central forms of teaching are:

� abstract or verbal communication of symbolic rules gov-
erning the underlying tasks;

� repeated demonstration of the required action
sequences. This turns unsupervised problems into
supervised ones, and in some cases permits imitation;

� shaping, i.e., provision of a simpler path to learning by
task simplification and refinement.

Here, we provide a computational treatment of shaping
in the context of a cognitive task.

The term shaping was first coined by Skinner (1938),
who described it as a ‘‘method of successive approxima-
tions”. In shaping, a sequence of intermediate, simple tasks
is taught, in order to aid acquisition of an original, complex,
. All rights reserved.

ger).
task. Skinner was perhaps motivated by the possibility of
taking advantage of animals’ innate repertoires of re-
sponses (Breland & Breland, 1961; Peterson, 2004); but
the term is also used more widely. Divide-and-conquer is
inherent in shaping and appears to help with facets of com-
plexity such as branching, hierarchies and large variations
in the timescales of the effects of actions. Shaping also pro-
vides behavioral ‘‘units” that can be deployed in a range of
tasks. Shaping is almost ubiquitous in animal behavioral
experiments.

Two main aspects of shaping have been considered in
theoretical learning frameworks. First, Elman (1993) real-
ized a concept described by Newport (1988, 1990) in terms
of ‘‘Less is More”, in the context of the learning of gram-
mars in simple recurrent networks. The idea was to use
an initial phase of training with only simpler incarnations
of the rules of the grammar. Although the issue is not
uncontroversial (see Rohde & Plaut, 1999), Elman (1993)
argued that this simplification may arise intrinsically,
through a process of self-shaping. This would happen on
the basis of a working memory that, consistent with evi-
dence for differential rate of maturation of parts of the pre-
frontal cortex (Brown, Joseph, & Stopfer, 2005; Sowell,
Thompson, Holmes, Jernigan, & Toga, 1999), initially has
a very low capacity, but expands over development. The
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second aspect of shaping that has been studied is associ-
ated with robot learning or reinforcement learning (Dorigo
& Colombetti, 1998; Savage, 1998, 2001; Saksida, Ray-
mond, & Touretzky, 1997; Singh, 1992), typically in the
context of navigation.

By contrast with these suggestions, we consider shaping
for the adult learning of the sort of complex cognitive tasks
that are popular for the elucidation of the prefrontal neural
architecture of cognition (Shallice & Burgess, 1991; Gilbert,
Frith, & Burgess, 2005; Koechlin, Ody, & Kouneiher, 2003;
Badre, Poldrack, Pare-Blagoev, Juliana amd Insler, & Wag-
ner, 2005). The main emphasis in the computational mod-
eling of these tasks has so far been in developing
architectural mechanistic elaborations (Frank, Loughry, &
O’Reilly, 2001; O’Reilly & Frank, 2005), to overcome the
complexity of learning. However, shaping is extensively
used in training human and animal subjects in order to
simplify complex learning; here, we seek to model it and
understand aspects of its power.

O’Reilly and Frank (2005), Hazy, Frank, and O’Reilly
(2007) suggested one of the most powerful and effective
architectures in their prefrontal, basal ganglia, working
memory (PBWM) model. This employs a gated working
memory (adapted from the long short-term memory
(LSTM), architecture of Hochreiter & Schmidhuber, 1997;
Gers, Schmidhuber, & Cummins, 2000) in an elaborate
overall structure. O’Reilly and Frank (2005), Hazy et al.
(2007) illustrated their model using an abstract, hierarchi-
cal, version of the continuous performance working mem-
ory task (CPT) called the 12-AX task, which they invented
for the purpose. The complexity of this task arises from its
hierarchical organization, which involves what amounts to
subroutines.

Here, we build an unelaborated LSTM model (which
O’Reilly & Frank, 2005; Hazy et al., 2007, used as a compar-
ison point for the learning performance of PBWM) and
study the additional role that shaping might play in gener-
ating complex behavior in tasks such as the 12-AX. We
consider a straightforward shaping path for this task, high-
light the importance of the allocation of resources in shap-
ing, and assess the improvements in training times that
come from the external guidance, as a function of paramet-
ric task complexity. Finally, we look at the effects of shap-
ing on the flexibility of the network in dealing with
variations of the stimulus statistics (while keeping the
rules constant), and with a shift in the task rules
themselves.
Fig. 1. The 12-AX task. Each symbol within a rectangle represents the
stimulus presented to the network at a single timestep. Required
responses are indicated by the letters above (‘L’, distractor, and ‘R’,
target). The outer loop, beginning with either a 1 or 2, determines the
correct target sequence (AX or BY) for the following n duplets (inner
loops). Adapted from O’Reilly and Frank (2005).
2. General methods

In this section, we describe the 12-AX task, the unelab-
orated LSTM network used to solve it, the particular shap-
ing path that decomposes the task into its elements, and
the learning methodology. One of the most important
questions in shaping is how to increase the capacity or
power of the network as new elements of a task are pre-
sented. In order to focus cleanly on the effects of shaping,
the main results in Section 3 depend on manually allocating
new LSTM components at each additional step of shaping.
However, in Section 4, we show results from a simple
(uncertainty-based, Yu & Dayan, 2005; or error-based,
Zacks, Speer, Swallow, Braver, & Reynolds, 2007; Reynolds,
Zacks, & Braver, 2007) scheme for automatically allocating
these components. This proves that shaping can still be
effective without extra external intervention.

2.1. The 12-AX task

The 12-AX task (Fig. 1) is a complex problem involving
inner and outer loops of memory and control (signalled by
numerical, and particular alphabetic, inputs, respectively).
In the task, subjects see a sequence drawn from an alpha-
bet of the eight symbols 1, 2, A, B, C, X, Y, Z; every sym-
bol has to be followed by a response. The ‘target’ key (‘R’)
must be pressed for symbols defined as targets by the rules
of the task, and the distractor key (‘L’) for all other symbols.
There are two different inner loops, both of which are CPT
1-back tasks: subjects must declare as a target either X

when preceded by A (i.e., to the segment AX) or Y when
preceded by B (BY). These pairs appear without warning
in a stream of uniformly-selected random distractor pairs.
Every symbol not defining the end of a target pair should
be declared as a distractor. The outer loop is signalled by
the numbers, with a 1 meaning that the AX task should
be performed until the next context marker; and a 2 mean-
ing that the BY task should be performed instead. The
numbers 1 and 2 themselves should also be declared to
be distractors (‘L’).

Different statistics and contents of the inner loops de-
fine different variants of the task. For ease of comparison,
we work with the version defined by O’Reilly and Frank
(2005) unless otherwise specified. In this, each random
pair consists of one of {A, B, C} followed by one of {X, Y,
Z}, and there are n ¼ 1 . . . 4 pairs in each outer loop. The
outer loops are equiprobably 1 and 2. At least 50% of the
inner loops consist of potential target sequences AX or
BY. The other 50% are drawn uniformly from all 9 possible
inner loop sequences. An epoch is (arbitrarily) defined as
25 outer loops, and network activity is reset after each
epoch.

O’Reilly and his colleagues (Frank et al., 2001; O’Reilly &
Frank, 2005) defined successful acquisition of the task by
the absence of errors in two consecutive epochs. In our
simulations, we find this not to be sufficient, as a substan-
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tial number of errors can be made even after reaching this
criterion. Instead, we use a softer, but more prolonged cri-
terion, requiring networks to make no more than 5 errors
in 30 consecutive epochs, reducing the error rate to 0.5 er-
rors in a thousand responses. These 30 epochs are excluded
from the reported training times. Experiments are re-
peated 100 times with different random weight initialisa-
tion and stimulus sequences on each repetition.

2.2. The network

Our network is an unelaborated form of the long short-
term memory (LSTM) model with forget gates (Gers et al.,
2000). This model derives from standard recurrent neural
networks, but with the addition of a gating mechanism
to facilitate long term activation based memory in its
recurrent layer, while still allowing for rapid updating
and read-out. LSTM provides the original functional foun-
dation of O’Reilly and Frank’s (2005) PBWM.

Fig. 2 shows the structure of the model and in this sec-
tion we describe an overview of the important elements of
the model. The detailed equations are included in Appen-
dix A. The LSTM network can be decomposed into three
layers: input, recurrent or memory, and output layer (from
bottom to top). The output layer is a standard connection-
ist neural network layer, i.e., a linearly weighted sum of in-
puts with a sigmoidal activation function. The activations
of the input layer are set to represent the ‘percepts’ of
Fig. 2. The network model. The long short-term memory (LSTM) network with
network using binary units that each represent one element of the alphabet. The n
18 (for both shaping and reversal tasks). All networks have two output units repr
in most simulations of 4 recurrently connected memory modules or blocks, a
automatic allocation. Feed–forward weights connect the layers. A close-up of a
multiplicative input, output and forget gates. Each triangle represents a set of li
cells and gating units, and from the gated output of the memory cells to the ou
the network and are represented as a unary encoding of
the stimulus alphabet. These are fed forward to both the
recurrent memory layer and directly to the output layer.

The recurrent layer consists of several so called memory
blocks. Each memory block (the inset in Fig. 2) is associated
with a set of three gating units, input, forget and output
gates. In addition each memory block has several memory
cells, which store the actual memory (depicted by the mid-
dle circle of the cell in Fig. 2) and whose activation can
range from positive to negative real values (for reasons of
numeric overflow in the output nonlinearity bounded be-
tween �20 and 20). At each timestep the activation of a
memory cell is decayed multiplicatively by the activation
value of the forget gate of the corresponding memory
block. Thus the forget gate controls smoothly between for-
getting the memory completely (value of 0) and retaining
perfect memory (value of 1). Similarly, the input to the
memory cell, a linear combination of the input layer and
the outputs of all of the memory cells passed through a sig-
moidal nonlinearity ranging from �1 to 1, is multiplied by
the activation value of the input gate before being added to
the activation of the memory cell, thus allowing inputs to
be differentially ignored. Finally, the output of a memory
cell is passed through another sigmoidal nonlinearity and
multiplied by the activation of the output gate unit.

All sets of weights, i.e., for the output, cell input and gat-
ing units (depicted by triangles in the figure), are fully plas-
tic. Altogether, this allows the network to learn to select
‘forget’ gates. Stimuli are encoded punctately in the input layer of the
umber of input units used varies between 9 (for the main 12-AX case) and

esenting an ‘L’ or ‘R’ decision of the network. The hidden layer is comprised
lthough in some experiments it can be more or vary, especially during
memory block is shown, visualising two cells that are gated by common

near weights both for the connection from the input layer to the memory
tput layer.
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between rapid updating and robust memory retention
wherever required. However, the LSTM contains no direct
competitive component on the output layer, and thus any
anti-correlation between its units has to be explicitly
learned through the weight vectors of the output units.
As the output of the task is an explicit decision of either
‘‘Left” or ‘‘Right”, the graded activations of the outputs
are binarized at a threshold of 0.5. In cases in which both
output units are the same (either 0 or 1), the network is
counted as giving an erroneous response.

Learning in this architecture is performed in a fully
supervised fashion using a backpropagation through time
(BPTT) variant of gradient descent. This minimizes the
squared error between the target, a unitary encoding of
the desired action, and the output units.

2.3. Shaping procedure

Key to shaping is identifying the essential subcompo-
nents in a task. These can then be separated to produce
an appropriate training sequence. In case of the 12-AX task
used here, the two main hierarchical components of the
task are: (i) learning to memorize 1 and 2 for long periods
as context markers; and (ii) learning to memorize the A or
B for one step to perform the AX or BY blocks correctly.

Although the exact details of the shaping protocol are
somewhat arbitrary, they do adhere to the above princi-
ples. As shown in Fig. 3, we consider a 7 stage shaping pro-
cedure divided into 3 main sections, each of which reflects
the structure one of one of the subcomponents: (i) learning
to store the context markers 1, 2 (stages 1-4); (ii) learning
the one back characteristics of the CPT–AX (stages 5 and
6); and, finally, (iii) the full 12-AX task (stage 7).

In the first section of shaping, the networks are exposed
to a task whose response is only defined by the last seen
number. That is, all stimuli following a 1 require an ‘L’ re-
sponse, whereas those following a 2 require an ‘R’ response
(see Fig. 3a). The alphabet of possible intermediate stimuli
is chosen to be a distinct set of nine further inputs that are
not part of the standard 12-AX task, in order not to con-
found learning the storage of 1 and 2 with other aspects
of the task. Note, however, that in other experiments (not
shown) which used the same alphabet here as for the full
12-AX task, ultimate performance was essentially the
same, so this is not a crucial parameter of the procedure.

Gating in the LSTM model is graded rather than binary
(partly to ensure differentiability of the network). Making
this gating be sufficiently strong requires the use of at least
some long sequences, in our case including up to 60 inter-
1 AUBV2

L L R L L L

Time

1 5 VFE2 4 U6

L L L

R

L L R R R R

Time W

a b

Fig. 3. Typical sequences used during the shaping procedure. (a) The first sectio
following a 1 should be R and to those following a 2 should be L. The maximum
second section trains the unconditional gating of A and B, respectively, in a one ba
immediately following an A in (b) and B in in (c).
mediate stimuli between successive context markers. Un-
der the shaping procedure (and indeed rather deeply
embedded in the strong asymmetry in the task as a whole
between the frequency of distractor and target responses),
this produces very long stretches of identical responses,
which themselves harm learning. Thus, to achieve accept-
able performance, we segment training by presenting this
section of the task in four parts (defining the first four
stages of shaping), with loop lengths increasing from 12
up to the maximum of 60. Within each individual stage,
the distribution of lengths follows a (renormalized) trun-
cated exponential distribution, with the longest possible
sequence being more than five times less likely than the
shortest.

The second section of shaping consists of two stages,
each based on remembering one of the first elements of
one of the two target sequences AX and BY. Unlike the full
12-AX task, during these two stages any symbol following
an A or a B respectively requires a target response. Typical
sequences are shown in Figs. 3b and 3c. The final section
(the seventh stage of shaping) involves learning the full
12-AX task.

Each stage is trained until the network achieves the per-
formance criterion on that stage, or for a maximum of 500
epochs. This limit is implemented both for computational
reasons as well as to remove the odd outlier network that
fails to learn in a reasonable time. This limit corresponds to
about three times the mean training length equivalent to
several standard deviations larger than the mean of the un-
shaped base case.

2.4. Manual allocation

Shaping involves separate phases of training sub-tasks.
As mentioned, throughout the experiments in Section 3,
new network resources, i.e., new memory blocks, are allo-
cated by hand when encountering new subtasks, ensuring
the necessary separation of learned behavior across shap-
ing stages. Memory blocks in the LSTM network are mostly
independent, and so can readily be treated as separate
units of resource. In Section 4, we discuss a method for
automatically allocating new blocks.

For the results in Section 3, for each new sub-task dur-
ing shaping, a single fresh memory block is allocated (hav-
ing random initial weights), and previously used memory
blocks are temporarily disabled. This results in a strict sep-
aration of ‘‘behavioral units.” Each time the allocation
changes, weights from the input layer and the recurrent
memory layer to the output layer are reset to random
1 AWB6 2 CVBU

L L L

R

L R L L L L

Time
C6 AW

R
L L L

c

n of shaping trains the context markers 1 and 2. Responses to all stimuli
length of distractor sequences gradually increases in 4 stages. (b), (c) The
ck task. The subject has to respond unconditionally with an R to any input
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values to encourage learning into the new module. In the
final stage of learning the complete 12-AX task, all four
memory (three of which were present during shaping
and a fourth empty block) are fully enabled, and all
weights are plastic. This allows a fair comparison between
the learning of the shaped network and learning of a topo-
logically-identical, but randomly-initialized, unshaped
network.

3. Results

As a baseline for performance, we train a standard (na-
ive) LSTM network directly on the full 12-AX task. On aver-
age it acquires the task in 186 epochs. (standard error: 8.5
epochs) This is rather faster than the roughly 350 epochs
that O’Reilly and Frank (2005) suggested for an unembel-
un− shaped
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Fig. 4. Comparison of learning times between shaped and unshaped
networks for the standard 12-AX task. The bars show the numbers of
epochs needed to learn the task up to a set performance criterion. Grey
represents the epochs trained on the 12-AX task. For the unshaped
network this is the sole training received. White quantifies the cumula-
tive training time of the shaping procedure in terms of 12-AX epoch
equivalents. Error bars represent the standard error of the mean.
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Fig. 5. Graphs show average learning curves during the individual stages of shap
presenting training times of increasing length of 12, 25, 40 and 60, respectively. T
tasks. The last plot shows training times on the full 12-AX task. The dashed line s
the right) visualises the distribution of times required for the 6 stages of shapin
error of the mean, and are only shown for selected points for clarity.
lished LSTM network. Since the number of memory blocks
(4), cells per block (2) and learning rate (0.1) are similar to
those they used, this presumably results from the altered
learning criterion and network parameters.

By comparison, after complete shaping, networks learn
the full 12-AX task rapidly, on average in 39 epochs (stan-
dard error: 6.6), thus showing the expected large decrease
in training time. As the mean can be corrupted by a few
outliers, the typical learning times (median) may be more
informative. The median for the shaped networks is 14
epochs; for the unshaped network the median was 162
epochs, closer to the mean. Thus median training times
showed even greater advantage with about a ten fold de-
crease through shaping.

Of course, the full time for training should also include
that devoted to the shaping itself. Calculating the equiva-
lent number of epochs for the shaping stages based on
the number of stimulus presentations, shaping takes an
equivalent of 74 epochs on average (median is 61 epochs).
Thus, as can be seen in Fig. 4, there remains a substantial
overall benefit (significant at p < 0:001) for shaping.
Fig. 5 shows detailed (averaged) learning curves of each
of the individual stages of shaping.

To prevent any occasional bad runs from unduly cor-
rupting average training times, outliers in the form of runs
failing to learn any of the stages within 500 epochs were
excluded from further analysis. This happened for both
the shaped and unshaped network in about 5% of the test
runs performed to gather statistics.

3.1. The necessity of resource allocation

As described in Subsection 2.4, we allocate the re-
sources of the network, i.e., the LSTM modules, by hand
during shaping, to ensure separation of the ‘‘behavioral
units”. We might expect allocation to play a critical role
in solving the stability–plasticity dilemma (Grossberg,
1980) inherent in shaping, and so for performance without
it to be severely impaired. Indeed, the idea of resource allo-
cation, or more broadly the concept of increasing the
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hows average learning for the unshaped network. The histogram (scale on
g. Plots follow each other sequentially. Error bars represent the standard
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capacity of a learning agent in the event of sudden sequen-
tial change in the task to prevent interference of learning
has been proposed previously as a solution to similar prob-
lems, including Redish, Jensen, Johnson, and Kurth-Nel-
son’s (2007) reinforcement learning model of extinction
and renewal learning, which we discuss below.

One way to test the importance of resource allocation
for shaping is to perform the same learning procedure
(the shaping stages followed by the full 12-AX task) but
with all the memory modules being fully active throughout
learning. Doing this on average required 235 epochs (med-
ian 227 epochs) for the final stage (the 12-AX task) alone.
This is longer not only than the network which does in-
volve resource allocation, but also than the baseline case
of the unshaped network. This problem is only partially
solved by increasing the capacity of the network, which
should reduce the pressure to find one specific solution.
Although testing a version with twice as many memory
blocks showed a slight reduction in the number of epochs
for the final 12-AX stage (mean 210, median 200), dou-
bling the number of memory units once more to give four
times the initial capacity, led to worse results again.

3.2. Robustness to irrelevant additional structure

That 12-AX is the first task seen by our network is an-
other potential confound, since, in reality, this task is likely
to be only the latest in a very large set of tasks that the sub-
jects will face. The possibility of generalising from these
previous tasks to produce even better performance is an
important, but hard, question that we discuss later, but
cannot yet simulate. However, it is straightforward to test
the robustness of the learning procedure to extra irrelevant
behavioral units associated with other, independent, tasks.

We consider two possible confounding structures, both
involving extra, irrelevant, LSTM memory units. Shaping
remained identical, with all extra modules fully disabled
during the first six stages of 12-AX task shaping, but en-
abled and plastic during the final, complete, 12-AX stage.
One set of memory units comes from solving a similar task
defined on the same alphabet of symbols, but with differ-
ent context and block markers. The other comes from using
LSTM modules with random weights drawn independently
from exponential distributions matched to the marginal
distribution over weights as arises during normal 12-AX
training. Distributions are matched separately for the dif-
ferent classes of weights.

In neither case does learning performance using shap-
ing of the 12-AX task differ much from that of the simple
shaped network (means 25, 19 and medians 12 and 10,
respectively, for similar and random structures).

3.3. Scaling behavior

The ability to cope with increasingly complex tasks and
to identify and learn patterns even over extended time
periods is a key aspect of cognitive flexibility. However,
long temporal credit assignment paths render rapid learn-
ing infeasible for many traditional neural network learning
algorithms. By contrast, we predict that a network contain-
ing the sort of additional task information associated with
learning through shaping, should experience fewer
problems.

In this case, the most important form of temporal com-
plexity is the number of inner loops contained within each
outer loop. We can therefore test the prediction about the
benefit of shaping by training both shaped and unshaped
networks on 12-AX tasks with outer loops varying in
length from 1 to 40 sequence pairs, i.e., 2–80 interleaving
stimuli. Since the more complex tasks take longer to con-
verge, we also raise the cut-off criterion from 500 to
1000 epochs. All other parameters, including the shaping
procedure, are identical to those described above.

Fig. 6 confirms that whereas the training time of the un-
shaped network rises very steeply with longer outer loops
(up to 715 epochs on average for 40-length outer loops),
the shaped network actually uses fewer epochs. This appar-
ently paradoxical result comes from the fact that the num-
ber of pattern presentations per epoch increases (from 75
to 1050 on average). This shows the unshaped network
in a particularly unfavourable light.

3.4. Computational generalisation

Another critical issue is the ability of the procedure to
create appropriate computational mechanisms that can
generalize along appropriate dimensions by effectively
abstracting the statistics of the task away, focusing only
on the underlying rules.

In this case, the key dimension is again the length of the
outer loop, and so we test the ability of the networks, hav-
ing learnt from outer loops of one length (up to 4 inner
loops), to generalize to longer outer loops, without further
learning. The rules of course remain the same for each of
these tasks. Thus, if they are represented abstractly, in a
way that generalizes proficiently, then the only extra er-
rors should come from the requirement to retain working
memory for more extended periods. Therefore, this param-
eter manipulation acts as a proxy of one type of rule
abstraction. Note that this is a quite different question
from that in Section 3.3, which concerned learning rather
than generalisation.

Fig. 7 shows that the error rate of the unshaped network
increases much more sharply than that of the shaped net-
work, particularly for long outer loops. Fig. 8 breaks this
down by the number of inner loops since the last context
marker (i.e.,’1’ or’2’). The devastating sensitivity of the un-
shaped network to this factor is starkly evident. Shaping
creates a more abstract computational mechanism that
generalizes appropriately beyond the original training.

3.5. Symbol generalisation

A more direct measure of the generalisation capabilities
of the network is its ability to handle previously unseen
test sequences. To test the shaped and unshaped networks
in this way, we withheld two of the inner loop sequences
during training on the base 12-AX task. After successful
training to criterion on this reduced task, we measured
the error rate on the full task. In order to determine a reli-
able average error rate, learning in the network is disabled
for all cases during the test phase.
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As there is only a very limited number of sequences
(nine) altogether, the choice of which sequence is left out
can significantly influence the results. Obviously the two
target sequences AX and BY cannot be left out, as these
are unique and therefore not possible targets of generalisa-
tion. Furthermore, each stimulus is only present in 3 se-
quences. Hence, if two of these containing the same
stimulus are withheld, then again, no generalisation is pos-
sible. Therefore, we choose to withhold AZ and CX. Even so,
only two exemplars are left according to which rules
can be inferred, making this test quite hard. With AZ and
CX withheld, the remaining non-target sequences are AY

CY CZ BX BZ. Therefore, when looking at the AZ sequence,
the A appears once in a target and once in a non-target
sequence, whereas the Z never appears in a target se-
quence. The CX sequence in contrast has the opposite
weighting, with the first element of the sequence, the C,
never being part of a target and the X being part in half
of the sequences. This choice of withheld patterns there-
fore allows us to identify if there are differences as to
which element is more important for generalisation to a
network.

The results of this experiment are presented in Fig 9.
First, when trained on the full 12-AX task, i.e., with no pat-
tern being withheld during training, neither shaped nor
unshaped networks have large variations across individual
inner loop pairs, showing they have indeed learned the
task correctly. This is to be expected. By contrast, those
networks trained on the restricted training set show more
substantial variations. Although both training methods end
up performing worse on the withheld data, either shows
generalisation and on average only makes on the order of
one in 10 mistakes for the withheld sequences. Neverthe-
less again the shaping seems to benefit and the overall er-
ror rate is down compared to the unshaped training. More
interestingly however, the patterns of errors on the with-
held patterns differ significantly between the shaped and
unshaped networks. Whereas the unshaped network fre-
quently wrongly generalises the CX pattern as a target,
shaping reduces this type of error. In contrast however,
the shaped network generalises worse on the AZ pattern,
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occasionally classifying it wrongly as a target. Here the un-
shaped networks have no problems.

By symmetry, withholding sequences BZ and CY should
lead to the same result. Indeed, shaped networks made
more errors on BZ (shaped: 2.5%; unshaped: 0.0%) whereas
the unshaped networks made more errors on CY (shaped:
3.4%; unshaped: 11.4%).

These results suggest that the training method influ-
ences the nature of generalisation, with the shaped net-
works over-emphasising the first element of the
sequence and the unshaped networks generalising along
the second element of the sequence. The extensive pre-
training on A and B during shaping leads to a prominent
representation of these stimuli in the network, and so
determines the nature of the generalisation.

To verify this interpretation, we ran a second set of
experiments in which a different class of sequences was
withheld (AY and BX). By contrast with the previous se-
quences, both the first and second stimulus of the se-
quences are each part of one of the target sequences.
Thus, from the analysis above, we would expect both types
of networks to have problems with generalising these se-
quences. However, differences can still be seen coming
from the nature of the context dependency of the 12-AX

task. As shown in Fig. 9(b), when splitting the errors by
context, the varying types of errors can easily be seen.
The shaped network again generalises along the A and
more often incorrectly attributes the AY a target in the 1

context and the BY in the 2 context. Conversely, the un-
shaped network more often incorrectly responds to the
AY in the 2 context and the BX in the 1 context. Overall,
for both networks, the error rate is much higher with this
set of withheld sequences, as each part of the sequence
during training is only part of one target and one non-tar-
get sequence making generalisation more ambiguous.

3.6. Reversal learning

An important experimental test of flexibility concerns
the effect on the speed of learning of successive alternating
reversals in the contingencies in the experiment (Butter,
1969; Iversen & Mishkin, 1970; Jones & Mishkin, 1972).
We therefore define a reversed task (AB-X1), in which
the rules are the same, but the context markers and the in-
ner loop target sequences are upside down. We compare
the particular impact of reversals with that of alternating
learning of a new task called 45-DU (shifting), whose rules
are the same, but involving different, non-overlapping,
symbols.

3.6.1. Reversal tasks
These set of experiments involve two new tasks, the

AB-X1 task for the reversal experiment and the 45-DU task
for the shifting experiment. All three tasks share the same
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rules (either one of two target sequences is active, depend-
ing on the most recent context marker) and thus have the
same hierarchical nature as the 12-AX task, however
which stimulus is a context marker and which belongs to
one of the target sequence differs between the tasks. In
the AB-X1 task, the same alphabet

(1, 2, 3, A, B, C, X, Y, Z) is used with A and B being the
new context markers and X1 and Y2 the new target se-
quences. The 45-DU task instead employs a non-overlap-
ping alphabet (4, 5, 6, D, E, F, U, V, W) with 4 and 5 the
context markers and DU and EW the respective target se-
quences. By the fact that the AB-X1 uses the same alphabet
as the 12-AX task, and the tasks are learned sequentially
the switch between these two tasks requires a certain
amount of unlearning or at least suppression of the stimu-
lus action mappings. In contrast the non-overlapping
alphabet of the shifting task results in less interference
due to the strong external indicator of the used stimulus
set.

In order to accommodate these additional tasks, some
changes to the network and the shaping procedure are re-
quired. First, the new symbols require the input layer to be
extended by further 9 units. Second, in order to allow the
shaped network to be able to build upon prior structure
during reversals in the same way as in the base 12-AX task,
the shaping procedure is extended to include equivalent
training for the AB-X1 task. The additional shaping is per-
formed using 4 additional memory modules, so the net-
work had a total of 8. For a fair comparison, the
unshaped network is also given 8 modules.

The full shaping procedure of components of both tasks
is completed before the first exposure to either the 12-AX

or the AB-X1/45-DU task, by which time resource alloca-
tion is finished and all memory cells are fully enabled.
Thus, at the time of first exposure to the full tasks, the
shaped and unshaped network are again identical apart
from the structure in the weights established through
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shaping. Further, as always, the activations of the network
are reset at the end of each epoch, whether or not a rever-
sal occurs.

The actual reversal task consists of 5 reversals between
12-AX and AB-X1. A reversal occurs either after a network
has reached its performance criterion of learning the task,
or after a maximum of 500 epochs. The time of reversal is
not cued in any way.

3.6.2. Reversal results
The large panels in Fig. 10 show averaged learning

curves for the first 6 reversals. Networks with either train-
ing method show substantial difficulties with learning the
initial reversal of the task. In fact, the difficulties are such
that a large fraction of the training runs fails to achieve
the learning criterion within the preset number of training
epochs (500). Even for the shaped cases this fraction is at
about 50%; however, performance of the unshaped net-
work is particularly devastated by the reversal, with close
to all (95%) of the networks failing to converge appropri-
ately. In the graphs showing the error rates averaged over
all runs, bar those few failing to learn even on the initial
12-AX, this failure to learn can be seen in the elevated
asymptotes; a somewhat orthogonal feature to the steep-
ness of the initial learning. Nevertheless, over the succes-
sive reversals, both networks improve in both measures;
but the shaped networks still significantly out-perform
the unshaped networks throughout each AB-X1 task. Shap-
ing does not, however, eliminate the path dependence of
the learning of the full task (given the lack of resource allo-
cation at this point); there is typically a very fast phase of
initial learning each time the 12-AX task repeats.

In the shifting experiment (45-DU task), compared with
the above reversals, switching the contingencies does not
lead to such poor performance. The small panels of
Fig. 10 show that there is a clear learning effect already
by the second shift. By the third shift, both shaped and
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unshaped have mostly learned the shift and perform well
immediately after the switch. However, again, the shaped
network does substantially better with the median learn-
ing time of 1 epoch for both the last shifts, compared to
14 and 16 for the unshaped network.
4. Automatic allocation

In all the simulations so far, we have employed a deus ex
machina, in which shaping has been associated with the
manual allocation of resources. Indeed, Section 3.1 showed
that shaped networks perform substantially worse than
the unshaped networks without allocation. We did this
to focus on the potential benefits of shaping in computa-
tional modeling, rather than particular implementation de-
tails. However, if there was no way of realizing these
benefits without such an external intervention, then shap-
ing would not be a viable solution. Thus we now suggest
one simple mechanism for automatic resource allocation,
as a proof of principle.
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Fig. 11. Automatic allocation: This graph shows learning times for the
shaped 12-AX task given manual allocation, no allocation, and automatic
allocation. As above, the white bars show the epochs devoted to shaping;
the grey bars show those devoted to the full task.
4.1. Unexpected uncertainty as a trigger for resource
allocation

A simple possibility for automatic allocation is to spec-
ify a mechanism that detects the onset of each new sub-
task. An obvious candidate for this is unexpected
uncertainty (Yu & Dayan, 2005; Dayan & Yu, 2006), i.e.,
the unexpected drop in the performance of the network
that happens when each new sub-task is introduced. In-
deed, unexpected uncertainty, and its noradrenergic neural
representation, have been been implicated in the nature
and speed of learning in reversal tasks, which involve sim-
ilar contingencies. Another example of using a form of
unexpected uncertainty to detect boundaries is the model
of Zacks et al. (2007), Reynolds et al. (2007). In this model
of event segmentation in a sequential perception stream,
segmentation is based upon the assumption that the pre-
dictability of the next percept significantly drops at the
boundaries of events, beyond the expected uncertainty
within the event, driving a gating signal in working mem-
ory. Equally, in the work of Redish et al. (2007), the contin-
gency of extinction is detected by a sudden drop in reward,
at which point the state space is duplicated and thus new
resources are allocated.

Along similar lines, we propose that times of height-
ened unexpected uncertainty trigger events in the net-
work. Rather than only affecting network activity
through gating, however, we propose a change of the net-
work topology itself (hard resource allocation) or more
realistically through meta-plasticity in the form of differ-
ential changes in learning rates (soft resource allocation).

For the want of a full model of uncertainty in these sim-
ulations, we make the assumption (which in this case is
true) that, having learned the deterministic 12-AX task,
an agent would make no errors. Thus, the expected uncer-
tainty is close to zero. As such, the current error rate can be
treated as a direct measure of unexpected uncertainty. We
model allocation as being triggered by a threshold crossing
of unexpected uncertainty or error rate increase, a tech-
nique both Redish et al. (2007) and Reynolds et al. (2007)
employed in their models. As in Section 3, when allocation
occurs, a single new module of the LSTM gets activated.
However, unlike for manual allocation, the plasticity of
the existing modules is strongly reduced (by a factor of
20) rather than completely abolished, and indeed these
modules continue to contribute to network activity in a
normal manner. This is essential for a solution to a task
to involve a recombination of elements of the solutions
to previous tasks.

Although according to the model, the number of mod-
ules should be able to grow arbitrarily large, for practical
reasons we cut-off new allocation after 12 units, which
happened once in the hundred runs.

As no outside intervention was performed in the net-
work during the automatic allocation experiments, the
network topology at the time of first encounter with the
12-AX is no longer identical to either the unshaped net-
work or the manually allocated shaped networks. Not only
may the number of memory blocks differ due to the
continuing allocation of new blocks, but also, once per-
forming the 12-AX task, not all blocks are equally plastic.
Indeed, there is no longer any distinction between epochs
involving shaping and those involving the full 12-AX task.
Appendix B provides details of this procedure.

4.2. Results

In order to test the effectiveness of this simple auto-
mated allocation mechanism, we repeated the basic shap-
ing experiment. Fig. 11 shows that this network is a clear
improvement on a network without any allocation.
Although the mean number of epochs required for learning
(173 epochs for the combined training, 87 epochs for 12-
AX task alone) is greater with automated than manual
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allocation, it is still less than for learning without shaping
(p < 0:05, single tail t-test). Furthermore, much of this
apparent decreased learning speed originates from slightly
less robust learning, which makes it harder to achieve the
stringent performance criterion. This can be seen particu-
larly clearly in the actual learning curve (Fig. 12-7), which
differs little from the case of manual allocation in Fig. 5,
and shows a large improvement over no shaping. The re-
duced robustness is apparent in the heavier tail of the
learning curve.

Another way of analysing the effects of the automatic
allocation is to look at the distribution of points at which
new blocks were allocated. On average, in each run, 4.5
allocations occurred. The majority of runs contained 4 allo-
cations. Although only 3 allocations were necessary, and
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thus all but one run showed at least one spurious alloca-
tion, the majority of these occurred during the early part
of the first stage of shaping, at which point the error rate
was still highly variable. Looking closer at the allocation
during the final stage of learning the full 12-AX task, we
can see that all runs contained at least one allocation dur-
ing this stage and 76 runs detected the task switch within
the first epoch of changing to the 12-AX task.

In a second set of experiments, the reversal tasks of Sec-
tion 3.6.2 were repeated using the automated allocation
procedure. Here, the automatic allocation actually per-
forms better than manual allocation. This comes from its
ability to allocated new blocks throughout the reversals,
thus helping separate out modules associated with 12-

AX and AB-X1 tasks (see Fig. 13).
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5. General discussion

Although shaping is widespread as a method of training
subjects to perform complex behavioral tasks, its effects in
computational models have not been extensively investi-
gated. We studied shaping in a moderately complex hierar-
chical working memory task, showing that it offers
significant benefits for learning in the face of medium-term
to long-term temporal demands. Speed is not the only ben-
efit of shaping – we showed that it also leads to a solution
of the task that generalizes better over time, and is also
more flexible in the face of task changes such as reversals.

There is not yet a clear computational theory that pro-
vides constraints on appropriate ways of designing shaping
protocols. Indeed, the rapid variation in methods of teach-
ing, suggests that there may also be a dearth of clear psy-
chological constraints. It does seem evident that finding
the separable hierarchical parts of a problem is key (Wat-
kins, 1989; Singh, 1992; Parr & Russell, 1997; Barto &
Mahadevan, 2003), but if there is more than one way of
decomposing a task, or indeed more than two levels in
its underlying hierarchy, then further experimentation
may be necessary. We did refute the possible hypothesis
that any way of making a task progressively more complex
would be equally valuable, by showing that training simply
with successively longer outer loops without the initial
hierarchical decomposition did not show the full benefits,
such as generalisation. Further, more subtle changes to
such aspects of the procedure as the distribution of inner
loop lengths during shaping could result in slightly differ-
ent failure modes of shaping. In the future it will be impor-
tant to try and characterize such differences and test the
resulting predictions experimentally.

Unfortunately, there appear to be no published data on
the learning performance of human subjects on the 12-AX
task, let alone on the effect of shaping. It would be interest-
ing to use a model like ours to make behavioral predictions
based on different ways of decomposing and shaping a
task. One direction to turn for this is transfer learning, an
example of which is a recent study by Dahlin, Neely, Lars-
son, Backman, and Nyberg (2008). Here, subjects that were
first trained upon a letter memory task, performed a
3-back working memory task more proficiently. This result
is of particular interest because of the suggested involve-
ment of a process of striatally-influenced updating, which
is somewhat analogous to our PBWM-based gated working
memory. The ability to filter or gate has actually been
shown to correlate with performance in working memory
tasks (McNab & Klingberg, 2008). Although not a direct
model, our simulations may show related effects, in that
shaping can enhance a marker of working memory. During
symbol generalisation, the shaped network showed stron-
ger reliance on the one back stimulus than the immediate
stimulus, an effect linked with increased working memory.

From a neural perspective, there is ample evidence for
the involvement of structures in the lateral prefrontal cor-
tex (PFC) in hierarchically structured cognitive tasks
including the 12-AX task (Koechlin & Summerfield, 2007;
Reynolds, 2007), and indeed O’Reilly and Frank’s (2005)
PBWM model is focused on PFC, together with its dopami-
nergic inputs and connections with the basal ganglia. We
are not aware of any data on the effects of different sorts
of shaping on the neural activity in, or the Blood-oxygen-
level dependent (BOLD) signal measured by functional
magnetic resonance imaging (fMRI) from, different PFC
areas. In tasks more complex than 12-AX, it might be pos-
sible to use the ideas about processing decompositions
from Koechlin et al. (2003) and make predictions about
the effects of different methods of shaping that could be
tested using imaging.

Our simulations showed that shaping alone without the
support of an allocation mechanism, can perform worse
than no shaping. This could be because it poses more acute
stability–plasticity dilemmas (Grossberg, 1980). Although
Section 4 presents a simple algorithm for automatic alloca-
tion, it is not a complete solution, and substantial further
work will be needed to make this procedure robust and
general. In particular, to accommodate asymptotic errors
in probabilistic tasks, it will be necessary to incorporate
expected as well as unexpected uncertainty (Yu & Dayan,
2005). Reynolds et al. (2007) and Redish et al. (2007)
showed that using a rapid change in the running average
of the error rate can account for some probabilistic effects.
However, this fails to accommodate more sophisticated
fluctuations in expected uncertainty, and these authors
also see a significant drop in performance of their auto-
matic model compared to the manual one.

The obvious alternative is to have the subject explicitly
model the uncertainty. In the wider field of machine learn-
ing, a popular way of handling the equivalent of allocation
involves mixture models, in which underlying modules
compete (Jacobs, Jordan, Nowlan, & Hinton, 1991) to explain
inputs based on their own so-called generative, predictive,
or forward models. The MOSAIC framework (Haruno,
Wolpert, & Kawato, 2001) for mixture model learning for
motor control is a good example of this, and could admit a
generalisation to shaping.

Another, related, possibility is to consider resource allo-
cation itself as a recursive instance of gating, now at the le-
vel of strategy learning rather than read-in to working
memory. In our models we chose a resource allocation that
was exclusive and hence resulted in local representation of
tasks. This type of allocation lends itself comfortably to the
simple and abstract model of LSTM. However, these results
will hopefully extend at least qualitatively to the more dis-
tributed representations that are likely to be found in nat-
ural neural networks. The need for explicit resource
allocation is also likely to extend to such networks.

We focused on shaping in operant conditioning. Three
additional forms of shaping are also important, and would
be interesting targets for future studies. First, in sculpting
animal behavior, it has been observed that it is beneficial,
or even essential, to start from the actions intrinsically
emitted as Pavlovian responses to predictions. Breland
and Breland (1961) provide some striking and memorable
examples of this maxim, and, as in negative automainte-
nance (Sheffield, 1965; Williams & Williams, 1969; Dayan,
2006), the deleterious consequences of ignoring it.

The second form of shaping is self-shaping, in which
subjects themselves may explicitly simplify tasks, by
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omitting certain features (Duncan, 1995), either deliber-
ately, or perhaps just by not understanding them. Elman
(1993) shows the potential benefits of this in the case of
grammar learning. However, explicit self-shaping requires
the automated discovery of the hierarchical structure of
tasks, which is highly non-trivial itself. Such hierarchical
structure discovery has been an active, though not cur-
rently strikingly productive, focus of work in machine
learning (McGovern & Barto, 2001; Barto & Mahadevan,
2003; Bakker & Schmidhuber, 2004).

Finally, shaping can involve the formation through
training of more abstract representations of input that
can be used to speed the subsequent learning of complex
behaviors. In the field of machine learning, this is the stan-
dard view of the interaction between unsupervised learn-
ing, which represents inputs according to the underlying
structure of their statistical distribution, and supervised
learning, which uses these representations to perform
tasks well (Hinton, Osindero, & Teh, 2006; Hinton & Ghahr-
amani, 1997). However, it is also possible to generalize the
use of representations learnt directly to solve one task to
other tasks. For instance, following on from Premack
(1983), Thompson, Oden, and Boysen (1997) showed that
chimpanzees that had been trained on a sophisticated task
of determining the identity of two inputs, thus putatively
building a new, abstract, representational unit, could more
readily learn a separate task, in which the identity or
otherwise of two initial inputs determined what actions
should be subsequently executed.

In conclusion, the critical role that shaping plays in the
genesis of complex cognitive behavior has not been ade-
quately reflected in computational models. Although our
account is incomplete, notably because we have not spec-
ified a complete and fully robust method for resource allo-
cation, we have shown the large potential benefits of
simple forms of shaping, and provided some insights into
the provenance of these advantages.
Fig. A.1. A single memory block of the LSTM toget
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Appendix A. Network rules

This section describes the detailed equations used in
simulating the LSTM network. These come from the origi-
nal paper describing LSTM with forget gates Gers et al.,
2000.

The LSTM network consists of five types of units: Input
units with unary (0/1) activations il based on the stimulus
presented; output units oR; oL, indicating which choice the
network makes; and then each memory block (see Fig. A.1)
has three different sorts of gating unit gI; gF; gO, and three
units for each cell c within a block, input xc , memory sc

and output yc . Sigmoid and tanh functions are used as acti-
vation functions throughout, based on linearly weighted
inputs. The activity of the memory cells at one timestep
act as inputs to all the relevant units at the next timestep.
We describe the equations for a single memory block be-
low. When the network contains multiple memory blocks,
all the units in each block receive inputs from all the other
blocks.

Gating units: Gating term gIðtÞ is calculated as

gIðtÞ ¼ r
X

l

mI
lylðt � 1Þ þ

X
l

wI
l ilðtÞ

 !
ðA:1Þ

where rðzÞ ¼ 1=ð1þ expð�bzÞÞ is a standard logistic sig-
moid function, mI

l are recurrent weights from the memory
cells yl, and wI

l are feed–forward weights from the input
her with the notation used in this Appendix.
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units il. gFðtÞ and gOðtÞ are calculated similarly. b was cho-
sen to be 1.5.

Memory input units: The input to memory cell c is

xcðtÞ ¼ 2 tanh
X

l

mc
l ylðt � 1Þ þ

X
l

wc
l ilðtÞ

 !
ðA:2Þ

Storage unit: The stored content of memory cell c at
time t (scðtÞ) is calculated as its content at the previous
time step combined with the gated input. At the beginning
of each epoch, the memory cells’ contents are reset to zero
scð0Þ ¼ 0

scðtÞ ¼ scðt � 1Þ � gFðtÞ þ xcðtÞ � gIðtÞ ðA:3Þ

Memory output unit: The output depends on another
nonlinearity

ycðtÞ ¼ tanhðscðtÞÞ � gOðtÞ ðA:4Þ

Choice units: Finally, the choice of the network is based
on the two output units oL and oR, which are calculated as

oRðtÞ ¼ r
X

l

mR
l ylðt � 1Þ þ

X
l

wR
l ilðtÞ

 !
ðA:5Þ

Although this form of output is used for learning, in evalu-
ating the performance of the network, we binarise the
units output, equivalent to setting b ¼ 1. Activations of
[1, 0] correspond to a left response, [0, 1] to a right re-
sponse, and both [0, 0] and [1, 1] are considered invalid re-
sponses, and are counted as errors.

Appendix B. Automatic allocation

Automatic allocation is based on detecting a sudden in-
crease in error rate. For this, after each trial a smoothed
success rate is calculated that extends over the last 300
trials

Suc ¼ 1
z
�
X299

i¼0

cðt � iÞ � e�0:01i ðB:1Þ

where cðtÞ denotes if the trial at time t was correct and
z ¼ 1�e�3:00

1�e�0:01 is a normalisation constant to constrain the
score between 0 and 1. New allocation is only possible
once the results of previous allocation have surpassed a
success rate threshold of 0.99, and there is then a sudden
increase in error rate above 10%.

An allocation step consists of enabling a new memory
block with randomly initialised weights. The learning rate
of this new block is set to a ¼ 0:1 and the learning rate of
all previously allocated blocks is reduced to 0:05 � a to pre-
vent forgetting of previously learned tasks.
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