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Neural representations of the effort deployed in performing actions, and the valence of the outcomes they yield, form the foundation of
action choice. To discover whether brain areas represent effort and outcome valence together or if they represent one but not the other,
we examined these variables in an explicitly orthogonal way. We did this by asking human subjects to exert one of two levels of effort to
improve their chances of either winning or avoiding the loss of money. Subjects responded faster both when exerting greater effort and
when exerting effort in anticipation of winning money. Using fMRI, we inspected BOLD responses during anticipation (before any action
was executed) and when the outcome was delivered. In this way, we indexed BOLD signals associated with an anticipated need to exert
effort and its affective consequences, as well as the effect of executed effort on the representation of outcomes. Anterior cingulate cortex
and dorsal striatum (dorsal putamen) signaled the anticipation of effort independently of the prospect of winning or losing. Activity in
ventral striatum (ventral putamen) was greater for better-than-expected outcomes compared with worse-than-expected outcomes, an
effect attenuated in the context of having exerted greater effort. Our findings provide evidence that neural representations of anticipated
actions are sensitive to the expected demands, but not to the expected value of their consequence, whereas representations of outcome
value are discounted by exertion, commensurate with an integration of cost and benefit so as to approximate net value.

Introduction
We continually have to integrate the costs and benefits of our
actions. One such cost is the effort we expend, something indi-
viduals attempt to minimize (Walton et al., 2006). Frontostriatal
networks are thought to be crucial in supporting effortful action
to gain reward (Phillips et al., 2007), but precisely how effort
affects the neural coding of reward value is unclear. The fact that
options associated with greater costs are in some cases associated
with greater value (Johnson and Gallagher, 2011) suggests con-
siderable potential complexities when we integrate cost and ben-
efit. Because fMRI studies show that ventral striatal BOLD
covaries with value-based prediction errors (Berns et al., 2001;
O’Doherty et al., 2003), this region presents an obvious target for
a putative integrator of effort and value.

Reward is not the only benefit that accrues from making an
effort. One can also act vigorously to avoid punishment. How-

ever, we are unaware of any human study that has orthogonalized
effort and valence. This is important given recent findings dem-
onstrating a seemingly mandatory tie between effort and valence.
Such a tie has been described as Pavlovian, in that instrumental
behavior is likely to be enhanced by anticipation of reward but
inhibited or suppressed by anticipation of a negatively valenced
event regardless of whether it is instrumentally appropriate
(Deakin and Graeff, 1991; Boureau and Dayan, 2011). Active
avoidance has long troubled behavioral theorists, as for example
in the issues surrounding safety signaling (Mowrer, 1960;
Rescorla and Lolordo, 1965; Bolles, 1970; Dinsmoor, 1977; Dayan,
2012). A recent task (Crockett et al., 2009) in which action re-
quirement and outcome valence were orthogonalized has led to
the conclusion that anticipatory responses in striatum and SN/
VTA are dominated by the representation of action over valence
(Guitart-Masip et al., 2011, 2012a). However, how such signals
are influenced by effort costs is unclear, and that is the key ques-
tion addressed here.

We studied human participants while they performed a cue-
predictive instrumental task in which they might have to squeeze
a handgrip to either earn or avoid losing money. We explicitly
orthogonalized effort and valence and, furthermore, by adding
trials in which motor execution was entirely obviated, we disso-
ciated anticipation from both execution and outcome. Finally, we
used stochastic outcomes so we could index the effects of effort
on the coding of associated prediction errors.

Our analysis focused on two critical time points, namely when
potential effort requirements were initially cued and when an
outcome was actually delivered. For the former, we expected that
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an enhanced BOLD signal in anterior cingulate cortex (ACC)
would reflect anticipated effort (Croxson et al., 2009; Prévost et
al., 2010). However, based on results from Guitart-Masip et al.
(2011), we were also interested in finding a response, if any, in the
striatum. At outcome, we predicted that effort would influence a
ventral striatal prediction error in an additive or interactive man-
ner, as was shown previously for the integration of reward and
punishment (Talmi et al., 2009).

Materials and Methods
Participants
Nineteen right-handed participants (8 females, mean age � 21.7 � 2.7
years) were recruited through a university database. All attended the
laboratory on two consecutive days (day 1: training, day 2: scanning, �24
h apart) and were told that they would receive payment at the end of
second day based on their performance on both days. Their reward
scheme was adjusted such that all subjects received £30 for the time spent
in the laboratory. The study was approved by a University College Lon-
don ethics committee.

Experimental paradigm
The task required participants to squeeze a handgrip with either low or
high effort in order probabilistically either to gain or to avoid losing
money. Before they emitted an action, one of four predictive fractal
images that signaled the required effort and outcome valence was pre-
sented. After completion of the action, subjects were shown the resulting
win/loss outcome.

At the start of each trial, participants saw a fixation cross followed by 1
of 4 fractal images for 1 s (anticipatory phase). Then, after a brief, jittered
delay of between 0.5 and 3.5 s, they squeezed a handgrip to reach 1 of 2
effort targets (25% or 65% of maximum effort; fmax) within 1.5 s. In this
1.5 s period, the effort target level was indicated by a white tick mark on
a screen (execution phase). Participants had to reach the target level
before 1 s had elapsed, and then maintain the force for another 0.5 s. If

participants successfully attained and maintained the squeeze level, a red
line would appear at the top of the force level indicator informing them
that their motor execution was successful. After a further 1 s delay they
were presented with a 1 s presentation of a monetary outcome, which
could either be 20, 0, or �20 pence (outcome phase). Outcome propor-
tions for correct responses, that is successfully attaining and maintaining
the required force level, were 0.8/0.2, such that in the win condition, the
outcome was 20 pence 80% of the time, and otherwise 0 pence; while in
the avoid loss condition, the outcome was 0 pence 80% of the time, and
�20 pence otherwise. Incorrect responses always led to 0 pence in the
win and �20 pence in the avoid loss condition. There was a jittered ITI
between 0.75 and 1.5 s, before the next trial commenced. Thus in this
task, the subjects made the exact same action (say low effort), but with
very different expectations (80% probability of winning vs 80% proba-
bility of avoiding losing) of different outcome valences. Equally, two
different actions (low and high effort) would have the same (large) pos-
itive state values in the win condition and same (small) negative state
values in the avoid loss condition.

Subjects were trained the day before scanning. During training, we
presented both white tick marks for low and high effort during the 1.5 s
execution phase such that participants had to learn through trial and
error which level of effort was associated with each fractal cue. After
participants had performed 60 trials per condition, postlearning perfor-
mance was tested in a block of 5 trials per condition, and if needed,
participants performed 10 more trials per condition, such that all con-
tingencies were fully learned by the end of training day.

Critically, in half the trials in the scanning session (but not the training
session) the requirement for a hand squeeze was omitted (Fig. 1). There-
fore, at the start of the trial, fractal images specified the outcome valence
(win vs loss avoidance) and the potential effort requirement (low vs high
effort). However, unpredictably for the participants, the actual emitting
of an effortful squeeze was only required in half of the trials. In these
no-squeeze trials, participants saw a green bar moving upward indicating
a computer-executed trial with the outcome valence presented as if the

Figure 1. Cue predictive task dissociates anticipation and outcome processing from motor execution. In each trial, one of four possible images that predicts effort-valence combination appeared
on the screen and, after a jittered delay, participants executed the squeeze, followed by a fixed delay and a probabilistic outcome (20/0 pence for win, 0/�20 pence for avoid loss condition). After
a randomized intertrial interval of 0.75–1.5 s length, the next trial commenced. At grip onset, participants saw a “YOU” message giving them 1.5 s to respond by squeezing either to the low or high
effort level (indicated by a white tick mark). The purple dotted line in the schema indicates that half of the trials did not include actual squeezing, but instead participants saw a green bar moving
upward, indicating that these were computer-executed trials. Participants knew that whether they had to squeeze was probabilistic and that this fact was only indicated when they saw the “YOU”
or “COMPUTER” text at the end of the fixation period. Participants fully learned the contingencies between the different fractal images and task requirements before scanning.
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trial had been successful (gain in win and zero
in avoid loss). We implemented this manipu-
lation to disambiguate BOLD responses asso-
ciated with effort and valence anticipation
from actual movement execution, because it
decorrelated the anticipation signal from the
movement signal (Guitart-Masip et al., 2011).

Stimuli and apparatus
Cues comprised four fractal stimuli each ran-
domly assigned to one of four contingencies
and presented at the center of a screen, crossing
between effort level (25% vs 65% fmax) and
outcome valence (win vs avoid loss). As a cue to
guide squeezing, a red bar stimulus that moved
vertically provided veridical real-time visual
feedback of squeeze force (as used previously in
our laboratory; Kurniawan et al., 2010). All
experimental stimuli were presented via MAT-
LAB 6.5 (www.mathworks.com) using Cogent
2000 (http://www.fil.ion.ucl.ac.uk/ and http://
www.icn.ucl.ac.uk/) and Cogent Graphics
(John Romaya, Wellcome Department of Im-
aging Neuroscience, London). The experiment
was run on a Windows-based PC.

Procedure
Force measurements. Participants used their
dominant hand to squeeze. For force calibra-
tion, we measured fmax three times and cali-
brated grip levels based on the highest value of
the three.

Training day. Participants completed a 240-
trial learning block (60 trials for each fractal
image) and a short testing block to confirm
that they had learned the contingencies. If they
did not perform well at test, they were explicitly
informed about the contingencies and then completed another short
learning block (10 trials per condition) and a testing block (five trials per
condition). By the end of the training session, all participants had learned
the cue-condition contingencies. Participants were also informed that
the contingencies would stay the same on the scanning day.

Participants used a cursor to rate the likability of the fractal images on
a visual scale from 0 to 100 both before and at the end of training (missing
data from three subjects). Using the same visual scale, participants also
rated the feeling of effortfulness for each force level. High effort was
indeed rated as more effortful than low effort (MHighGrip � 69.66 (4.04),
MLowGrip � 39.30 (4.86), t(18) � 6.17, p � 0.0001).

Scanning day. On the scanning day, we both asked and reminded
subjects about the cue-condition contingencies to ensure stable, non-
learning performance in the scanner. During preparation in the scanner
they were given 12 practice trials in which they experienced six no-
squeeze trials. Participants underwent 4 scanning sessions with a rest
period (up to 3 min) between the sessions. Each scanning block had 20
continuous, fully randomized repetitions of 4 conditions, presented with
a 5 s rest every 12 trials. Overall, there were 320 trials (80 trials for each
fractal image) lasting 45 min. During debriefing, they estimated the
amount of force, best money outcome, and its probability of being asso-
ciated with each cue. These estimations were repeated at the end of train-
ing and both datasets confirmed that participants had understood the
contingency (day 2 mean estimated force: 30% and 76% fmax for low and
high effort, mean estimated best outcome: 19 and 0 pence for win and
avoid loss conditions).

Behavioral data analysis
Using data both from training and scanning days, we calculated mean
response accuracy (as the percentage correct) and time to reach target
(in milliseconds). We converted the latter into a measure of target
speed, calculated as force at target divided by time to target (in force/
second). In addition, using smoothed force from the scanning day, we

calculated time to reach asymptote (msec) and time to start squeezing
(reaction time [RT] in milliseconds). Similarly, we converted time to
asymptote into a measure of asymptote speed, calculated as force at
asymptote divided by time to asymptote. This normalizes time to
target and time to asymptote for the different values of fmax, but leads
to equivalent effects.

To implement smoothing, we took force in each trial of the scan-
ning session and used an optimization procedure that finds the min-
imum squared distance between the force data and a sigmoid
function. This was possible because on scanning day (by which time
subjects had mastered the task), force closely resembled a sigmoid
shape, where value was around zero at grip onset for �300 –500 ms,
increased over time to the level required by the target, and stayed at
asymptote from 1 s after grip onset until grip offset. The resulting best
fit lines matched actual force very closely (averaged squared distance
of 0.02% fmax; SD � 0.002%). We could not smooth force during the
training day because subjects still made errors and force shape was not
yet typical. From this fitting procedure, we calculated the first deriv-
atives of these best fit lines and created a velocity function shaped like
a mountain, with its peak signifying the point at which change of force
was at its maximum.

To illustrate the shape of force data and the functions, we show an
exemplar trial in Figure 2A, with actual force level from grip onset lasting
1500 ms, the sigmoid shaped fitting line and its first derivative (velocity
function). We set a threshold of 5% fmax to determine time to asymptote
and RT (for comparison, we also report results from thresholds of 1%,
2.5%, 7.5%, and 10% fmax).

Statistical analyses on the dependent variables (subjective liking, accu-
racy, target and asymptote speed and RT) were conducted using SPSS
and MATLAB. To test for effects of effort, valence, and their interaction
on the squeeze variables, we ran two-way repeated-measures ANOVAs
with effort and valence as independent variables, and added “block” as a
third independent variable in a three-way repeated-measures ANOVA

Figure 2. A,. Force data from one trial from one subject with its sigmoid fit line and first derivative to smooth the data. From this
function, we use a threshold to find the asymptote speed (force at asymptote/time to asymptote) and RT (in milliseconds). B, C,
Group-averaged asymptote speed in force/second (B) and RT in milliseconds (C) showing significant main effects of effort and
valence. Interactions were nonsignificant. D, Speeded RT based on outcome of previous trial. Participants speeded their response
after a loss, speeding after loss was significantly higher than speeding after both zero and win. Error bars indicate SEM.
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on accuracy data to inspect evidence of learning. Significant effects were
followed up using repeated-measures ANOVA or paired samples t tests
where appropriate.

Image acquisition
We used a 3T TRIO system (Siemens) with a 12-channel head coil to
acquire T1-weighted anatomical images and T2*-weighted MRI trans-
verse echoplanar images (EPIs; 64 � 64 mm, TR/TE � 3.36 s/30 ms) with
BOLD contrast. The sequence of EPI optimized signal in the orbitofron-
tal cortex (Weiskopf et al., 2006); each EPI has 48 3-mm-thick contigu-
ous axial slices taken every 3 mm, covering the orbitofrontal cortex,
striatum, anterior cingulate, and motor cortices. In total for each partic-
ipant, 212–220 volumes were acquired in each session, discarding the
first four volumes to allow for T1 equilibration. We acquired field maps
between the second and third scanning sessions. For the structural im-
ages, we acquired a standard high-resolution T1-weighted anatomical
image with acquisition matrix 256 � 240, TR/TE/flip angle � 7.92 ms/
2.48 ms/16°, voxel size 1 � 1 � 1 mm, 176 axial slices (Deichmann et al.,
2004).

Imaging analysis
We used Statistical Parametric Mapping (SPM8b; Wellcome Trust Cen-
tre for Neuroimaging, London, http://www.fil.ion.ucl.ac.uk/spm) for
imaging analyses. fMRI time series were analyzed in five preprocessing
steps involving intramodal realignment and unwarping, intermodal
coregistration, segmentation, normalization, and resampling to 3 � 3 �
3 mm 3, and smoothing as described in Kurniawan et al. (2010). The
fMRI time series data were high-pass filtered (cutoff � 128 s) and whit-
ened using an AR(1) model. For each subject, a statistical model was
computed by applying a canonical hemodynamic response function
combined with time derivatives. We performed random-effect, event-
related statistical analyses. We specified separate first-level general linear
models (GLMs) for each participant by creating sets of regressors time
locked to fractal image (action anticipation) and outcome presenta-
tion (outcome evaluation), with four scanning sessions concatenated
into one.

We created three GLMs using stick functions. In GLM1, to highlight
activity correlating with anticipation of effort and valence, we defined
four regressors of interest representing the four event types at cue onset
(each signaled by a distinct fractal image) that varied in effort and va-
lence: low effort-win (LowWin), low effort-avoid loss (LowAvoid), high
effort-win (HighWin), and high effort-avoid loss (HighAvoid).

To confirm motor activity during effort, we defined three grip regres-
sors representing the three handgrip events at grip onset (signaled by
a screen containing the red or green bar with the text “YOU” or
“COMPUTER”): squeeze_low, squeeze_high, and comp_squeeze (col-
lapsing low and high effort trials). Including these grip regressors for the
onset of the motor response ensured that variance explained by the per-
formance of the motor response would not be attributed to the fractal
images.

To highlight activity during outcome evaluation that correlated with ef-
fort, valence, and actual outcome reflecting whether subjects received out-
comes better than expected (80% of the time) or worse than expected (20%
of the time), we defined eight regressors of interest representing events at
outcome onset that followed actual motor execution. These regressors were
as follows: LowWinBetter, LowWinWorse, LowAvoidBetter, LowAvoid-
Worse, HighWinBetter, HighWinWorse, HighAvoidBetter, and High-
AvoidWorse. These outcome regressors were moderately orthogonal from
the grip regressors (absolute values of cosine of angle between regressors
�0.35; fully colinear, cos � �1; fully orthogonal, cos � 0), consistent with
variance explained by outcome regressors being over and above that ex-
plained by the grip regressors. We included all onsets of outcome periods
that followed computer-executed periods in one regressor of no interest
(collapsing low and high effort, win and loss, and better and worse trials).
GLM1 contained 42 columns (16 regressors each with temporal derivative�
6 motion parameters � 3 dummy regressors for session number � mean).

GLM2 and GLM3 were constructed to validate the results from GLM1
that pertain to action anticipation. GLM2 included one regressor for the
onsets of all fractals (collapsing across conditions), parametrically mod-

ulated by expected value and expected effort (each with two possible
values). The idea here was to increase sensitivity to valence effects by
allowing them to generalize across different fractals according to their
values. The remaining regressors were the same as in GLM1. GLM2 thus
contained 40 columns (13 regressors � 2 modulators each with temporal
derivative � 6 motion parameters � 3 dummy regressors for session
number � mean).

In GLM3, to validate effort effects with and without subsequent motor
production, we separated the fractal onsets into two regressors, one for
those followed by own squeezing (red bar) and one by no squeezing
(green bar). These were again parametrically modulated by expected
value and expected effort. The intent of this separation was to guarantee
that any BOLD signal observed in response to the fractal images was not
induced by performance of a motor response, and thus purely reflected
anticipation. Note, though, that GLM1 already includes a regressor for
the onset of a motor response and, therefore, any variance explained by
the performance of a motor response would not be attributed to the
fractal images. GLM3 contained 46 columns (14 regressors � 4 modula-
tors each with temporal derivative � 6 motion parameters� 3 dummy
regressors for session number � mean).

We tested for regionally specific condition effects by using linear con-
trasts for each subject and each condition (first-level analysis). The re-
sulting contrast images were entered into a second-level random-effects
analysis. We specified four separate second level design matrices for
GLM1, one to evaluate brain responses to the anticipatory phase, one to
evaluate brain responses to outcomes, and two to evaluate brain re-
sponses during effort investment. The first test (anticipation) corre-
sponded to a 2 � 2 ANOVA with Effort (high vs low) and Valence (win vs
loss avoidance). The second test (outcome processing) corresponded to a
2 � 2 � 2 ANOVA with Effort (high vs low) � Valence (win vs loss
avoidance) � Outcome (better than expected vs worse than expected).
The final two (effort investment) corresponded to a one-way ANOVA
with comp_squeeze vs squeeze_low vs squeeze_high and a t test for
squeeze_low vs squeeze_high. For GLM2 and GLM3, we conducted sec-
ond level t tests to examine the correlation between brain activity and
each parametric modulator (expected value and expected effort).

As a validity check on our data, we tested for effects of squeezing (effort
investment) on brain activity. Using a peak-level threshold at p � 0.05
family-wise error (FWE) corrected, we confirmed activity in regions re-
lated to movement, spanning bilateral cerebellum, peaking on the right
(MNI space coordinates, 18, �52, �20; peak Z score, �8; 664 voxels, p �
0.001 FWE), left rolandic operculum (MNI space coordinates, �39, �4,
16; peak Z score, 7.35; 1567 voxels, p � 0.001 FWE), left middle cingulate
(MNI space coordinates, �3, 5, 40; peak Z score, 6.93; 320 voxels, p �
0.001 FWE) and in left primary motor area (MNI space coordinates,
�54, �28, 40; peak Z score, 6.46; 755 voxels, p � 0.001 FWE) that was
greater for own squeeze periods (low and high effort averaged) than for
computer “squeeze” periods. The contrast between high and low effort
also yielded similar activation in bilateral cerebellum (right: MNI space
coordinates, 30, �55, �23; peak Z score, 6.24; 172 voxels, p � 0.001
FWE; left: MNI space coordinates, �24, �55, �23; peak Z score, 5.44; 40
voxels, p � 0.001 FWE) and bilateral midbrain (left: MNI space coordi-
nates, 15, �19, �11; peak Z score, 5.95; 41 voxels, p � 0.001 FWE; right:
MNI space coordinates, �15, �22, �11; peak Z score, 5.82; 96 voxels,
p � 0.001 FWE) that was greater for high effort than for low effort. These
results confirm there was motor brain activity during squeezing.

Whole-brain results were thresholded at p�0.001 uncorrected, but
only those surviving peak-level FWE correction at p � 0.05 are reported.
Activations in the ACC and the striatum were tested using small volume
correction (SVC) using anatomically defined regions of interest. There-
fore, results are reported using FWE correction for respective small vol-
ume at p � 0.05. Those suprathreshold areas showing main effects were
further tested for the presence of orthogonal interactions using a func-
tional region of interest (ROI) approach. To achieve this, we drew func-
tional masks derived from the significant clusters centered at the peaks of
each suprathreshold cluster showing the main effects (threshold was
FWE p � 0.05). We then extracted the signal in these ROIs and tested for
orthogonal main effects and the interaction using an ANOVA on the
extracted signal.
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Results
Subjective liking for cues
Before training, likability ratings were equal across all four images
(means ranging between 47 and 55). We found no systematic
differences in initial likability for cues that later were associated
with effort and valence conditions (p � 0.16. We observed that
training affected likability ratings (change in rating as means �
SEM): MLowEffortWin � 18.3 � 5.76; MLowEffortLoss � �19.1 � 6.47;
MHighEffortWin � 16.15 � 6.60; MHighEffortLoss � �5.87 � 4.37. How-
ever, whereas liking for reward cues increased after training and
liking for punishment cues decreased after training (main effect
of valence F(1,15) � 4.88, p � 0.044), there was no significant
effect of either effort (p � 0.28) or the interaction between effort
and valence (p � 0.17).

Accuracy
Overall, the accuracy rate on fractal/squeeze level perfor-
mance was �65% during training and 95% during scanning
(target visually indicated) in all four conditions. There was no
effect of effort, valence, or interaction on accuracy on either
the training (Feffort(1,18) � 2.59, p � 0.12; Fvalence(1,18) � 0.13,
p � 0.71; Feffort�valence(1,18) � 0.55, p � 0.46) or the scanning
day (Feffort(1,18) � 0.71, p � 0.40; Fvalence(1,18) � 0.94, p � 0.34;
Feffort�valence(1,18) � 1.89, p � 0.18).

In the first 10 training trials, accuracy was higher in low effort
compared with high effort conditions (MLowEffort � 66% � 5% vs
MHighEffort � 54% � 3%), and in win compared with avoid loss
conditions (MWin � 65% � 3% vs MAvoidLoss � 56% � 4%;
Feffort(1,18) � 4.52, p � 0.04; Fvalence(1,18) � 7.62, p � 0.01). There
was no significant interaction in the first 10 trials (p � 0.77).
Performance improvement was evident across six blocks of 10
trials (Fblock(5,14) � 9.99, p � 0.0001), but accuracy was �70%,
showing no improvement between fifth and sixth blocks
(pblock5– 6 � 0.8).

In sum, our accuracy data suggest that effort and valence had
an effect on performance very early during learning, with more
correct responses for low effort conditions and in win conditions.
However, learning then stabilized rapidly and no further differ-
ences in accuracy were observed between conditions either later
during learning or during the scanning session.

Speed to reach target and asymptote
During training, the speed with which the target force was
reached was significantly influenced by effort (F(1,18) �
481.38, p � 0.0001), with target speed being threefold faster
for high (113.68 � 3.43 force/s) compared with low effort
(35.84 � 0.70 force/s). Valence or interaction effects were
nonsignificant ( p � 0.4).

During scanning, target speed was influenced by both effort
and valence (Feffort(1,18) � 254.48, p � 0.0001, Fvalence(1,18) � 6.41,
p � 0.02; interaction was nonsignificant, p � 0.4). Target speed
for high effort was greater (68.72 � 1.85 force/s) than for low
effort (36.30 � 1.64 force/s), and greater for the prospect of re-
ward (53.34 � 1.58 force/s) than for the prospect of avoiding a
punishment (51.68 � 1.34 force/s). To look more finely at the
topography of effort, we fit a sigmoid to the subjects’ force output
for each trial and calculated the first derivatives to index the time
to asymptote (here equivalent to effort target), converted into
asymptote speed (force/second, based on a threshold of 5% fmax

for force initiation; Fig. 2A). Confirming our unsmoothed data,
we found that participants reached asymptote at a greater speed
for high compared with low effort target (F(1,18) � 593.18, p �

0.0001) and greater for reward compared with punishment
(F(1,18) � 5.78, p � 0.02; Fig. 2B). Note that these findings were
robust to the use of other threshold levels (1%, 2.5%, 7.5%, ex-
cept for valence effect for 10% fmax: F � 480; p � 0.03). Our
results provide validation for the smoothing technique.

Behavioral data from both training and scanning days suggest
that participants reached target (and asymptote) at a greater
speed for high as opposed to low effort, but an effect of valence
only emerged on the second day, by which time participants had
overlearned the task. This is important because it suggests that,
during scanning, participants indeed anticipated valence along
with the level of effort when they saw the fractal images.

RT
We used the same smoothing technique to index the time partici-
pants started to squeeze, namely RT. We found that RT was faster for
high compared with low effort (F(1,18) � 83.34, p � 0.0001; Fig. 2C).
These findings were robust to the use of other threshold levels (1%,
2.5%, 7.5%, 10% fmax: F � 14; p � 0.001).

Valence also influenced RT, rendering it shorter for the pros-
pect of a reward than a punishment (F(1,18) � 4.46, p � 0.048).
However, for other initiation thresholds, this was not significant.
Given the significant effect of valence on overall time to reach the
target force, one possibility is that there might have been a small
effect of valence early during squeezing, rendering sensitivity to
the threshold. We found no significant interaction between effort
and valence in all behavioral measures (p � 0.06).

In addition, we looked at the influence of outcome in the previ-
ous trial (loss, zero, or win) on RT in the current trial, where a
positive value indicated a faster response on current trial. We re-
gressed outcome at trialt�1 against speeded RT at trialt (trialt�1 �
trialt) for each subject and tested the resulting �s on one-sample t
test. The �s were significantly different from a distribution with a
mean of zero (t(18) � 2.44, p � 0.02), suggesting that the outcome of
the previous trial had a significant impact on speeded response in the
current trial. This was also supported by a one-way ANOVA of av-
eraged speeded RTs across trials for each subject, suggesting that
averaged speeded RT was influenced by outcome on previous trial
(F(2,18) � 3.11, p � 0.05; Fig. 2D). Follow-up paired t tests show that
participant quickened their response after a loss, and this was
significantly different from either receiving nothing or a win
(tloss-nothing(18) �2.73, p�0.01, tloss-win(18) �2.54, p�0.02), with no
difference between outcome of zero and win (p � 0.35).

In sum, as predicted, high-effort target led to faster RTs
(judged by when subjects started to squeeze). The same analyses
suggested that the prospect of reward had a limited influence.
Nevertheless, participants were faster to reach the target and, to a
limited extent, responded faster in rewarding trials, demonstrat-
ing that they anticipated the valence associated with the fractals
along with the level of effort required. We also demonstrated that
the previous outcome had an impact on the response on the next
trial, with a speeded response after a loss, but not after either
receiving neutral or positive outcomes.

Anticipatory brain responses for effort
A whole-brain, voxel-based, analysis of effort anticipation using
GLM1 revealed a main effect (high � low effort) in a large cluster
involving a local maximum in left supplementary motor area
(MNI space coordinates, �6, �7, 64; peak Z score, 6.16; 1333
voxels, p � 0.001 FWE; Fig. 3) and another in left calcarine gyrus
(MNI space coordinates, �6, �85, �8; peak Z score, 5.24; 151
voxels, p � 0.003 FWE). Specifically, activity in this cluster was
greater for fractal images predicting high effort compared with those
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predicting low effort. This contrast revealed two local maxima
within ACC and striatum that survived SVC within the anatomical
whole ACC and whole striatum (including putamen, caudate, and
nucleus accumbens). The peaks of these foci were located in the right
ACC (MNI space coordinates, 6, 23, 28; peak Z score, 3.74; 13 voxels,
p � 0.025 FWE) and left putamen (MNI space coordinates, �21, 5,
7; peak Z score, 4.09; 26 voxels; p � 0.012 FWE).

Serving as a cross-check, GLM2 revealed a similar pattern of
activity correlating with the expected effort associated with the
fractal images. Moreover, such a pattern remained in GLM3 for
expected effort that was not followed by an actual effort invest-
ment (i.e., fractals followed by green bar), peaking in middle
cingulate (MNI space coordinates, 6, 11, 43; peak Z score, 4.79;
312 voxels, p � 0.001 FWE). Activity in these clusters correlated
positively with expected effort, increasing as the expected effort
increased. Whereas in the pooled data in GLM1 and GLM2, the
signal in left dorsal striatum correlated with expected effort, in
GLM3 when no actual squeezing followed, this correlation was
only significant for the right dorsal striatum (MNI space coordi-

nates, 30, 11, �2; peak Z score, 3.53; 21 voxels, p � 0.03 FWE). In
sum, these results confirm that anticipatory activity was not con-
taminated by actual effort investment, highlighting greater stria-
tal activity invoked by anticipated, but not realized, effort.

The opposite contrast (low � high effort) yielded significant
activity in visual areas, bilateral lingual gyri, with greater response
for fractal images indicating low compared with high effort
(right, MNI space coordinates, 6, �70, 4; peak Z score, 5.73; 70
voxels; p � 0.001 FWE; left, MNI space coordinates, �6, 73, 1;
peak Z score, 5.13; p � 0.005 FWE).

We next searched for a complementary main effect of valence
during presentation of fractal images, but failed to find a signifi-
cant effect. This was true for whole-brain and SVC analyses using
ROI masks covering either the entire anatomical striatum or
more selective 8 mm spheres with center coordinates from three
previous studies that reported valence, reward, or prediction er-
ror effects in ventral striatum (vSTR; p � 0.3; Guitart-Masip et
al., 2011; Klein-Flügge et al., 2011; Niv et al., 2012). Neither did
we find significant effort-by-valence interaction (p � 0.6). In a
final analysis, GLM2 did not reveal any effect for expected value.
Therefore, brain anticipatory activity reflected expected effort
but not valence despite a significant behavioral effect of valence
on the time at which the target force is reached on trials in which
force production was required.

Effort modulates vSTR response to outcomes better
than expected
We next focused on responses related to the outcome period.
Specifically, we examined how the level of (actual) effort required
to obtain an outcome affected the neuronal processing of affec-
tive and aversive outcomes. We achieved this by identifying vox-
els that showed a positive response to better-than-expected
outcomes compared with worse-than-expected outcomes and to
valence differences.

We first identified voxels that showed a greater response to
better-than-expected outcomes com-
pared with outcomes that were worse than
expected across all conditions (main effect
of outcome: (win-neutral in winning tri-
als) � (neutral-loss in avoid losing tri-
als)). As expected, the vSTR showed a
main effect of outcome peaking in bilat-
eral ventral putamen (left: MNI space co-
ordinates, �21, 5, �8; peak Z score, 5.32;
157 voxels, p � 0.001 FWE; right: MNI
space coordinates, 21, 8, �8; peak Z score,
4.65; 110 voxels, p � 0.028 FWE), a con-
trast that also revealed a maximum in
right superior temporal gyrus (MNI space
coordinates, 60, �7, �2; peak Z score,
4.74; 228 voxels, p � 0.02 FWE). This re-
sult is consistent with the frequent obser-
vations that BOLD in the vSTR is sensitive
to positive (i.e., appetitive) prediction er-
rors during the outcome phase (Berns et
al., 2001; O’Doherty et al., 2004; Pessigli-
one et al., 2006). The voxels we identified
in vSTR were then used as a functional
ROI (Fig. 4B, inset) within which we sub-
sequently assessed the orthogonal effects
of valence and effort-by-outcome and
valence-by-outcome interactions.

Figure 3. SPM of brain activity for cue presentation. Fractal images indicating high effort
elicited greater activity in supplementary motor area (SMA), anterior cingulate cortex (ACC),
and dorsal striatum (dorsal putamen) than fractal images indicating low effort did ( p � 0.05
FWE; whole brain, SVC within bilateral ACC ROI, SVC within bilateral striatum ROI, respectively).
Coordinates are given in MNI space. L indicates left; R, right. For illustrative purposes, voxels
displayed in gray on glass brain and in yellow on slices survived a threshold of p � 0.001,
uncorrected.

Figure 4. SPM of brain activity at the time of outcome presentation. A, B, Glass brain and coronal slice show that activity in
bilateral vSTR was stronger for better outcomes than worse outcomes, regardless of valence, corrected for FWE ( p � 0.05), peak
voxels; Left: �21, 5, �8, Right: 21, 8, �8. For illustrative purposes, voxels displayed in gray on glass brain and in yellow on
coronal slice survived a threshold of p 0.001, uncorrected. B, Inset, Functional ROI’s at left and right vSTR (putamen) from FWE-
corrected voxels ( p � 0.05) from whole-brain analysis centered at the peak of activity. Left, 13 voxels. Right, Three voxels. C, Axial
slice of the same functional ROIs shown in B, inset. Coordinates are given in MNI space. L indicates left; R, right. D, Extracted activity
within functional ROIs shown in B, inset, and in C, revealing an effort-by-outcome interaction. Regardless of valence, the difference
between better � worse outcomes after expending low effort is significantly greater than after expending high effort. Error bars
indicate SEM.
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A three-way ANOVA on the extracted signal with effort, va-
lence, and (actual) outcomes as factors revealed a significant
effort-by-outcome interaction (FleftvSTR(1,18) � 5.37, p � 0.03;
FrightvSTR(1,18) � 5.15, p � 0.03 in the absence of either a valence
effect; p � 0.054), an effort-by-valence (p � 0.44) or an effort-
by-valence-by-outcome interaction (p � 0.29). Note the margin-
ally significant main effect of valence (driven by a win � avoid
loss) is consistent with the idea that the vSTR responds more
strongly to outcomes with positive than to those with negative
expectations (Haber and Knutson, 2010). Pairwise t tests on
the signal difference (better minus worse) between each effort
(regardless of valence) show significantly greater signal difference
after low than after high effort (tLeftvSTR(18) � 2.65, p � 0.016;
tRightvSTR(18) � 2.60, p � 0.017; Fig. 4D). These significant
follow-up t tests and the nonsignificant interaction with valence
suggest an attenuation of appetitive prediction error signal in the
vSTR by high effort, regardless of valence.

Next, we searched for voxels that responded more strongly to
outcomes after reward fractals compared with outcomes after
punishment fractals across all conditions (main effect of valence:
win-avoid loss regardless of effort). We found an uncorrected
cluster in the ventromedial prefrontal cortex, but this did not
survive FWE correction at the peak level. A positive response in
the vmPFC for win � avoid loss is consistent with the literature
and our expectation for the encoding of affective events; however,
because this did not satisfy our stringent peak-level threshold, we
did not follow up on this result to test our effort modulation
hypothesis.

Valence modulates insular response to outcomes worse
than expected
We next examined how effort and valence affected the processing
of worse-than-expected outcomes. We first identified voxels that
showed a greater response to worse-than-expected outcomes
compared with those better than expected across all conditions as
follows: reversed main effect of outcome: (neutral–win in win-
ning trials) � (loss-neutral in avoid losing trials). As expected,
the insula showed the strongest response for a (reversed) main
effect of outcome, worse � better outcomes, with two maxima in
right insula extending dorsally into right inferior frontal gyrus
(both pars opercularis and triangularis; Fig. 5; MNI space coor-
dinates, 33, 26, �2; peak Z score, 7.38; 1189 voxels, p � 0.001
FWE) and left insula (MNI space coordinates, �30, 23, �5; peak
Z score, 6.84; 270 voxels, p � 0.001 FWE). This contrast also

revealed five other maxima, two in right inferior parietal lobule
(MNI space coordinates, 39, �52, 43; peak Z score, 5.99; 643
voxels, p � 0.001 FWE) and left inferior parietal lobule (MNI
space coordinates, �33, �55, 40; peak Z score, 4.85; 138 voxels,
p � 0.012 FWE), and three in left cerebellum (MNI space coor-
dinates, �12, �79, �29; peak Z score, 5.30; 70 voxels, p � 0.002
FWE), right superior medial gyrus (MNI space coordinates, 6, 32,
46; peak Z score, 5.13; 289 voxels, p � 0.004 FWE), and right
medial temporal gyrus (MNI space coordinates, 57, �28, �5;
peak Z score, 5.12; 88 voxels, p � 0.004 FWE).

Driven by previous findings in relation to the role of the insula in
aversive representation, we constrained our mask using a
functional ROI by drawing the overlapping regions between
anatomical masks of left and right insula and the whole-brain,
SPM-derived clusters for left and right insula. The resulting ROIs
clearly depicted two masks in left and right anterior insula, con-
firming that these regions were sensitive to outcomes that were
worse than expected compared with those better than expected.
We subsequently assessed the complementary main effects of ef-
fort and valence and their interactions with the main effect of
outcome.

A three-way ANOVA of effort, valence, and outcome revealed
a significant main effect of valence in bilateral insula, such that
insular activity was greater for punishment than reward (Fleft(1,18) �
12.83, p � 0.002; Fright(1,18) � 8.16, p � 0.01). We found a signif-
icant valence-by-outcome interaction (Fleft(1,18) � 8.43,
p � 0.009; Fright(1,18) � 18.83, p � 0.0001) in the absence of an
effort-by-valence, an effort-by-outcome, or an effort-by-valence-
by-outcome interaction. Pairwise t tests on the signal difference
(worse minus better) between winning and avoid losing trials (re-
gardless of effort) show significantly greater signal difference in avoid
loss than win (tLeftINSULA(18) � 3.22, p � 0.004; tRightINSULA(18) �
4.65, p � 0.0001; Fig. 5). This effect was not dependent on the level
of effort exerted. Our results are consistent with previous sugges-
tions that the insula robustly represents aversive events such as pun-
ishment (Seymour et al., 2004), pain for others (Singer et al., 2004),
or risk (Preuschoff et al., 2008). In particular, we show a magnified
insular response to actual losses compared with receiving nothing
when the outcome could have been a gain.

Finally, we searched for voxels that responded more strongly to
outcomes after punishment fractals compared with reward fractals
across all conditions (reversed main effect of valence: avoid loss-win
regardless of effort) and no suprathreshold voxel was detected.

Figure 5. SPM of brain activity at the time of outcome presentation showing greater signal in bilateral insula when receiving worse outcomes than better outcomes, regardless of effort ( p �0.05
FWE). For illustrative purposes, voxels displayed in gray on glass brain and in yellow on coronal slice survived a threshold of p � 0.001, uncorrected. Coordinates are given in MNI space. L indicates
left; R, right. The bar graph on the right depicts a valence-by-outcome interaction of extracted activity within insula ROIs. Regardless of effort, the difference between worse � better outcomes is
greater in avoid losing conditions compared with in winning conditions. Error bars indicate SEM.
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Discussion
We confirmed that anterior cingulate cortex, supplementary mo-
tor area, and striatum encode anticipated effort regardless of out-
come valence. Critically, activity in the striatum associated with
valence was only seen when an outcome was revealed and not
during its anticipation. In the vSTR, effect sizes of differential
response to better and to worse outcomes were attenuated by the
amount of effort just expended, a pattern akin to a neural signal
for net valuation.

Anticipatory activity reflects effort but not valence
There is ample evidence indicating dopamine neurons in the SN/
VTA report a reward prediction error, a signal also expressed in
the pattern of BOLD response in the vSTR (Berns et al., 2001;
O’Doherty et al., 2004; Pessiglione et al., 2006). Furthermore, in
rats, phasic changes in dopamine concentration in vSTR reflect
predicted rewards but not required effort (Gan et al., 2010).
However, complexities in the coupling between valence and vigor
(Boureau and Dayan, 2011; Cools et al., 2011) necessitate or-
thogonalizing expected value from requirements for action or
effort to test these relationships comprehensively (Crockett et al.,
2009). In this context, we observed effort trumping valence dur-
ing anticipation. This extends findings from previous experi-
ments (Guitart-Masip et al., 2011, 2012a, 2012b) from a binary
action requirement to a situation where the requirement is ex-
penditure of one of two different force levels. This reinforces a
growing idea that one primary driver of BOLD activity in the
striatum is an anticipated invigoration of action.

Our previous experiment involved a contrast between Go and
NoGo, in which we observed an action-by-valence interaction
with better performance for Go for a prospect of winning and
NoGo (which was the alternative choice there) for a prospect of
punishment (Huys et al., 2011; Guitart-Masip et al., 2012b). In
the present study, we had two Go responses (low and high effort),
and so did not expect or find any such behavioral coupling. In-
stead, we show robust behavioral effects of valence. Anticipation
of reward differed from anticipation from punishment, with bet-
ter performance early in training and faster accomplishment of
target force later during scanning. Note that the effect of reward
shifted from boosting accuracy when participants were still un-
familiar with the contingencies, to boosting the speed with which
they responded and completed the action when they had mas-
tered the task.

One might argue that the lack of a valence effect in the antic-
ipatory brain activity reflects the fact that valence does not pro-
vide relevant information about the instrumental response. This
seems unlikely, because paradigms such as Pavlovian to Instru-
mental Transfer (Estes, 1948; Talmi et al., 2008) and the mone-
tary incentive delay task (Knutson et al., 2005) clearly show an
effect of valence on behavior even when it is irrelevant (or even
damaging; Dayan et al., 2006). Furthermore, our own behavioral
results demonstrated that participants anticipated the valence
associated with fractals along with the levels of effort. One possi-
ble explanation for this apparent brain-behavior discrepancy is
that the signal that is truly uniquely attributable to valence is
distributed or localized outside of the striatum, leading to it going
undetected due to application of a stringent whole-brain thresh-
old. However, this implies that the representation of valence is
weaker than the representation of effort that, in contrast, did
survive the same threshold. In addition, in our previous imaging
data (Guitart-Masip et al., 2011) we detected a main effect of
action without a valence effect in most striatal ROIs that were
analyzed and in the right putamen we found an interaction in

which an effect of action was only significant in the avoid loss, but
not in the winning condition.

During anticipation, before participants engaged in a motor
response, the supplementary motor cortex, ACC, and dorsal
striatum showed higher BOLD responses in anticipation of high
effort. This is consistent with previous reports for the involve-
ment of ACC (Walton et al., 2002; Floresco and Ghods-Sharifi,
2007; Croxson et al., 2009; Prévost et al., 2010) and dorsal stria-
tum (Kurniawan et al., 2010 but see Braun and Hauber, 2011) in
effort.

Effort modulation on outcome valuation
Despite the absence of a valence effect during anticipation, we
confirmed the conventional observation that BOLD in the vSTR
was correlated with positive (i.e., appetitive) prediction errors at
the time of outcome. Here our novel contribution is to show that
this prediction error signal was sensitive to the amount of effort
invested. If one interprets high effort as being more costly, the
effect of this sensitivity is akin to creating a form of net valuation
signal, such that relative to worse outcomes, the incremental
value of better outcomes after high effort is attenuated and leads
to smaller appetitive prediction errors compared with those after
low effort. This result mimics the attenuated activity in the vSTR
for reward prediction error at reception of a painful outcome
compared with a benign tactile stimulation (Talmi et al., 2009).
However in light of recent demonstration that phasic dopami-
nergic signals to the vSTR were insensitive to anticipated effort
(Gan et al., 2010), this effort modulation in the vSTR is unlikely
to be dependent on the dopaminergic system.

In principle, this suppression could have been driven either by
anticipated or by actual effort. The former seems unlikely be-
cause, if anything, we saw increased BOLD response in the stria-
tum in anticipation of high effort. Concerning the latter, the net
valuation signal in the vSTR could have been derived from a
comparison between signals for state values and signals from
other regions concerning recently expended vigor. For example,
there have been previous reports that activity in ACC ramps up
during effort investment as subjects are closer in time to reward
delivery (Kennerley et al., 2008; Croxson et al., 2009) and that
accumulating information about cost that governs periods of ef-
fort and rest is correlated with BOLD response in the insula
(Meyniel et al., 2013). Therefore, one might speculate that infor-
mation about effort that ramps in these two structures is trans-
mitted to, and modifies, activity in a brain valuation system
including vSTR. Unfortunately, given the long TR, we could not
test this hypothesis directly. In addition, perhaps due to over-
training, there was no trial-wise correlation between movement
metrics and averaged extracted ventral striatal activity. These
neural-neural and behavioral-neural predictions are straightfor-
ward targets for future experiments. Note, however, that the met-
rics of movement are different for high versus low effort, making
it hard to distinguish motor anticipation from effort anticipation,
with both being relevant as correlates of striatal and cingulate
activity.

The interval between effort and outcome onsets was short (2.5
s), raising the issue of whether BOLD during outcome phase was
a simple artifact of motor activity happening 2.5 s previously. We
refrained from testing the main effect of effort at outcome phase
for this reason, because outcome and grip regressors would not
have been orthogonal. Importantly, several lines of reasoning
militate against this potential confound, on top of the observa-
tion of larger positive prediction errors after the exertion of low
compared with high effort. First, our GLM approach was conser-
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vative in that each outcome regressor was moderately orthogonal
from the grip regressors (see GLM1 in Materials and Methods)
and, indeed, motor regions showed significant effects of squeez-
ing. Therefore, the suprathreshold activity that we saw in vSTR is
variance uniquely explained by the outcome regressors over and
above variance explained by the grip regressors.

A further reason to think that motor activity was not respon-
sible for our finding is that the ventral aspect of putamen alone,
and not the dorsal aspect, was significant in the effect on the
positive prediction error signal. This is consistent with previous
functional segregations of striatum, with more dorsal (and lat-
eral) aspects of striatum encoding discrete reinforced, or even
habitized responses, and more ventral (and medial) aspects en-
coding stimulus-action-reward associations and outcome pre-
dictions (Pennartz et al., 1994; Voorn et al., 2004; Haber and
Knutson, 2010; Kurniawan et al., 2011), and it is also consistent
with the conventional role of vSTR in valuation (Mogenson et al.,
1980; Schmidt et al., 2012).

Our findings are consistent with a general view that effort
discounts value. There are effects such as state-dependent valua-
tion (Aw et al., 2011) and within-trial contrast (Clement et al.,
2000; Gipson et al., 2009) that suggest that rewards achieved after
greater effort are more highly valued than the same rewards
earned with less effort, but these effects rely on a temporal sepa-
ration between effort and reward consumption. Future experi-
ments could directly test for preference for stimuli associated
with gain or loss after high or low effort.

To conclude, we confirm here the involvement of effort in neural
anticipation of action. Notably, our results show that physical effort,
a paradigmatic embodied cost, affects the neural valuation of action
outcomes by modulating the brain’s response to desired events. Our
results complement conventional emphases on the role of vSTR in
reward processing and suggest a way that outcome signaling is re-
fined to allow cost dependence in choice.
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