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Abstract. Symmetrically connected recurrent networks have recently been used as models of a
host of neural computations. However, biological neural networks have asymmetrical connections,
at the very least because of the separation between excitatory and inhibitory neurons in the brain. We
study characteristic differences between asymmetrical networks and their symmetrical counterparts
in cases for which they act as selective amplifiers for particular classes of input patterns. We
show that the dramatically different dynamical behaviours to which they have access, often make
the asymmetrical networks computationally superior. We illustrate our results in networks that
selectively amplify oriented bars and smooth contours in visual inputs.

1. Introduction

A large class of nonlinear recurrent networks, including those studied by Grossberg (1988),
the Hopfield net (Hopfield 1982, 1984), and those suggested in many more recent proposals
for the head direction system (Zhang 1996), orientation tuning in primary visual cortex (Ben-
Yishaiet al 1995, Carandini and Ringach 1997, Mundelet al 1997, Pougetet al ), eye position
(Seung 1996), and spatial location in the hippocampus (Samsonovich and McNaughton 1997)
make a key simplifying assumption that the connections between the neurons are symmetric
(we call these S systems, for short), i.e. the synapses between any two interacting neurons
have identical signs and strengths. Analysis is relatively straightforward in this case, since
there is a Lyapunov (or energy) function (Cohen and Grossberg 1983, Hopfield 1982, 1984)
that guarantees the convergence of the state of the network to an equilibrium point. However,
the assumption of symmetry is broadly false in the brain. Networks in the brain are almost
never symmetrical, if for no other reason than the separation between excitation and inhibition,
notorious in the form of Dale’s law. In fact, it has never been completely clear whether ignoring
the polarities of cells is simplification or over-simplification. Networks with excitatory and
inhibitory cells (EI systems, for short) have certainly long been studied (e.g. Ermentrout and
Cowan 1979b), for instance from the perspective of pattern generation in invertebrates (e.g.
Steinet al 1997) and oscillations in the thalamus (e.g. Destexheet al 1993, Golombet al 1996)
and the olfactory system (e.g. Li and Hopfield 1989, Li 1995). Further, since the discovery
of 40 Hz oscillations (or at least synchronization) amongst cells in primary visual cortex of
anaesthetized cats (Grayet al 1989, Eckhornet al 1988), oscillatory models of V1 involving
separate excitatory and inhibitory cells have also been popular, mainly from the perspective of
how the oscillations can be created and sustained and how they can be used for feature linking
or binding (e.g. von der Malsburg 1981, 1988, Sompolinskyet al 1990, Spornset al 1991,
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Figure 1. Three effects that are observed and desired for the mapping between visual input and
output and which constrain recurrent network interactions. The strengths of all the input bars are
the same; the strengths of the output bars are proportional to the displayed widths of the bars, but
normalized separately for each figure (which hides the comparative suppression of the texture).

Konig and Schillen 1991, Schillen and Konig 1991, Koniget al 1992, Murata and Shimizu
1993). However, the full scope for computing with dynamically stable behaviours such as
limit cycles is not yet clear, and Lyapunov functions, which could render analysis tractable,
do not exist for EI systems except in a few special cases (Li 1995, Seunget al 1998).

A main inspiration for our work is Li’s nonlinear EI system that models how the primary
visual cortex performs input contour enhancement and pre-attentive region segmentation (Li
1997, 1998). Figure 1 shows two key phenomena that are exhibited by orientation-tuned cells
in area V1 of visual cortex (Knierim and van Essen 1992, Kapadiaet al 1995) in response to the
presentation of small edge segments that can be isolated, or parts of smooth contours or texture
regions. First, the activities of cells whose inputs form parts of smooth contours that could be
connected areboosted over those representing isolated edge segments. Second, the activities
of cells in the centres of extended texture regions are comparativelysuppressed. A third,
which is computationally desirable, is that unlike the case of hallucinations (Ermentrout and
Cowan 1979a), non-homogeneous spatial patterns of response shouldnot spontaneously form
in the central regions of uniform texture. These three phenomena tend to work against each
other. A uniform texture is just an array of smooth contours, and so enhancing contours whilst
suppressing textures requires both excitation between the contour segments and inhibition
between segments of different contours. This competition between contour enhancement and
texture suppression tends to lead to spontaneous pattern formation (Cowan 1982)—i.e. the
more that smooth contours are amplified, the more likely it is that, given a texture, random
fluctuations in activity favouring some contours over others will grow unstably. Indeed, studies
by Braunet al (1994) had suggested that an S-system model of the cortex cannot stably perform
contour enhancement unless mechanisms for which there is no neurobiological support are
used. Li (1997, 1998) showed empirically that an EI system built using just the Wilson–
Cowan equations (1972, 1973) can comfortably exhibit the three phenomena, and she used
this model to address an extensive body of neurobiological and psychophysical data. This
poses a question, which we now answer, as to what are some of the critical computational
differences between EI and S systems.

The computational underpinning for contour enhancement and texture suppression is
the operation ofselective amplification—magnifying the response of the system to input
patterns that form smooth contours and weakening responses to those that form homogeneous
textures. Selective amplification also underlies the way that many recurrent networks for
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orientation tuning work—selectively amplifying any component of the input that is well tuned
in orientation space and rejecting other aspects of the input as noise (Suarezet al 1995, Ben-
Yishai et al 1995, Pougetet al 1998). Therefore, in this paper we study the computational
properties of a family of EI systems and their S-system counterparts as selective amplifiers.
We show that EI systems can take advantage of non-trivial dynamical behaviour through
delayed inhibitory feedback (i.e. giving limit cycles) in order to achieve much higher selective
amplification factors than S systems. Crudely, the reason is that over the course of a limit cycle,
units are sometimes above and sometimes below the activity (or firing) threshold.Above
threshold, the favoured input patterns can be substantially amplified, even to the extent of
leading to a tendency towards spontaneous pattern formation. However,below threshold, in
response to homogeneous inputs, these tendencies are corrected.

In section 2, we describe the essentials of the EI systems and their symmetric counterparts.
In section 3 we analyse the behaviour of what is about the simplest possible network, which
has just two pairs of units. In section 4 we consider the more challenging problem of a network
of units that collectively represent an angle variable such as the orientation of a bar of light.
In section 5 we consider Li’s (1997, 1998) original contour and region network that motivated
our study.

2. Excitatory–inhibitory and symmetric networks

Consider a simple, but biologically significant, EI system in which excitatory and inhibitory
cells come in pairs and, as is true neurobiologically, there are no ‘long-range’ connections
from the inhibitory cells (Li 1997, 1998)

ẋi = − xi +
∑
j

Jij g(xj ) − h(yi) + Ii (1)

τyẏi = − yi +
∑
j

Wijg(xj ). (2)

Here, xi are the principal excitatory cells, which receive external or sensory inputIi ,
and generate the network outputs through activation functionsg(xi); yi are the inhibitory
interneurons (taken, for simplicity, as having no external input) which inhibit the principal
neurons through their activation functionh(yi); τy is the time-constant for the inhibitory cells;
andJij andWij are the output connections of the excitatory cells. For analytical convenience,
we chooseg(x) as a threshold linear function

g(x) = [x − T ]+ =
{
x − T if x > T

0 otherwise

andh(y) = y − Ty . However, the results are generally similar ifh(y) is also threshold linear.
Note thatg(x) is theonly nonlinearity in the system. All cells can additionally receive input
noise. Note that neither of the Lyapunov theories of Li (1995) nor Seunget al (1998) applies
to this case.

In the limit that the inhibitory cells are made infinitely fast (τy =0), they can be treated as
if they are constantly at equilibrium

yi =
∑
j

Wijg(xj ) (3)
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leaving the excitatory cells to interact directly with each other

ẋi = −xi +
∑
j

Jij g(xj ) − h

(∑
j

Wijg(xj )

)
+ Ii

= −xi +
∑
j

(Jij − Wij )g(xj ) + Ii + Ty. (4)

In this reduced system, the effective neural connectionsJij − Wij between any two cellsx
can be either excitatory or inhibitory, as in many abstract neural network models. We call this
reduced system in equation (4) thecounterpart of the original EI system. The two systems have
the same fixed points; that is, ˙x = ẏ = 0 for the EI system and ˙x = 0 for the reduced system
(with τy = 0) happen at the same values ofx̄ (andȳ). Since there are many ways of settingJij
andWij in the EI system whilst keeping constant the effective weight in its reduced system,
Jij − Wij , and the dynamics in the EI system take place in a space of higher dimensionality,
one may intuitively expect the EI system to have a broader computational range. In cases for
which the connection weights are symmetric (Jij = Jji ,Wij = Wji), the reduced system is an
S system. In such cases, however, the EI network is asymmetric because of the asymmetrical
interactions between the two units in each pair. We study the differences between the behaviour
of the full system in equations (1) and (2) (withτy = 1) and the behaviour of the S system in
equation (4) (withτy = 0).

The response of either system to given inputs is governed by the location and linear stability
of their fixed points. Note that the input–output sensitivity of both systems at a fixed pointx̄

is given by

dx = (
I − JDg + WDg

)−1
dI

whereI is the identity matrix,J andW are the connection matrices, and the diagonal matrix
[Dg]ii = g′(x̄i)†. Although the locations of the fixed points are the same for the EI and S
systems, the dynamical behaviour of the systems about those fixed points are quite different,
and this is what leads to their differing computational power.

To analyse the stability of the fixed points, consider, for simplicity, the case that the
matricesJDg andWDg commute. This means that they have a common set of eigenvectors,
say with eigenvaluesλJ

k andλW
k , respectively, fork = 1, . . . , N whereN is the dimension of

x. The local deviations�x ≡ x− x̄ near the fixed points along each of theN eigenvectors of
JDg andWDg will grow in time�xk(t) = �xk(0)eγkt if the real parts of the following values
are positive:

γk = γ EI
k ≡ −1 + 1

2λ
J
k ± (

1
4(λ

J
k)

2 − λW
k

)1/2
for the EI system

γk = γ S
k ≡ −1 − λW

k + λJ
k for the S system.

For the case of realλJ
k andλW

k , the fixed point isless stable in the EI system than in the
reduced system. That is, an unstable fixed point in the reduced system,γ S

k > 0, leads to an
unstable fixed point in the EI system,γ EI

k > 0, since1
4(λ

J
k)

2 − λW
k > (−1 + 1

2λ
J
k)

2. However,
if γ EI

k is complex (λW
k > 1

4(λ
J
k)

2), i.e. if the EI system exhibits (possibly unstable) oscillatory
dynamics around the fixed point, then the reduced system is stable:γ S

k < −1+λJ
k− 1

4(λ
J
k)

2 < 0.
In the general case, for whichJDg andWDg do not commute or whenλJ

k andλW
k are not real, the

conclusion that the fixed point in the EI system isless stable than that in the reduced system
is merely a conjecture. However, this conjecture is consistent with results from singular
perturbation theory (e.g. Khalil 1996) that when the reduced system is stable, the original
system in equations (1) and (2) is also stable asτy → 0 but may be unstable for largerτy .

† We ignore subtleties such as the non-differentiability ofg(x) atx = T that do not materially affect the results.
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3. The two-point system

A particularly simple case to consider has just two neurons (for the S system; two pairs of
neurons for the EI system) and weights

J =
(

j0 j

j j0

)
W =

(
w0 w

w w0.

)
The idea is that each node coarsely models a group of neurons, and the interactions between
neurons within a group (j0 andw0) are qualitatively different from interactions between
neurons between groups (j andw). The form of selective amplification here is that symmetric
or ambiguous inputsIa = I (1,1) should be suppressed compared with asymmetric inputs
Ib = I (1,0) (and, equivalently,I (0,1)). In particular, givenIa, the system should not
spontaneously generate a response withx1 significantly different fromx2. In terms of figure 1,
Ia is analagous to the uniform texture andIb to the isolated contour. Define the fixed points
to be x̄a

1 = x̄a
2 > T underIa and x̄b

1 > T > x̄b
2 underIb, whereT is the threshold of the

excitatory neurons. These relationships will be true across a wide range of input levelsI .
We quantify the selective amplification of the networks by the ratio

R = dx̃b
1/dI

dx̃a
1/dI

(5)

where the terms̃x are averages or maxima over the outputs of the network. This compares the
gains of the system to the input forIa andIb. Large values imply high selective amplification.
To be computationally useful, the S systems must converge to finite fixed points, in which case
x̃ = x̄ and

RS = 1 + ((w0 +w) − (j0 + j))

1 + (w0 − j0)
= 1 +

(w − j)

1 + (w0 − j0)
. (6)

If an EI system undergoes limit cycles, then the location of its fixed points may only be poorly
related to its actual output. We will therefore use the maximum or mean of the output of the
network over a limit cycle as̃x. We will show that EI systems can stably sustain larger values
of R than S systems.

Consider the S system. Sincex̄b
2 is below threshold (̄xb

2 < T ) in response to the selective
inputIb, the stability of the fixed point, determined byx̄b

1 alone, is governed by the sign of

γ S = −(1 +w0 − j0). (7)

The stability of the response to the unselective inputIa is governed by

γ S
± ≡ −(1 + (w0 ± w) − (j0 ± j)) (8)

for the twomodes of deviation�x± ≡ (x1 − x̄a
1) ± (x2 − x̄a

2) around fixed pointa.
We derive constraints on the maximum value of the selectivity ratioRS of the S system

from constraints onγ S andγ S
±. First, since we only consider cases when the input–output

relationship dx/dI of the fixed points (d̄xa
1/dI = −(1/γ S

+ ) and d̄xb
1/dI = −(1/γ S)) is well

defined, we have to have thatγ S < 0 andγ S
+ < 0. Second, in response toIa, we require that

the�x− mode doesnot grow, as otherwise symmetry betweenx1 andx2 would spontaneously
break. Given the existence of stablex̄b underIb, dynamic system theory dictates that the
�x− mode becomes unstable when two additional, stable, and uneven fixed pointsx̄a

1 	= x̄a
2

for (the even) inputIa appear. Hence the motion trajectory of the system will approach one
of these stable uneven fixed points from the unstable even fixed point. Avoiding this requires
thatγ S

− < 0. From equation (8), this means thatw − j < 1 +w0 − j0, and therefore that

RS < 2.
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The symmetry preserving network
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The symmetry breaking network
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Figure 2. Phase portraits for the S system in the two-point case. (A, B) Evolution in response to
Ia ∝ (1,1) andIb ∝ (1,0) for parameters for which the response toIa is stably symmetric. (C,
D) Evolution in response toIa andIb for parameters for which the symmetric response toIa is
unstable, inducing two extra equilibrium points. The dotted lines show the thresholdsT for g(x).

Figure 2 shows phase portraits and the equilibrium points of the S system under inputIa and
Ib for the two different parameter regions.

As we have described, the EI system has exactly the same fixed points as the S system,
but there are parameters for which the fixed points can be stable for the S system but unstable
for the EI system. The stability around the symmetric fixed point underIa is governed by

γ EI
± = −1 + 1

2(j0 ± j) ±
√

1
4(j0 ± j)2 − (w0 ± w)

while that of the asymmetric fixed point underIa (if it exists) orIb is controlled by

γ EI = −1 + 1
2j0 ±

√
1
4j

2
0 − w0.

Consequently, when there are three fixed points underIa, all of them can be unstable in the
EI system, and the motion trajectory cannot converge to any of them. In this case, when
both the�x+ and�x− modes around the symmetric fixed pointx̄a

1 = x̄a
2 are unstable, the

global dynamics can constrain the motion trajectory to a limit cycle around the fixed points.
If xa

1 ≈ xa
2 on this limit cycle, then the EI system will not break symmetry, while potentially

giving a high selective amplification ratioREI � 2. Figure 3 demonstrates the performance of
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Response to Ia = I (1,1)
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Figure 3. Projections of the response of the EI system. (A, B) Evolution of response toIa. Plots
of (A) x1 versusy1 and (B)g(x1)− g(x2) (solid) andg(x1) + g(x2) (dotted) versus time show that
thex1 = x2 mode dominates and the growth ofx1 − x2 when both units are above threshold (the
downward ‘blips’ in the lower curve in (B) are strongly suppressed whenx1 andx2 are both below
threshold. (C, D) Evolution of the response toIb. Here, the response ofx1 always dominates that
of x2 over oscillations. The difference betweeng(x1) + g(x2) andg(x1) − g(x2) is too small to
be evident on the figure. Note the difference in scales between (A, B) and (C, D). Herej0 = 2.1,
j = 0.4,w0 = 1.11 andw = 0.9.

the EI system in this regime. Figure 3(A,B) shows various aspects of the response to inputIa

which should be comparatively suppressed. The system oscillates in such a way thatx1 andx2

tend to be extremely similar (including being synchronized). Figure 3(C,D) shows the same
aspects of the response toIb, which should be amplified. Again the network oscillates, and,
althoughg(x2) is not driven completely to zero (it peaks at 15), it is very strongly dominated
by g(x1), and further, the overall response is much stronger than in figure 3(A,B). Note also
the difference in the oscillation period—the frequency is much lower in response toIb than
Ia.

The phase–space plot in figure 4 (which expands on that in figure 2(C)) illustrates the
pertinent difference between the EI and S systems in response to the symmetric input pattern
Ia. WhenJ andW are strong enough to provide substantial amplification ofIb, the S system
can only roll down the local energy landscape

E(x) = − 1
2

∑
ij

(Jij − Wij )�xi�xj + 1
2

∑
i

�x2
i +E(x̄a)
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x1

x2

Figure 4. Phase-space plot of the motion trajectory of the S system under inputIa ∝ (1,1).
Amplifying sufficiently the asymmetric inputsIb ∝ (1,0), (0,1) leads to the creation of two
energy wells (marked by ) which are the two asymmetric fixed points under inputIa. This
makes the symmetric fixed point (marked by♦) unstable, and actually a saddle point in the energy
landscape that diverts all motion trajectories towards the energy wells. There is no energy landscape
in the EI system. Its fixed points (also marked by) can be unstable and unapproachable. This
makes the motion trajectory oscillate (into they dimensions) around the fixed point♦, whilst
preservingx1 ≈ x2 and thus not breaking symmetry.

(whenh(y) is linear) forx = x̄a + �x, from the pointx̄a (♦), which is a saddle point, since
the Hessian∂2E/∂�xi∂�xj has eigenvalues−γ S

+ > 0 and−γ S
− < 0, to one of the two stable

fixed points, and thereby break the input symmetry. However, the EI system can resort to
global limit cycles (on whichx1(t) ≈ x2(t)) between unstable fixed points, and so maintain
symmetry. The conditions under which this happens in the EI system are:

(a) At the symmetric fixed point under inputIa, while the�x− mode is guaranteed to be
unstable because, by design, it is unstable in the S system, the�x+ mode should be
unstable and oscillatory such that the�x− mode does not dominate the motion trajectory
and break the overall symmetry of the system.

(b) Under the ambiguous inputIa, the asymmetric fixed points (whose existence is guaranteed
from the S system) should be unstable, to ensure that the motion trajectory will not converge
to them.

(c) Perturbations in the direction of�x1 = −�x2 about the limit cycle defined byx1 = x2

should shrink under the global dynamics, as otherwise the overall behaviour will be
asymmetric.

The last condition is particularly interesting since it can be that the�x− mode is locallymore
unstable (at the symmetric fixed point) than the�x+ mode, since the�x− mode is more
strongly suppressed when the motion trajectory enters the subthreshold regionx1 < T and
x2 < T (because of the location of its fixed point). As we can see in figure 3(A,B), this acts
to suppress any overall growth in the�x− mode. Since the asymmetric fixed point underIb

is just as unstable as that underIa, the EI system responds to asymmetric inputIb also by a
stable limit cycle around the asymmetric fixed point.

Using the mean responses of the system during a cycle to definex̃, the selective
amplification ratio in figure 3 isREI = 97, which is significantly higher than theRS = 2
available from the S system. One can analyse the three conditions theoretically (though there
appears to be no closed-form solution to the third constraint), and then choose parameters for
which the selectivity ratio is greatest. For instance, figure 5 shows the range of achievable
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Figure 5. Selectivity ratioR as a function ofw0 andw for j0 = 2.1 andj = 0.4 for the EI system.
The ratio is based on the maximal responses of the network during a limit cycle; results for the
mean response are similar. The ratio is shown as 0 for values ofw0 andw for which one or more
of the conditions is violated. The largest value shown isREI =103, which is significantly greater
than the maximum valueRS=2 for the S system.

ratios as a function ofw0 andw for j0 = 2.1, j = 0.4. The steep peak comes from the
region aroundw0 ∼ j0 − 1. To reiterate, the S system is not appropriately stable for these
parameters. Clearly, very high selectivity ratios are achievable. Note that this analysis says
nothing about the transient behaviour of the system as a function of the initial conditions. This
and the oscillation frequency are also under ready control of the parameters.

This simple example shows that the EI system is superior to the S system, at least for the
computation of the selective amplification of particular input patterns without hallucinations or
other gross distortions of the input. If, however, spontaneous symmetry breaking is desirable
for some particular computation, the EI system can easily achieve this too. The EI system has
extra degrees of freedom over the counterpart S system in thatJ andW can both be specified
(subject to a given differenceJ − W) rather than only the difference itself. In fact, it can be
shown in this two-point case that the EI system can reproduce qualitatively all behaviours of
the S system, i.e. with the same fixed points and the same linear stability (inall modes). The
one exception to this is that if the demands of the computation require that the ambiguous input
Ia be comparatively amplified and the inputIb be comparatively suppressed using an overly
strong self-inhibition termw0, then the EI system has to be designed to respond toIa with
oscillations along whichx1(t) � x2(t).

4. The orientation system

One recent application of symmetric recurrent networks has been to the generation of
orientation tuning in primary visual cortex. Here, neural unitsi have preferred orientations
θi = (i − N/2)π/N for i = 1, . . . , N (the angles range in [−π/2, π/2) since direction is
ignored). Under ideal and noiseless conditions, an underlying orientationθ∗ generates input
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to individual units ofIi = f (θi −θ∗), wheref (·) is the input tuning function, which is usually
unimodal and centred around zero. In reality, of course, the input is corrupted by noise of
various sorts. The network should take noisy (and perhaps weakly tuned) input and selectively
amplify the componentf (θi − θ∗) that representsθ∗ in the input. Based on the analysis
above, we can expect that if an S network amplifies a tuned input enough, then it will break
input symmetry given an untuned input and thus hallucinate a tuned response. However, an EI
system can maintain untuned and suppressed responses to untuned inputs to reach far higher
amplification ratios. We study an abstract version of this problem, and do not attempt to match
the exact tuning widths or neuronal oscillation frequencies recorded in experiments.

Consider first a simple EI system for orientation tuning, patterned after the cosine S-system
network of Ben-Yishaiet al (1995). In the simplest case, the connection matricesJ andW are
the Töplitz:

Jij = 1

N
(A +B cos(2(θi − θj )))

Wij = 1

N
C.

(9)

This is a handy form for the weights, since the net input sums in equations (1) and (2) are
functions of just the zeroth- and second-order Fourier transforms of the thresholded input.
MakingWij a constant is solely for analytical convenience—we have also simulated systems
with cosine-tuned connections from the excitatory cells to the inhibitory cells. For simplicity,
assume an input of the form

Ii = a + b cos(2θi) (10)

generated by an underlying orientationθ∗ = 0. In this case, the fixed point of the network is
known to take the form

x̄i = α + β cos(2θi) (11)

whereα andβ are determined bya andb. Also, forT = 1,

g(x̄i) = [α − 1 +β cos(2θi)]+

= β [cos(2θi) − cos(2θc)]+ (12)

whereθc is a cut-off. Note that the form in equation (12) is only valid forθc < π/2.
In the same way that we designed the two-point system to amplify contentful patterns

such asIb ∝ (1,0) selectively compared with the featureless patternIa ∝ (1,1), we would
like the orientation network to amplify patterns for whichb � 0 in equation (10) selectively
over those for whichb ∼ 0. In fact, in this case, we can also expect the network to filter out
any higher spatial frequencies in the input that come from noise (see figure 6(A)), although,
as Pougetet al (1998) discuss, the statistical optimality of this depends on the actual noise
process perturbing the inputs.

Ben-Yishaiet al (1995) analysed in some detail the behaviour of the S-system version
of this network, which has weightsJij − Wij = 1

N

[
(A − C) +B cos(2(θi − θj ))

]
. These

authors were particularly interested in a regime they called themarginal phase, in which even
in the absence of tuned inputb = 0, the network spontaneously forms a pattern of the form
xi = α + β cos(2(θi − φ)), for arbitraryφ. In terms of our analysis of the two-point system,
this is exactly the case that the symmetric fixed point is unstable for the S system, leading
to symmetry breaking. However, this behaviour has the unfortunate consequence that the
network is forced to hallucinate that the input contains some particular angle (φ) even when
none is presented. It is this behaviour that we seek to avoid.
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It can be shown that, above threshold, the gain∂β/∂b of the fixed point is

∂β

∂b
= 1

1 − B(2θc − 1
2 sin(4θc))/2π

which increases† withθc. For the S system, we require that the response to a flat inputb = 0
is stably flat. Making the solutiong(x) = α − 1 stable against fluctuations of the form of
cos(2θ) requiresB < 2. This implies that∂β/∂b < 2 for θc = π/4. The gain∂α/∂a for the
flat mode is

∂α

∂a
= 1

1 − (A − C)

and so, if we impose the extra condition thatJii −Wii > 0, in accordance with neurobiological
expectations that the weights have the shape of a Mexican hat with net excitation at the centre,
then we require thatA − C > −B and so that

1

1 − (A − C)
>

1

3
.

Hence, the amplification ratioRS = (∂β/∂b)/(∂α/∂a) < 6 for a tuning widthθc = π/4, or
RS < 3.75 for a smaller (and more biologically faithful) widthθc = 30◦.

The EI system will behave appropriately for large amplification ratioR if the same set of
constraints as for the two-point case are satisfied. This means that in response to the untuned
input, at least:

(a) The untuned fixed pointx = α should be unstable. The behaviour of the system about this
fixed point should be oscillatory in the modexi = xj . These conditions will be satisfied
if A2 < 4C andA > 2.

(b) The ring of fixed points that are not translationally invariant (xi = α+β cos(2(θi −φ)) for
arbitraryφ) should exist under translation-invariant input and be unstable and oscillatory.

(c) Perturbations in the direction of cos(2(θ −φ)) ( for arbitraryφ) about the final limit cycle
defined byxi = xj should shrink. The conditions under which this happens are very
similar to those for the two-point system, which were used to help derive figure 5.

Although we have not been able to find closed-form expressions for the satisfaction of all
these conditions, we can use them to delimit sets of appropriate parameters. In particular, we
may expect that, in general, large values ofB should lead to large selective amplification of
the tuned mode, and therefore we seek greater values ofB subject to the satisfaction of the
other constraints. Figure 6 shows the response of one network designed to have a very high
selective amplification factor of∼1500. Figure 6(A) shows noisy versions of both flat and
tuned input. Figure 6(B) shows the response to tuned and flat inputs in terms of the mean over
the oscillations. Figure 6(C) shows the structure of the oscillations in the thresholded activity
of two units in response to a tuned input. The frequency of the oscillations is greater for the
untuned than for the tuned input (not shown).

The suppression of noise for nearly flat inputs is a particular nonlinear effect in the response
of the system. Figure 7(A,B) shows one measure of the response of the network as a function
of the magnitude ofb for different values ofa. The sigmoidal shape of these curves shows the
way that noise is rejected. Indeed,b has to be sufficiently large to excite the tuned mode of
the network. Figure 7(B) shows the same data, but appropriately normalized, indicating that,
if r(a, b) is the peak response when the input isa +b cos(2θ), thenr(a, b) � ar(1, b/a). The
scalar dependence ona was observed for the S system by Salinas and Abbott (1996). When
b/a is so large that the response is away from the flat portion of the sigmoid, the response of

† Note thatθc also changes with the inputb, but only by a small amount when there is substantial amplification.



70 Z Li and P Dayan

(A) (B)

−90 −45 0 45 90
0

5

10

15

20

angle

in
pu

t

−90 −45 0 45 90
0

5

10

angle

m
ea

n 
re

sp
on

se
/1

00
0

(C)

0 20 40 60 80 100
0

2

4

6

8

10

x 10
4

time

re
sp

on
se

Figure 6. Cosine-tuned 64-unit EI system. (A) Tuned (dotted and solid lines) and untuned input
(dashed line). All inputs have the same DC levela = 10 and the same random noise; the tuned
inputs includeb = 2.5 (dotted) andb = 5 (solid). (B) Mean response of the system to the inputs
in (A), the solid, dotted, and dashed curves being the responses of all units to the correspondingly
designated input curves in (A). The network amplifies the tuned input enormously, albeit with
rather coarse tuning. Note that the response to the noisy and untuned input is almost zero at this
scale (dashed curve). Ifa is increased to 50, then the response remains indistinguishable from the
dashed line in the figure although its peak value does actually increase very slightly. (C) Temporal
response of two units to the solid input from (A). The solid line shows the response of the unit
tuned for 0◦ and the dashed line that for 36.5◦. The oscillations are clear. HereA = 6.5,B = 8.5
andC = 14.5.

the network at the peak has the same width (θc) for all values ofa andb, being determined just
by the weights.

Although cosine tuning is convenient for analytical purposes, it has been argued that it is
too broad to model cortical responsivity (see, in particular, the statistical arguments in Pouget
et al 1998). One side effect of this is that the tuning widths in the EI system are uncomfortably
large. It is not entirely clear why they should be larger than for the S system. However, in
the reasonable case that the tuning of the input is also sharper than a cosine, for instance, the
Gaussian, and the tuning in the weights is also Gaussian, sharper orientation tuning can be
achieved. Figure 8(B,C) shows the oscillatory output of two units in the network in response
to a tuned input, indicating the sharper output tuning and the oscillations. Figure 8(D) shows
the activities of all the units at three particular phases of the oscillation. Figure 8(A) shows
how the mean activity of the most activated unit scales with the levels of tuned and untuned
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Figure 7. Mean response of theθi = 0◦ unit as a function ofb for three values ofa. (A) The mean
responses fora = 20 (solid),a = 10 (dashed) anda = 5 (dotted) are indicated for different values
of b. Sigmoidal behavior is prominent. (B) Rescalingb and the responses bya makes the curves
lie on top of each other.

input. The network amplifies the tuned inputs dramatically more—note the logarithmic scale.
The S system breaks symmetry to the untuned input (b = 0) for these weights. If the weights
are scaled uniformly by a factor of 0.22, then the S system is appropriately stable. However,
the magnification ratio is 4.2 rather than something greater than 1000.

The orientation system can be understood to a largely qualitative degree by looking at
its two-point cousins. Many of the essential constraints on the system are determined by the
behaviour of the system when the mode withxi = xj dominates, in which case the complex
nonlinearities induced byθc and its equivalents are irrelevant. LetJ̃ (f )andW̃ (f ) for (angular)
frequencyf be the Fourier transforms ofJ (i − j) ≡ Jij andW(i − j) ≡ Wij and define

λ(f ) = Re

{
−1 + 1

2 J̃ (f ) + i
√
W̃ (f ) − 1

4 J̃
2(f )

}
.

Then, letf ∗ > 0 be the frequency such thatλ(f ∗) � λ(f ) for all f > 0. This is the non-
translation-invariant mode that is most likely to cause instabilities for translation-invariant
behaviour. A two-point system that closely corresponds to the full system can be found by
solving the simultaneous equations

j0 + j = J̃ (0) w0 +w = W̃ (0)

j0 − j = J̃ (f ∗) w0 − w = W̃ (f ∗).

This design equates thex1 = x2 mode in the two-point system with thef = 0 mode in the
orientation system and thex1 = −x2 mode with thef = f ∗ mode. For smoothJ (i − j) and
W(i−j), f ∗ is often the smallest or one of the smallest non-zero spatial frequencies. It is easy
to see that the two systems are exactly equivalent in the translation-invariant modexi = xj
under translation-invariant inputIi = Ij in both the linear and nonlinear regimes. A coarse
sweep over the parameter space of Gaussian-tunedJ andW in the EI system showed that for all
cases tried, the full orientation system broke symmetry if, and only if, its two-point equivalent
also broke symmetry. Quantitatively, however, the amplification ratio differs between the two
systems, since there is no analogue ofθc for the two-point system.
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Figure 8. The Gaussian orientation network. (A) Mean response of theθi = 0◦ unit in the network
as a function ofa (untuned) orb (tuned) with a log scale. (B) Activity of theθi = 0◦ (solid) and
θi = 30◦ (dashed) units in the network over the course of the positive part of an oscillation. (C)
Activity of these units in (B) over all time. (D) Activity of all the units at the three times shown
as (i), (ii) and (iii) in (B), where (i) (dashed) is in the rising phase of the oscillation, (ii) (solid) is

at the peak, and (iii) (dotted) is during the falling phase. Here, the input isIi = a + be−(θi )
2
π /2σ

2
,

with σ = 13◦, and the T̈oplitz weights areJij = (3 + 21e−(θi−θj )
2
π /2σ

′2
)/N , with σ ′ = 20◦ and

Wij = 23.5/N , and(θ)π = π/2 − | |θ | − π/2|.

5. The contour-region system

The final example is the application of the EI and S systems to the task described in figure 1 of
contour enhancement and texture region segmentation. In this case, the neural units represent
visual stimuli in the input at particular locations and orientations. Hence the unitxiθ (or
the pair(xiθ , yiθ )) corresponds to a small bar or edge located at (horizontal, vertical) image
location (mi, ni) in a discrete (for simplicity, Manhattan) grid and oriented atθ = kπ/K

for k = 0,1, ..., K − 1 for a finiteK†. The neural connectionsJ andW link units iθ and
jθ ′ symmetrically and locally. The desired computation is to amplify the activity of unitiθ

selectively if it is part of an isolated smooth contour in the input, and suppress it selectively if
it is part of a homogeneous input region.

† We do not consider here how orientation tuning is achieved as in the orientation system; hence the neural circuit
within given a grid pointi is not the same as the orientation system we studied above.
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(A) (B) (C) (D)

Figure 9. The four particular visual stimulus patterns A, B, C and D discussed in the text.

In particular, consider the four input patterns, A, B, C and D shown in figure 9, when all
input bars haveθ = π/2, either located at every grid pointi as in pattern A or at selective
locations as in patterns B, C and D. Here, wrap-around boundary conditions are employed, so
the top and bottom of the plots are identified, as are the right and left.

Given that all the visible bars in the four patterns have the same input strengthI , the
computation performed by the network should be such that the outputs for the visible bar units
be weakest for pattern A (which is homogeneous), stronger for pattern B, and even stronger
still for pattern C, and also such that all visible units should have the same response levels
within each example. For these simple input patterns, we can ignore all other orientations for
simplicity, denote each unit simply by its locationi in the image, and consider the interactions
Jij andWij restricted to only these units. Of course, this is not true for more complex input
patterns, but will suffice to derive some constraints. The connections should be translation
and rotation invariant and mirror symmetric; thusJij andWij should depend only oni − j

and be symmetric. Intuitively, weightsJij should connect unitsi, j when they are more or
less vertically displaced from each other locally to achieve contour enhancement, and weights
Wij should connect thosei, j that are more or less horizontally displaced locally to achieve
activity suppression.

Define

J ′
c ≡

∑
j :mj=mi+c

Jij j0 ≡ Jii

W ′
c ≡

∑
j :mj=mi+c

Wij w0 ≡ Wii.

The input gains to patterns A, B and C at the fixed points will be roughly

gA =
[
1 +

∑
c

W ′
c −

∑
c

J ′
c

]−1

gB = [
1 +w0 − j0

]−1

gC = [
1 +W ′

0 − J ′
0

]−1
.

(13)

The relative amplification or suppression can be measured by ratiosgC : gB : gA. Let
� ≡ (J ′

0 − j0) − (W ′
0 − w0). Then, the degree of contour enhancement, as measured by

gC/gB, is

gC/gB = 1 +w0 − j0

1 +w0 − j0 − �
.

To avoid symmetry breaking between the two straight lines in the input pattern D, we require,
just as in the two-point system, that

W ′
1 − J ′

1 < (1 +W ′
0 − J ′

0) = (1 +w0 − j0 − �). (14)
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In the simplest case, let all connectionsJij andWij connect elements displaced horizontally
for no more than one grid distance, i.e.|mi − mj | � 1. Then,J ′

c = W ′
c = 0 for |c| > 1. For

gA < gB, we require∑
c

W ′
c −

∑
c

J ′
c > w0 − j0

or, equivalently,

2(W ′
1 − J ′

1) > �.

Combining this with equation (14), we get

� < 2
3(1 +w0 − j0) ⇒ gC/gB < 3.

In the EI system, however,W ′
1 − J ′

1 can be very large without breaking the symmetry
between the two lines in pattern D. This is the same effect we investigated in the two-point
system. This allows the use of

� = (1 − δ)(1 +w0 − j0)

with very small values ofδ � 1/3 and thus a large contour enhancement factorgC/gB ∼
1/δ � 3. Other considerations do limit�, but to a lesser extent (Li 1998). This simplified
analysis is based on a crude approximation to the full, complex, system. Nevertheless, it
may explain the comparatively poor performance of many S systems designed for contour
enhancement, such as the models of Grossberg and Mingolla (1985) and Zuckeret al (1989),
by contrast with the performance of a more biologically based EI system (Li 1998). Figure 10
demonstrates that to achieve reasonable contour enhancement, the reduced S system (using
τy = 0 and keeping all the other parameters the same) breaks symmetry and hallucinates
stripes in response to a homogeneous input. As one can expect from our analysis, the neural
responses in the EI system are oscillatory for the contour and line segments as well as all
segments in the texture.

6. Conclusions

We have studied the dynamical behaviour of networks with symmetrical and asymmetrical
connections and have shown that the extra degrees of dynamical freedom of the latter can be
put to good computational use. Many applications of recurrent networks involve selective
amplification—and the selective amplification factors for asymmetrical networks can greatly
exceed those of symmetrical networks without their having undesirable hallucinations or
grossly distorting the input signal. If, however, spontaneous pattern formation or hallucination
by the network is computationally necessary, such that the system gives preferred output
patterns even with ambiguous, unspecified or random noise inputs, the EI system, just like the
S system,can be so designed, at least for the paradigmatic case of the two-point system.
Oscillations are a key facet of our networks. Although there is substantial controversy
surrounding the computational role and existence of sustained oscillations in cortex, there
is ample evidence that oscillations of various sorts can certainly occur, which we take as
hinting at the relevance of the computational regime that we have studied.

We have demonstrated the power of excitatory–inhibitory networks in three cases, the
simplest having just two pairs of neurons, the next studying their application to the well
studied case of the generation of orientation tuning, and, finally, in the full contour and region
segmentation system of Li (1997, 1998) that inspired this work in the first place. For analytical
convenience, all our analysed examples have translation symmetry in the neural connections
and the preferred output patterns are translational transforms of each other. This translation
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(A) Contour enhancement
Input image Output image

(B) Responses to homogeneous inputs
From EI system From reduced system

Figure 10. Demonstration of the performance of the contour-region system. (A) Input imageIiθ
and the mean output responsegx(xiθ ) from the EI system of Li (1998).Iiθ is the same for each
visible bar segment, butgx(xiθ ) is stronger for the line and circle segments, shown in the plot as
proportional to the bar thicknesses. The average response from the reduced system (takingτy = 0)
is qualitatively similar. (B) In response to a homogeneous texture input, the EI system responds
faithfully with homogeneous output, while the reduced system hallucinates stripes.

symmetry is not an absolutely necessary condition to achieve selective amplification of some
input patterns against others, as is confirmed by simulations of systems without translation
symmetry.

We made various simplifications in order to get an approximate analytical understanding
of the behaviour of the networks. In particular, the highly distilled two-point system provides
much of the intuition for the behaviour of the more complex systems. It suggests a small set
of conditions that must be satisfied to avoid spontaneous pattern formation. We also made
the unreasonable assumption that the inhibitory neurons are linear rather than sharing the
nonlinear activation function of the excitatory cells. In practice, this seems to make little
difference in the behaviour of the network, even though the linear formh(y) = y − Ty has the
paradoxical property that inhibition turns into excitation wheny < Ty . The analysis of the
contour integration and texture segmentation system is particularly impoverished. Li (1997,



76 Z Li and P Dayan

1998) imposed substantial extra conditions (e.g. that an input contour of a finite length should
not grow because of excessive contextual excitation) and included extra nonlinear mechanisms
(a form of contrast normalization), none of which we have studied.

A prime fact underlying asymmetrical networks is neuronal inhibition. Neurobiologically,
inhibitory influences are, of course, substantially more complicated than we have suggested.
In particular, inhibitory cells do have somewhat faster time constants than excitatory cells
(though they are not zero), and are also not so subject to short-term plasticity effects such as
spike rate adaptation (which we have completely ignored). Inhibitory influences also play out
at a variety of different time scales by dint of different classes of receptor on the target cells.
Nevertheless, there is ample neurobiological and theoretical reason to believe that inhibition
has a critical role in shaping network dynamics, and we have suggested one computational
role that can be subserved by this. In our selective amplifiers, the fact that inhibition comes
from interneurons, and is therefore delayed, bothintroduces local instability at the fixed point
andremoves the global spontaneous, pattern-forming instability arising from the amplifying
positive feedback.

It is not clear how the synaptic weightsJ andW in the EI system may be learnt. Most
intuitions about learning in recurrent networks come from S systems, where we are aided by
the availability of energy functions. Showing how learning algorithms can sculpt appropriate
dynamical behaviour in EI systems is the next and significant challenge.
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