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Abstract

Areas of the brain involved in various forms of memory exhibit patterns
of neural activity quite unlike those in canonical computational models.
We show how to use well-founded Bayesian probabilistic autoassociative
recall to derive biologically reasonable neuronal dynamics in recurrently
coupled models, together with appropriate values for parameters such as
the membrane time constant and inhibition. We explicitly treat two cases.
One arises from a standard Hebbian learning rule, and involves activity
patterns that are coded by graded firing rates. The other arises from a
spike timing dependent learning rule, and involves patterns coded by the
phase of spike times relative to a coherent local field potential oscillation.
Our model offers a new and more complete understanding of how neural
dynamics may support autoassociation.

1 Introduction

Autoassociative memory in recurrently coupled networks seems fondly regarded as hav-
ing been long since solved, at least from a computational perspective. Its neurobiological
importance, as a model of episodic (event) memory storage and retrieval (from noisy and
partial inputs) in structures such as area CA3 in the hippocampus, is of course clear [1].
This perhaps suggests that it is only the exact mapping of the models to the neural substrate
that holds any remaining theoretical interest.

However, the characteristic patterns of activity in areas such as CA3 that are involved in
memory are quite unlike those specified in the bulk of models. In particular neurons (for
instance hippocampal place cells) showgradedactivity during recall [2], prominent theta
frequencyoscillations[3] and an apparent variety of rules governing synaptic plasticity
[4, 5]. The wealth of studies of memory capacity of attractor networks of binary units does
not give many clues to the specification, analysis or optimization of networks acting in
these biologically relevant regimes. In fact, even theoretical approaches to autoassociative
memories with graded activities are computationally brittle.

Here, we generalize previous analyses [6, 7] to address these issues. Formally, these mod-
els interpret recall as Bayesian inference based on information given by the noisy input,
the synaptic weight matrix, and prior knowledge about the distribution of possible activ-
ity patterns coding for memories. More concretely (see section 2), the assumed activity
patterns and synaptic plasticity rules determine the term in neuronal update dynamics that
describes interactions between interconnected cells. Different aspects of biologically rea-
sonable autoassociative memories arise from different assumptions. We show (section 3)
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that for neurons are characterized by their graded firing rates, the regular rate-based charac-
terization of neurons effectively approximates optimal Bayesian inference. Optimal values
for parameters of the update dynamics, such as level of inhibition or leakage conductance,
are inherently provided by our formalism. We then extend the model (section 4) to a set-
ting involving spiking neurons in the context of a coherent local field potential oscillation
(LFPO). Memories are coded by the the phase of the LFPO at which each neuron fires, and
are stored by spike timing dependent plasticity. In this case, the biophysically plausible
neuronal interaction function takes the form of a phase reset curve: presynaptic firing ac-
celerates or decelerates the postsynaptic cell, depending on the relative timing of the two
spikes, to a degree that is proportional to the synaptic weight between the two cells.

2 MAP autoassociative recall

The first requirement is to specify the task for autoassociative recall in a probabilistically
sound manner. This specification leads to a natural account of the dynamics of the neurons
during recall, whose form is largely determined by the learning rule. Unfortunately, the
full dynamics includes terms that are not purely local to the information a post-synaptic
neuron has about pre-synaptic activity, and we therefore consider approximations that re-
store essential characteristics necessary to satisfy the most basic biological constraints. We
validate the quality of the approximations in later sections.

The construction of the objective function: Consider an autoassociative network which
has stored information aboutM memoriesx1 . . .xM in a synaptic weight matrix,W be-
tween a set ofN neurons. We specify these quantities rather generally at first to allow for
different ways of construing the memories later. The most complete probabilistic descrip-
tion of its task is to report the conditional distributionP [x|x̃,W] over the activitiesx given
noisy inputs̃x and the weights. The uncertainty in this posterior distribution has two roots.
First, the activity pattern referred to by the input is unclear unless there is no input noise.
Second, biological synaptic plasticity rules are data-lossy ‘compression algorithms’, and
soW specifies only imprecise information about the stored memories.

In an ideal case,P [x|x̃,W] would have support only on theM stored patternsx1 . . .xM .
However, biological storage methods lead to weightsW that permit a much greater range
of possibilities. We therefore consider methods that work in the full space of activitiesx.
In order to optimize the probability of extracting just the correct memory, decision theory
encourages us to maximize the posterior probability [8]:

x̂ := argmaxxP [x|x̃,W] , P [x|x̃,W] ∝ P [x] P [x̃|x] P [W|x] (1)

The first term in Eq.1 imports prior knowledge of the statistical characteristics of the memo-
ries, and is assumed to factorize:P [x] :=

∏
i Px [xi]. The second term describes the noise

process corrupting the inputs. For unbiased noise it will be a term inx that is effectively
centered oñx. We assume that the noise corrupting each element of the patterns is indepen-
dent, and independent of the original pattern, soP [x̃|x] :=

∏
i P [x̃i|x] :=

∏
i P [x̃i|xi].

The third term assesses the likelihood that the weight matrix came from a training set of
sizeM including patternx.1 Biological constraints encourage consideration of learning
updates for the synapse from neuronj to neuroni that arelocal to the pre-synaptic (xm

j )
and post-synaptic (xm

i ) activities of connected neurons when patternxm is stored:

∆wm
i,j := Ω

(
xm

i , xm
j

)
(2)

We assume the contributions of individual training patterns are additive,Wi,j :=∑
m ∆wm

i,j , and that there are no autapses in the network,Wi,i := 0.

1Uncertainty aboutM could also be incorporated into the model, but is neglected here.



Storing a single random pattern drawn from the prior distribution will result in a synaptic
weight change with a distribution determined by the prior and the learning rule, having
µ∆w = 〈Ω (x1, x2)〉Px[x1]·Px[x2]

mean, andσ2
∆w =

〈
Ω2 (x1, x2)

〉
Px[x1]·Px[x2]

− µ2
∆w

variance. StoringM − 1 random patterns means addingM − 1 iid. random variables and
thus, for moderately largeM , results in a synaptic weight with an approximately Gaussian
distributionP [Wi,j ] ' G (Wi,j ;µW , σW ), with meanµW = (M − 1) µ∆w and variance
σ2

W = (M − 1) σ2
∆w. Adding a furtherparticular patternx is equivalent to adding a

random variable with a mean determined by the learning rule, and zero variance, thus:

P [Wi,j |xi, xj ] ' G (Wi,j ;µW + Ω (xi, xj) , σW ) (3)

We also make the approximation that elements of the synaptic weight matrix are indepen-
dent, and thus write:P [W|x] :=

∏
i,j 6=i P [Wi,j |xi, xj ].

Having restricted our horizons to maximum a posteriori (MAP) inference, we can consider
as an objective function the log of the posterior distribution. In the light of our factorizabil-
ity assumptions, this is

O(x) = log P [x] + log P [x̃|x] + log P [W|x]
=

∑
i log P [xi] +

∑
i log P [x̃i|xi] +

∑
i,j 6=i log P [Wi,j |xi, xj ]

(4)

Neuronal update dynamics: Finding the global maximum of the objective function, as
stated in equation 1, is computationally extravagant, and biologically questionable. We
therefore specify neuronal dynamics arising from gradient ascent on the objective function:

τxẋ ∝ ∇xO(x) . (5)

Combining equations 4 and 5 we get

τx
dxi

dt = ∂
∂xi

log P [x] + ∂
∂xi

log P [x̃|x] + ∂
∂xi

log P [W|x] , where (6)
∂

∂xi
log P [W|x] =

∑
j 6=i

∂
∂xi

log P [Wi,j |xi, xj ] + ∂
∂xi

log P [Wj,i|xj , xi] . (7)

The first two terms in equation 6 only depend on the activity of the neuron itself and its
input. For example, for a Gaussian priorPx [xi] = G (Wi,j ;µx, σx) and unbiased Gaussian
noise on the inputP [x̃i|xi] = G (x̃i;xi, σx̃), these would be:

d
dxi

log P [xi] + d
dxi

log P [x̃i|xi] = µx−xi

σ2
x

+ x̃i−xi

σ2
x̃

= µx

σ2
x
−

(
1

σ2
x

+ 1
σ2

x̃

)
xi + x̃i

σ2
x̃

(8)

The first term on the right-hand side of the last equality expresses a constant bias; the
second involves self-decay; and the third describes the effect of the input.

The terms in equation 7 indicate how a neuron should take into account the activity of other
neurons based on the synaptic weights. From equation 3, the terms are

∂
∂xi

log P [Wi,j |xi, xj ]=
1

σ2
W

[
(Wi,j − µW ) ∂

∂xi
Ω(xi, xj)− Ω(xi, xj)

∂
∂xi

Ω(xi, xj)
]

(9)

∂
∂xi

log P [Wj,i|xj , xi]=
1

σ2
W

[
(Wj,i − µW ) ∂

∂xi
Ω(xj , xi)− Ω(xj , xi)

∂
∂xi

Ω(xj , xi)
]

(10)

Two aspects of the above formulæ are biologically troubling. The last terms in each ex-
press the effects of other cells, but without there being corresponding synaptic weights. We
approximate these terms using their mean values over the prior distribution. In this case
α+

i = 〈Ω (xi, xj) ∂
∂xi

Ω (xi, xj)〉Px[xj ] and α−
i = 〈Ω (xj , xi) ∂

∂xi
Ω (xj , xi)〉Px[xj ] con-

tribute terms that only depend on the activity of the updated cell, and so can be lumped
with the prior- and input-dependent terms of Eq.8.

Further, equation 10 includes synaptic weights,Wj,i, that arepostsynaptic with respect
to the updated neuron. This would require the neuron to change its activity depending
on the weights of its postsynaptic synapses. One simple work-around is to approximate



a postsynaptic weight by the mean of its conditional distribution given the corresponding
presynaptic weight:Wj,i ' 〈P [Wj,i|Wi,j ]〉. In the simplest case of perfectly symmetric
or anti-symmetric learning, withΩ (xi, xj) = ±Ω (xj , xi), we haveWj,i = ±Wj,i and
α+

i = α−
i = αi. In the anti-symmetric caseµw = 0.

Making these assumptions, the neuronal interaction function simplifies to

H (xi, xj) = (Wi,j − µW ) ∂
∂xi

Ω (xi, xj) (11)

and 2
σ2

W

[∑
j 6=i H (xi, xj)− (N − 1) αi

]
is the weight-dependent term of equation 7.

Equation 11 shows that there is a simple relationship between the synaptic plasticity rule,
Ω (xi, xj), and the neuronal interaction function,H (xi, xj), that is approximately optimal
for reading out the information that is encoded in the synaptic weight matrix by that synap-
tic plasticity rule. It also shows that the magnitude of this interaction should be proportional
to the synaptic weight connecting the two cells,Wi,j .

We specialize this analysis to two important cases with (a) graded, rate-based, or (b) spik-
ing, oscillatory phase-based, activities. We derive appropriate dynamics from learning
rules, and show that, despite the approximations, the networks have good recall perfor-
mance.

3 Rate-based memories

The most natural assumption about pattern encoding is that the activity of each unit is
interpreted directly as its firing rate. Note, however, that most approaches to autoassociative
memory assumebinary patterns [9], sitting ill with the lack of saturation in cortical or
hippocampal neurons in the appropriate regime. Experiments [10] suggest that regulating
activity levels in such networks is very tricky, requiring exquisitely carefully tuned neuronal
dynamics. There has been work on graded activities in the special case of line or surface
attractor networks [11, 12], but these also pose dynamical complexitiese. By contrast,
graded activities are straightforward in our framework.

Consider Hebbian covariance learning:Ωcov (xi, xj) := Acov (xi − µx) (xj − µx), where
Acov > 0 is a normalizing constant andµx is the mean of the prior distribution of the
patterns to be stored. The learning rule is symmetric, and so, based on Eq.11, the optimal
neuronal interaction function isHcov (xi, xj) = Acov (Wi,j − µW ) (xj − µx). This leads
to a term in the dynamics which is the conventional weighted sum of pre-synaptic firing
rates. The other key term in the dynamics isαi = −A2

covσ
2
x (xi − µx), whereσ2

x is the
variance of the prior distribution, expressing self-decay to a baseline activity level deter-
mined byµx. The prior- and input-dependent terms also contribute to self-decay as shown
in Eq.8. Integration of the weighted sum of inputs plus decay to baseline constitute the
widely used leaky integrator reduction of a single neuron [10].

Thus, canonical models of synaptic plasticity (the Hebbian covariance rule) and single neu-
ron firing rate dynamics are exactly matched for autoassociative recall. Optimal values for
all parametersof single neuron dynamics (except the membrane time constant determin-
ing the speed of gradient ascent) are directly implied. This is important, since it indicates
how to solve the problem for graded autoassociative memories (as opposed to saturing ones
[14, 15]), that neuronal dynamics have to be finely tuned. As examples, the leak conduc-
tance is given by the sum of the coefficients of all terms linear inxi, the optimal bias current
is the sum of all terms independent ofxi, and the level of inhibition can be determined from
the negative terms in the interaction function,−µW and−µx.

Since our derivation embodies a number of approximations, we performed numerical sim-
ulations. To gauge the performance of the Bayes-optimal network we compared it to
networks of increasing complexity (Fig. 1A,B). A trivial lower bound of performance is



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Stored activity

R
ec

al
le

d 
ac

tiv
ity

prior
input
ideal observer
Bayesian: prior + input
Bayesian: prior + input + synapses

1 10 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of stored patterns

A
ve

ra
g

e 
er

ro
r

prior
input
ideal observer
Bayesian
Treves

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Error

F
re

qu
en

cy

prior
input
Bayesian: prior + input
Bayesian: prior + input + synapses

1 10 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of stored patterns

A
ve

ra
g

e 
n

o
rm

al
iz

ed
 e

rr
o

r

prior
input
ideal observer
Bayesian
Treves

A B

C D

Figure 1: Performance of the rate-coded Bayesian inference network (�), compared to a Bayesian
network that only takes into account evidence from the prior and the input but not from the synaptic
weight matrix (×), a network that randomly generates patterns from the prior distribution (•), a
network that transmits its input to its output (+), and the ‘ideal observer’ having access to the list
of stored patterns (♦). A. Firing rates of single units at the end of the recall process (y-axis) against
firing rates in the original pattern (x-axis). B. Frequency histograms of errors (difference between
recalled and stored firing rates). The ideal observer is not plotted because its error distribution was a
Dirac-delta at0. C, D. Benchmarking the Bayesian network against the network of Treves [13] (∗)
on patterns of non-negative firing rates. Average error is the square root of the mean squared error
(C), average normalized error measures only the angle difference between true and recalled activities
(D). (These measures are not exactly the same as that used to derive the dynamics (equation 1), but
are reasonably appropriate.) The prior distribution was Gaussian withµx = 0 mean andσ2

x = 1
variance (A,B), or a Gaussian withµx = 0.5 mean andσ2

x = 0.25 variance truncated below0 (C)
(yielding approximatelya = 0.5 density), or ternary witha = 0.5 mean and density (D). The input
was corrupted by unbiased Gaussian noise ofσ2

x̃ = 1 variance (A,B), orσ2
x̃ = 1.5 variance (C,D) and

cut at0 (C,D). The learning rule was the covariance rule withAcov = 1 (A,B), or withAcov = 1/Na2

(C,D). The number of cells in the network wasN = 50 (A,B)andN = 100 (C,D), and the number of
memories stored wasM = 2 (A,B) or varied betweenM = 2 . . . 100 (C,D, note logarithmic scale).
For each data point,10 different networks were simulated with a different set of stored patterns, and
for each network,10 attempts at recall were made, with a noisy version of a randomly chosen pattern
as the input and with activities initialized at this input.

given by a network that generates random patterns from the same prior distribution from
which the patterns to be stored were drawn (P [x]). Another simple alternative is a net-
work that simply transmits its input (x̃) to its output. (Note that the ‘input only’ network
is not necessarily superior to the ‘prior only’ network: their relative effectiveness depends
on the relative variances of the prior and noise distributions, a narrow prior with a wide
noise distribution would make the latter perform better, as in Fig. 1D). The Bayesian infer-
ence network performs considerably better than any of these simple networks. Crucially,



this improvement depends on the information encoded in synaptic weights: the network
practically falls back to the level of the ‘input only’ network (or the ‘prior only’ network,
whichever is the better, data not shown) if this information is ignored at the construction of
the recall dynamics (by taking the third term in Eq. 6 to be0).

An upper bound on the performance of any network using some biological form of synaptic
plasticity comes from an ‘ideal observer’ which knows the complete list of stored patterns
(rather than its distant reflection in the synaptic weight matrix) and computes and compares
the probability that each was corrupted to form the inputx̃ to find the best match (rather
than using neural dynamics). Such an ideal observer only makes errors when both the
number of patterns stored and the noise in the input is sufficiently large, so that corrupting
a stored pattern is likely to make it more similar to another stored pattern. In the case
shown in Fig. 1A,B, this is not the case, since only two patterns were stored, and the ideal
observer performs perfectly as expected. Nevertheless, there may be situations in which
perfect performance is out of reach even for an ideal observer (Fig. 1C,D), which makes it
a meaningful touchstone. In summary, the performance of any network can be assessed by
measuring where it lies between the better one of the ‘prior only’ and ‘input only’ networks
and the ideal observer.

As a further challenge, we also benchmarked our model against the model of Treves [13]
(Fig. 1C,D), which we chose because it is a rare example of a network that was de-
signed to have near optimal recall performance in the face of non-binary patterns. In
this work, Treves consideredternary patterns, drawn from the distributionP [xi] :=(
1− 4

3a
)
δ (xi) + aδ

(
xi − 1

2

)
+ a

3 δ
(
xi − 3

2

)
, whereδ (x) is the Dirac-delta function.

Here,a = µx quantifies thedensityof the patterns (i.e. how non-sparse they are). The
patterns are stored using the covariance rule as stated above (withAcov := 1

Na2 ). Neuronal
update in the model is discrete, asynchronous, and involves two steps. First the ‘local field’
is calculated ashi :=

∑
j 6=i Wi,jxj − k (

∑
i xi −N)3 + Input, then the output of the

neuron is calculated as a threshold linear function of the local field:xi := g (hi − hThr)
if hi > hThr andxi := 0 otherwise, whereg := 0.53 a/ (1− a) is the gain parameter,
andhThr := 0 is the threshold, and the value ofk is set by iterative search to optimize
performance.

The comparison between Treves’ network as we implemented it and our network is imper-
fect, since the former is optimized for recalling ternary patterns while, in the absence of
neural evidence for ternary patterns, we used the simpler and more reasonable neural dy-
namics for our network that emerge from an assumption that the distribution over the stored
patterns is Gaussian. Further, we corrupted the inputs by unbiased additive Gaussian noise
(with varianceσ2

x̃ = 1.5), but truncated the activities at0, though did not adjust the dy-
namics of our network in the light of the truncation. Of course, these can only render our
networklesseffective. Still, the Bayesian network clearly outperformed the Treves network
when the patterns were drawn from a truncated Gaussian (Fig. 1C). The performance of the
Bayesian network stayed close to that of an ideal observer assuming non-truncated Gaus-
sian input, showing that most of the errors were caused by this assumption and not from
suboptimality of neural interactions decoding the information in synaptic weights. Despite
extensive efforts to find the optimal parameters for the Treves network, its performance did
not even reach that of the ‘input only’ network.

Finally, again for ternary patterns, we also considered only penalizing errors about thedi-
rectionof the vectors of recalled activities ignoring errors about theirmagnitudes(Fig. 1D).
The Treves network did better in this case, but still not as well as the Bayesian network.
Importantly, in both cases, in the regime where synaptic weights were saturated in the
M → N limit and thus it was no longer possible to extract any useful information from the
synaptic weights, the Bayesian network still only fell back to the level of the ‘prior only’
network, but the Treves network did not seem to have any such upper bound on its errors.



4 Phase-based memories

Brain areas known to be involved in memory processing demonstrate prominent oscilla-
tions (LFPOs) under a variety of conditions, including both wake and sleep states [16].
Under these conditions, the phases of the spikes of a neuron relative to the LFPO have been
shown to be carefully controlled [17], and even to convey meaningful stimulus information,
e.g. about the position of an animal in its environment [3] or retrieved odor identity [18].
The discovery of spike timing dependent plasticity (STDP) in which therelative timing
of pre- and postsynaptic firings determines the sign and extent of synaptic weight change,
offered new insights into how the information represented by spike times may be stored
in neural networks [19]. However, bar some interesting suggestions about neuronal reso-
nance [20], it is less clear how one might correctly recall information thereby stored in the
synaptic weights.

The theory laid out in Section 2 allows us to treat this problem systematically. First,
neuronal activities,xi, will be interpreted as firing times relative to a reference phase
of the ongoing LFPO, such as the peak of theta oscillation in the hippocampus, and
will thus be circular variables drawn from a circular Gaussian. Next, our learning rule
is an exponentially decaying Gabor-function of the phase difference between pre- and
postsynaptic firing:ΩSTDP(xi, xj) := ASTDP exp[κSTDPcos(∆φi,j)] sin(∆φi,j − φSTDP)
with ∆φi,j = 2π (xi − xj) /TSTDP. STDP characteristics in different brain regions are
well captured by this general formula, but the parameters determining their exact shapes
greatly differ among regions. We constrain our analysis to the antisymmetric case, so
that φSTDP = 0, and set other parameters to match experimental data on hippocampal
STDP [5]. The neuronal interaction function that satisfies Eq.11 isHSTDP(xi, xj) =
2πASTDP/TSTDPWi,j exp[κSTDPcos(∆φi,j)]

[
cos(∆φi,j)− κSTDPsin2(∆φi,j)

]
. This in-

teraction function decreases firing phase, and thus accelerates the postsynaptic cell if the
presynaptic spike precedes postsynaptic firing, and delays the postsynaptic cell if the presy-
naptic spike arrives just after the postsynaptic cell fired. This characteristic is the essence
of the biphasic phase reset curve of type II cells [21], and has been observed in various
types of neurons, including neocortical cells [22]. Thus again, our derivation directly cou-
ples STDP, a canonical model of synaptic plasticity, and phase reset curves in a canonical
model of neural dynamics.

Numerical simulations tested again the various approximations. Performance of the net-
work is shown in Fig.2 as is comparable to that of the rate coded network (Fig.2). Further
simulations will be necessary to map out the performance of our network over a wider
range of parameters, such as the signal-to-noise ratio.

5 Discussion

We have described a Bayesian approach to recall in autoassociative memories. This permits
the derivation of neuronal dynamics appropriate to a synaptic plasticity rule, and we used
this to show a coupling between canonical Hebbian and STDP plasticity rules and canonical
rate-based and phase-based neuronal dynamics respectively. This provides an unexpectedly
close link between optimal computations and actual implementations. Our method also
leads to networks that are highly competent at recall.

There are a number of important direction for future work. First, even in phase-based
networks, not all neurons fire in each period of the oscillation. This suggests that neurons
may employ a dual code – the more rate-based probability of being active in a cycle, and
the phase-based timing of the spike relative to the cycle [24]. The advantages of such a
scheme have yet to be fully characterized.

Second, in the present framework the choice of the learning rule is arbitrary, as long as the
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Figure 2: Performance of the phase-coded network. Error distribution for the ideal observer was
a Dirac-delta at0 (B) and was thus omitted fromA. Average error of the ‘prior only’ network was
too large (A) to be plotted inB. The prior was a von Mises distribution withµx = 0 mean,κx =
0.5 concentration on aTΘ = 125 ms long cycle matching data on theta frequency modulation
of pyramidal cell population activity in the hippocampus [23]. Input was corrupted by unbiased
circular Gaussian (von Mises) noise withκx = 10 concentration. Learning rule was circular STDP
rule with ASTDP = 0.03, κSTDP = 4 andTSTDP = TΘ parameters matching experimental data on
hippocampal STDP [5] and theta periodicity. The network consisted ofN = 100 cells, and the
number of memories stored wasM = 10 (A) or varied betweenM = 2 . . . 100 (B, note logarithmic
scale). For further explanation of symbols and axes, see Figure 1.

recall dynamics is optimally matched to it. Our formalism also suggests that there may be
a way to optimally choose the learning rule itself in the first place, by matching it to the
prior distribution of patterns. This approach would thus be fundamentally different from
those seeking ‘globally’ optimal learning rules [25], and may be more similar to those used
to find optimal tuning curves appropriately matching stimulus statistics [26].
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