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Abstract

Selective attention is a most intensively studied psyayiold phenomenon, rife
with theoretical suggestions and schisms. A critical idehat of limited capacity,

the allocation of which has produced continual conflict atsmch phenomena
asearly and late selection. An influential resolution of this debate is based

the notion of perceptual load (Lavie, 2005), which sugg#sas low-load, easy

tasks, because they underuse the total capacity of attemtiandatorily lead to

the processing of stimuli that are irrelevant to the curegtgntional set; whereas
high-load, difficult tasks grab all resources for themsgleaving distractors high
and dry. We argue that this theory presents a challenge tedsay theories of
attention, and suggest an alternative, statistical, adanfikey supporting data.

1 Introduction

It was some fifty years after James (1950)’s famously poetszdption of our capacities for atten-
tion that more analytically-directed experiments begasghl originally on dichotic listening Cherry
(1953). There are three obvious dichotic tasks: (i) beirlg thinterpret fully twoseparatestreams

of information coming into the two ears; (ii) the less antits version of this of being able to in-
terpret fully one of the streams, specified top-down, without interferenoenfthe other one; and
(iii) being able tocombineinformation from the two ears appropriately, perhaps intingle per-
cept. Various forms, interpretations and conflicts aboeséhthree tasks have permeated the field of
attention ever since (Driver, 2001; Paschler, 1998), driwedifferent notions of the computational
tasks and constraints at hand.

The experiments in dichotic listening coincided with thécly burgeoning realization that math-
ematical concepts from Shannonian information theory ddeé very helpful for understanding
biological information processing. One central concephfarmation theory is that of a limited ca-
pacity channel, and Broadbent (1958) adopted this as a fdrasés for understanding the necessity
for, and hence the nature of, selection. Broadbent (1988)sry critically involvesarly selection,

in that following a first, automatic, parallel stage of loaw€l perceptual processing (itself the sub-
ject of important studies of bottom-up influences on setegtiZhaoping, 2006), a relevant stream
should be selected for subsequent higher-level, sem@nticessing, leaving any irrelevant streams
in the cold. However, evidence that information in unatezhdtreams is actually processed seman-
tically (eg being able to bias the perception of ambiguous words in ttemaéd stream; Mackay,
1973), led to alternative theories, eitHate selection (influentially, Deutsch and Deutsch, 1963;
Duncan, 1980), in which both streams are fully processedwiih the irrelevant stream being pre-
vented by a selective process at the last step from enterémgary or awareness, or weaker forms of
this, such as the notion that elements from the irrelevaghst might battenuatedonly sometimes
progressing through to higher levels of processing (Traism 960, 1969). Many hypotheses in the
field depend on this collection of metaphors, nicely exefiguliby the zoom-lens theory of Erik-
sen and St. James (1986) (based on influential experimemtistactor processing such as Eriksen
and Eriksen, 1974), which suggests that the smaller thatattel focus, the more intense it can
somehow be, given that the limited capacity is ‘spread’ @emaller area.



However, of course, late selection makes little sense frdimigéed capacity viewpoint; and short
of a theory of what controls the degree of attenuation ofeéxant stimuli, Treisman (1960)’s idea
is hard to falsify. Here, we consider the seminal sharp djperalization of Lavie and Tsal (1994);
Lavie (2005), who suggested that attenuation is a functidoam, such that in easy tasks, irrelevant
data isalwaysprocessed, even at the cost of worse performance on thantieformation, whereas

in difficult tasks, no capacity remains, and so distractoesaore effectively removed. To reiterate,
the attentional load hypothesis, although an attractimmédization of attenuation, suggests that the
brain is unable oreasytasks to exclude information that is known to be irrelevatittherefore
involves an arguably infelicitous combination of sopluated attentional shaping (as to what can be
attended in high-load situations) with inept control.

Although the Bayesian revolution in cognitive science had & huge impact over modern views of
sensory processing (see, for instance, Rao et al., 2002e&r@nces therein), having the ability to
resolve many issues in the field as a whole, there are fewtrattempts to build probabilistic models
for selective attention (see Shaw, 1982; Palmer, 1994; baya Zemel, 1999; Navalpakkam and
Itti, 2006; Mozer and Baldwin, 2008; Yu and Dayan, 2005; Ywakt 2008). This is despite the
many other computational models of attention (see Itti andH{2001; Zhaoping, 2006). Indeed,
Whiteley and Sahani (2008) have suggested that this lacisesdrom a focus on optimal Bayesian
inference in the face of small numbers of objects in the fadfiuatention, rather than the necessity
of using approximate methods in the light of realistic, wetd, complex scenes.

Some of the existing probabilistic models are aimed at utsiaf search (Navalpakkam and ltti,
2006; Mozer and Baldwin, 2008); however others, includirggnter (1994); Dayan and Zemel
(1999), and one of the two models in Yu et al. (2008), are mondar to the account here. They
acknowledge that there is a critical limited resource canfiiom the existence of neurons with large
receptive fields into which experimenters slot multiplessay objects, some relevant, some irrele-
vant. Probabilistically-correct inference should thempliement selection, when data thakisown

to be irrelevant is excluded to the advantage of the reléuémtmation €gDayan and Zemel, 1999;
Palmer, 1994). However, in other circumstances, it will pprapriate to take advantage of the
information about the target that is available in the nearatith large fields, even if this means
allowing some influence on the final decisions from distrecto

Here, we build a Bayesian-inspired account of key data usadjue for the attentional load hypoth-
esis (based on an extension of Yu et al. (2008)’'s model ofsérikand Eriksen (1974)). Section 2
describes the key data; section 3 the model and results;eatidis 4 discusses the implications.

2 Attentional Load

Figure 1 shows the central experiment and results from Lawiede Fockert (2003) that we set out
to capture. Subjects had to report the identity of a tardetrighat was either an ‘X’ or an ‘N’ (here,
the former) presented in one of eight locations arrangeddincée around the fixation point. The
reaction times and accuracies of their selections were une@s There was also a distractor letter
in the further periphery (the larger ‘N’) which was eithesmpatible(ie the same as the target),
incompatible(as here, the opposite of the target), or, in so-cafledtral trials, a different letter
altogether.

Figure 1A-C show the three key conditions. Figure 1A is a Hadd condition, in that there are
irrelevant non-targets in the remainifigpositions around the circle. Figure 1B is a low-load con-
dition, since there is no non-target. Figure 1C is a critmattrol, called the degraded low-load
condition, and was actually the main topic of Lavie and dekeac(2003). In this, thdifficulty of
the sensory processing was increased (by making the targdties and dimmer) without changing
the attentionalié selectional) load.

Figure 1D shows the mean reaction times (RTs) for these tiondifor the three sorts of distractor
(RTs suffice here, since there was no speed accuracy traatewfirk in the different conditions;
data not shown). There are three key results:

1. The central finding about attentional load is that theractor exerted a significant effect
over target processirmnly in the low load case — that is, an incompatible distractoretb
down the RTs compared with a neutral distractor for the laadloase but not the high load
case.
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Figure 1: The attentional load task, from Lavie and de FdqR803). Subjects had to judge whether
a target letter in the central circle around fixation was ‘N‘X in the face of a compatible, incom-
patible (shown) or neutral distractor. A) high-load coratitwith non-target letters occupying the
other positions in the circle. B) low-load condition with non-target letters. C) degraded low-load
condition with no non-targets but a smaller (not shown) aadker target. D) reaction times (RTS)
for the conditions, averaging only over correct choices.

2. Since, in the degraded low-load case the RTs were slowdhdinfluence of the distractor
was if anythinggreater, this could not just be a function of the processing time @iadlilty.
Indeed, Lavie and de Fockert (2003) noted the distinctioderiay Norman and Bobrow
(1975) between data- and resource-limited processingp extess resources (putatively
ample, given the low load) unable to make up for the poor guaknsory data, and so
predicted this greater distractor impact.

3. Itis apparent that compatible distractors were of almashelp in any case, whereas in-
compatible distractors were harmful.

3 TheBayesian model

The data in figure 1 pose the question for normative modebrtg ahy the distractor would corrupt
processing of the target in the easy, low-load, case, buhedifficult, high-load case. No normative
account could simply assume that extra data ‘leak’ thronghe low-load condition (which is the
attentional load hypothesis) if the subjects have the tgltiii fashion attention far more finely in
other cases, such as that of high load.

We argue that these results stem from the simple observéitairthe visual system has available
receptive fields with a range of sizes, including smalleatigtly precise ones, which can be nicely
confined to the target; and larger, spatially extended omk&h may include both target and dis-
tractor. In this case, normative processing will combirferimation from all the receptive fields,
with Bayesian inference and marginalization exactly atiating any substantial impact from those
that are useless or confusing. In the high load case, thépabron-target stimuli have the effect of
adding so much extra noise to the units with large receptaldficompared with their signal about
the target, that only the smallest receptive fields will blessantially useful. This implies that the
distractor will exert little influence. In the low load casarge receptive fields that also include the
distractor will be usefully informative about the targatdaso the distractor will exert an influence.
Note that this happersutomaticallythrough inference — indeed to make this point starkly, tlere
no explicit attentional control signal in our model whatgere only inference and marginalization.

!Note that Lavie and de Fockert (2003) chose the conditions in the exgreriah random, so many forms
of top-down selection would not be possible.
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Table 1: Our version of the task. This table shdicut of thel8 conditions. Each display consists
of four stimulus positions labelled for the non-targetst for thetarget (shown in the table, though
not the display, as being boxed); addor the distractor, which is relatively far from thtarget.
Thetarget takes the valuekc, wherec acts like a contrast; subjects have to report its sign. The
distractor can bé (neutral) or+1; and is compatible if it has the same sign as theyet (and
conversely, incompatible). Load is increased by having-zeno non-targets which are spatially
balanced with mean0, so providing no net information about the sign of theget, but only noise.
The 18 conditions come from using= +1 andc = +0.3, with the degraded conditiofid{ = 0.3)

only being run for the case of low load, as in figure 1D.

Lavie and de Fockert (2003)’s experiment is rather comtditaTable 1 shows our simplification
of it, to a form which is slightly closer to a version of an EBs#a task (Eriksen and Eriksen, 1974)
with two optional flankers in known positions on either sifelee target (thenon-targets) and a
farther-flungdistractor (the input layer of figure 2A cartoons the spatighagement). Theéarget
takes the value-c; subjects have to report its sign. Ttistractor can be neutrab) or have the same
sign as (compatible) or a different sign from (incompafititee target. In the low load condition,
the non-target units are; in the high load, one is-1; the other is—1, making them balanced, but
confusing, because they lead to excess noise.

The generative model

Table 1 indicates the values determining the various cmditfrom the perspective of the experi-
menter. We assume that the subject performs inference #imgign of thearget based onoisy
observations created by a generative model. In the gemeratidel, the values in table 1 amount to
hiddenstructure, which, as in Yu et al. (2008), is mapped and mikealigh various receptive fields
to provide the noisy input to a Bayesian recognition modéle Job of the recognition model is to
calculate the posterior probability of the various hiddettisgs given data, and, by marginalizing
(summing) out all the hidden settings apart from the stateeffarget, report on its sign.

Figure 2A shows the generative model, indicating the réeefitelds (RFs) associated with this
mixing. We consideg topographically-mapped unit$ with small RFs covering only a single input
(the generative weights are just the identity map); anaith large RFs (in which the inputs are
mixed together more holistically). Since thistractor is relatively far from thearget andhon-target
stimuli, the weights associated with its hidden values@anet for the three large RFs mapped to the
target andon-target hidden units; tharget andhon-target hidden units have smaller weights to the
generated input associated with tistractor. For simplicity, we treat thdistractor as equidistant
from thetarget anchon-target input, partially modeling the fact that it can belifferent locations.
We assume a crude form of signal-dependent noise; it is thisnhakes th@on-target stimuli so
devastating.

Figure 2B shows the means and standard deviations ariging tihe generative model for tte
units (one per column) for the six conditions in table 1 (rdwsn top to bottom — low load: neutral,
incompatible, compatible; then high load: neutral, incatitje, compatible). For this figure,=
+1. The means associated with the small and larget& et units show the lack of bias from
the non-targets in the high-load condition; and for the large RBeg; the bias associated with the
distractor.

The standard deviations play the most critical role in thelehodefining what it means for theon-
target stimuli, when present, to make inference difficuley therefore constitute a key modeling
assumption. In the high load case, the units with the large &€& assumed to have very high stan-
dard deviations, coming from a crude form of signal-depahdeise. This captures the relatively
uselessness of these large RFs in the high load conditiomvetdy, and importantly, their mean
values arainaffectedby thenon-target stimuli, since theon-targets are balanced between positive
and negative values, preferring neither sign of target.
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Figure 2: The generative model. A) In the model, the four trymits, representingon-targets,
thetarget and thelistractor, are assumed to gener@ieput units which fall into two groups, with
small and large receptive fields (RFs). The Hinton diagraftiseoweights indicate how the RFs are
represented (all weights are positive; the maximum valu®3$ B) These plots show the means
and standard deviations in the generative model assoaidthdhe 8 input units for the low and
high load cases shown in table 1 (in raster scan order). Tlamsnfer the large RFs (based on the
weights in A) are unaffected by the load; the standard diewviatfor the units with large receptive
fields are much higher in the high load condition. Standaxdadiens are affected by a coarse form
of signal-dependent noise.

In all cases, a new sample from the generative model is pedvéd each time step; the noise cor-
rupting each of the observed units is assumed to be Gaussidimdependent across units and over
time.

Therecognition model

We build a recognition model based on this generative mdded.recognition model is quite similar
to a sequential probability ratio test (SPRT; Wald, 194Xyept that, as in Yu and Dayan (2005); Yu
et al. (2008), it is necessary to perform inference ovehallgossible values of the hidden variables
(all the possible values of the hidden structr¢hen marginalizing out all the variables apart the
thetarget itself. We accumulate evidence until a threshold.@fs reached on the probability that
the target is either positive or negative (reporting whiglieone is more likely). However, to take
account of the possibility of erroneous, early, resportbese is also a probability @01 per step of
stopping the accumulation and reporting whichever sigraugfdt has a higher probability (guessing
randomly if this probability i$).5). This factor played a critical role in Yu et al. (2008) in geating
early responses.

Results

Figure 3 shows the results of inference based on the modeledat of the conditions, figure 3A
shows the reaction times in the form of the mean number ofdtep choice. Here, as in the data
in Lavie and de Fockert (2003), the RTs are averaged only cases in which the model got the
answer correct. However, figure 3B shows the percentageatcsinswers in each condition; the
errors are relatively rare, and so the RTs plots look idahtithe datapoints are averages over more
than35, 000 samples (depending on the actual error rates) and so thibarsare too small to see.

Comparing figure 3A with the data in figure 1D, it is apparergttthe main trends in the data
are closely captured. This general pattern of results isgioto many different parameter values;
though it is possible (by reducing to make inference take very much longer still in the degdade
low load condition whilst maintaining and boosting the effef high load. The error probabilities

in figure 3B indicate that the pattern of RTs is not accountedy a tradeoff between speed and
accuracy.

The three characteristics of these data described aboexpliened in the model as:
1. In the low load case, the lack nbn-targets means that the inputs based on the large RFs

are usefully informative about thearget, and therefore automatically play a key role in
posterior inference. Since these inputs are also influebgékedistractor, there is an RT

2In fact, also including the possibility of a degraded high-load case
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Figure 3: Results. A) Mean RTs (steps of inference) for archoices in each of theecases (since
thetarget is equally often positive and negative, we averaged these cases. Here, the threshold
on the (marginalized) probability w@s9, and there was a probability 6f01 per step that inference
would terminate early with whichever response was moreaisteh B) Error probabilities for the
same conditions showing the lack of a speed-accuracy wHidédl points are averages over more
than 35000 points, and so errorbars would be too small to see.

cost in the face of incompatibility. However, in the highdoease, thenon-target stimuli
are closer to the target and exert substantial influencetbgeroise corrupting the large RF
units associated with it (and no net signal). This makestlege RF units relatively poor
sources of information about the target. Thus the smalleufits are relied upon instead,
which are not affected by thdistractor.

2. Rather as suggested in Norman and Bobrow (1975); Laviedarfebckert (2003): in the
data-poor case of the degraded input, it is particularlyartgnt to take advantage of in-
formation from the large RFs, to make inferences aboutdiget; therefore thdistractor
exerts a large influence ovearget processing.

3. The compatibldistractor is helpful to a lesser extent than the incompatile is harmful,
for a couple of reasons. First, there is a ceiling effect far tormer coming from the
non-linearity of an effective sigmoid function that arigasturning log likelihood ratios
into probabilities. Second, compared with a neuthiatractor, the compatibldistractor
increases the (signal-dependent) noise associated weithrtits with large RFs, reducing
their informativeness about the target.

4 Discussion

In this paper, we have shown how to account for key resultd tesargue for an attentional load hy-
pothesis. Our model involves simple Bayesian inferencedbas a generative process recognizing
the existence of small and large receptive fields. The atieaitload hypothesis suggests that when
little attention is required to solve the set task, inputoagted withdistractor stimulieakthrough
with little attenuation, and so cause disruption; when #ek is difficult, attention is totally occu-
pied with the set task, leaving nothing left over. By cortiras have suggested that an inferential
model taking advantage of all the information in the input show exactly the same characteristic,
with the key issue being whether the units with large RFsctviniclude thelistractor, are rendered
useless by thaon-target stimuli that make for the high load in the first pla€he advantage of this
version of an attenuation theory (Treisman, 1960, 196%)asit obviates the requirement to appeal
to an inexplicable inefficiency, over and above the existenfcunits with large RFs, and indeed
relates this set of selective attentional tasks to the wadge of other accounts of probabilistically-
correct sensory inference.

One key characteristic of this model (shared with, amongrsthyu et al., 2008) is that the form of
selection it considers is avutputof inference rather than anputinto it. That is, the model does
not employ an explicit attentional mechanism in inferentéclv has the capacity to downplay some
input units over others. The model does know the locatioh®target, and focuses all its resources



on it; but there is no further way of boosting or suppressimmge RFs compared with others. Most
of the substantial results on the neuroscience of seleatfeation €gMoran and Desimone, 1985;

Desimone and Duncan, 1995; Reynolds and Chelazzi, 200dy tte focusing process, rather than
the post-focus information integration that we have loo&gdhe forms of attention at play in the

load-related tasks we have discussed are somewhat orthlogorvould be interesting to design

neurophysiological experiments to probe the form of onfiekection at work in the attentional load
tasks.

The difference between the present model and the spat&ibwenf Yu et al. (2008) is that the model
here includes RFs of different sizes, whereas in that meldedistractors were always close to the
target. Further, the two neutral conditions heredistractor, and low load) were not modeled in the
earlier study. Yu et al. (2008) suggested that the antenmutate might monitor conflict between
the cases of compatible and incompatibistractors as part of an approximate inference strategy.
That seems most unlikely here, since the conflict would havgetbetween the multidimensional
collection of hidden nuisance variables (notably the crossluct between the states of then-
targets and the state of tdéstractor), which seems implausibly complicated.

The assumptions of large RFs and their high standard dewngin the high load condition are cer-
tainly rather simplistic. However, (a) RFs in inferotemalozortex are indeed very large, allowing
for the possibility ofdistractor interference in the low load condition; and (b@ewnder the atten-
tional load hypothesis, the only reason that an unattedutiséractor stimulus would interfere with
target processing is that there is something in common abeut, since it is known that there is
more to the effects ddlistractors than just competition at the stage of the acksdanses (Driver,
2001). Further, the assumption that the inputs with large Rve high standard deviations in the
high load condition is a most straightforward way to captine essential effect of theon-target
stimuli in disrupting target processing in a way that foragaore stringent attentional effect associ-
ated with the use of the small RFs.

The attentional load theory has been applied to many tasktu@ling the regular Eriksen task,
Eriksen and Eriksen, 1974) as well as the one here. Howewespild be good to extend the current
model to match the experimental circumstances in Lavie anéfatkert (2003) more faithfully.
Perhaps the most significant lacuna is that, as in the Eriiestiwe assumed that the subjects knew
the location of the target in the stimulus array, whereakéreal experiment, this had to be inferred
from the letters in the circle of targets close to fixationyfig 1A). Modeling this would effectively
require a more complex collection of letter-based RFs,ttaganith a confusion matrix associated
with the perceptual similarities of letters. This inducesearch problem, more like the one studied
by Mozer and Baldwin (2008), except, again, multiple sizERBs would play a critical role. It
would also be worth extending the current model to the muatemiange of other tasks used to
explore the effects of attentional load (such as ForstelLane, 2008).

In conclusion, we have suggested a particular rationalariattenuation theory of attention, which

puts together the three tasks suggested at the outset fartdidistening. Inputs should automati-

cally be attenuated to the extent that they do not bear omgmse, are confusing with respect to)

a task. The key resource limitation is the restricted numnéed therefore, the necessarily broad
tuning of RFs; the normative response to his makes attemuatid combination kissing cousins.
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