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Abstract

We present a local learning rule in which Hebbian learning is con-
ditional on an incorrect prediction of a reinforcement signal. We
propose a biological interpretation of such a framework and dis-
play its utility through examples in which the reinforcement sig-
nal is cast as the delivery of a neuromodulator to its target. Three
examples are presented which illustrate how this framework can
be applied to the development of the oculomotor system.

1 INTRODUCTION

Activity-dependent accounts of the self-organization of the vertebrate brain have
relied ubiquitously on correlational (mainly Hebbian) rules to drive synaptic learn-
ing. In the brain, a major problem for any such unsupervised rule is that many dif-
ferent kinds of correlations exist at approximately the same time scales and each
is effectively noise to the next. For example, relationships within and between
the retinae among variables such as color, motion, and topography may mask one
another and disrupt their appropriate segregation at the level of the thalamus or
cortex.

It is known, however, that many of these variables can be segregrated both within
and between cortical areas suggesting that certain sets of correlated inputs are
somehow separated from the temporal noise of other inputs. Some form of super-
vised learning appears to be required. Unfortunately, detailed supervision and
selection in a brain region is not a feasible mechanism for the vertebrate brain.
The question thus arises: What kind of biological mechanism or signal could se-
lectively bias synaptic learning toward a particular subset of correlations ? One
answer lies in the possible role played by diffuse neuromodulatory systems.

It is known that multiple diffuse modulatory systems are involved in the self-
organization of cortical structures (eg Bear and Singer, 1986) and some of them
appear to deliver reward and/or salience signals to the cortex and other structures
to influence learning in the adult. Recent data (Ljunberg, et al, 1992) suggest that
this latter influence is qualitatively similar to that predicted by Sutton and Barto’s
(1981,1987) classical conditioning theory. These systems innervate large expanses



of cortical and subcortical turf through extensive axonal projections that originate
in midbrain and basal forebrain nuclei and deliver such compounds as dopamine,
serotonin, norepinephrine, and acetylcholine to their targets. The small number of
neurons comprising these subcortical nuclei relative to the extent of the territory
their axons innervate suggests that the nuclei are reporting scalar signals to their
target structures.

In this paper, these facts are synthesized into a single framework which relates the
development of brain structures and conditioning in adult brains. We postulate
a modification to Hebbian accounts of self-organization: Hebbian learning is con-
ditional on a incorrect prediction of future delivered reinforcement from a diffuse
neuromodulatory system. This reinforcement signal can be derived both from ex-
ternally driven contingencies such as proprioception from eye movements as well
as from internal pathways leading from cortical areas to subcortical nuclei.

The next section presents our framework and proposes a specific model for how
predictions about future reinforcement could be made in the vertebrate brain uti-
lizing the firing in a diffuse neuromodulatory system (figure 1). Using this model
we illustrate the framework with three examples suggesting how mappings in the
oculomotor system may develop. The first example shows how eye movement
commands could become appropriately calibrated in the absence of visual experi-
ence (figure 3). The second example demonstrates the development of a mapping
from a selected visual target to an eye movement which acquires the target. The
third example describes how our framework could permit the development and
alignment of multimodal maps (visual and auditory) in the superior colliculus. In
this example, the transformation of auditory signals from head-centered to eye-
centered coordinates results implicitly from the development of the mapping from
parietal cortex onto the colliculus.

2 THEORY

We consider two classes of reinforcement learning (RL) rule: static and dynamic.

2.1 Static reinforcement learning

The simplest learning rule that incorporates a reinforcement signal is:

�wt = �xtytrt (1)

where, all at times t, wt is a connection weight, xt an input measure, yt an output
measure, rt a reinforcement measure, and � is the learning rate.

In this case, r can be driven by either external events in the world or by cortical
projections (internal events) and it picks out those correlations between x and y

about which the system learns. Learning is shut down if nothing occurs that is
independently judged to be significant, i.e. events for which r is 0.

2.2 Dynamic Reinforcement learning - learning driven by prediction error

A more informative way to utilize reinforcement signals is to incorporate some
form of prediction. The predictive form of RL, called temporal difference learning
(TD, Sutton and Barto, 1981,1987), specifies weight changes according to:

�wt = �xt[(rt+1 + Vt+1)� Vt] (2)

where rt+1 is the reward delivered in the next instant in time t + 1. V is called
a value function and its value at any time t is an estimate of the future reward.



This framework is closely related to dynamic programming (Barto et al, 1989) and
a body of theory has been built around it. The prediction error [(rt+1 + Vt+1) �
Vt], measures the degree to which the prediction of future reward Vt is higher or
lower than the combination of the actual future reward rt+1 and the expectation of
reward from time t+ 1 onward (Vt+1).

To place dynamic RL in a biological context, we start with a simple Hebbian rule
but make learning contingent on this prediction error. Learning therefore slows as
the predictions about future rewards get better. In contrast with static RL, in a TD
account the value of r per se is not important, only whether the system is able to
predict or anticipate the the future value of r. Therefore the weight changes are:

�wt = �xtyt[(rt+1 + Vt+1)� Vt] (3)

including a measure of post-synaptic response, yt.

3 MAKING PREDICTIONS IN THE BRAIN

In our account of RL in the brain, the cortex is the structure that makes predictions
of future reinforcement. This reinforcement is envisioned as the output of sub-
cortical nuclei which deliver various neuromodulators to the cortex that permit
Hebbian learning. Experiments have shown that various of these nuclei, which
have access to cortical representations of complex sensory input, are necessary for
instrumental and classical conditioning to occur (Ljunberg et al., 1992).
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Figure 1: Making predictions about future reinforcement. Layer I is an array of units
that projects topographically onto layer II. (A) Weights from I onto II develop according to
equation 3 and represent the value function Vt. (B) The weights from II onto R are fixed.
The prediction of future reward by the weights onto II is a scalar because the highly con-
vergent excitatory drive from II to the reinforcement nucleus (R) effectively sums the in-
put. (C) External events in the world provide independent excitatory drive to the reinforce-
ment nucleus. (D) Scalar signal which results from the output firing of R and is broadcast
throughout layer II. This activity delivers to layer II the neuromodulator required for Heb-
bian learning. The output firing of R is controlled by temporal changes in its excitatory
input and habituates to constant or slowly varying input. This makes for learning in layer
II according to equation 3 (see text).

Figure 1 shows one TD scenario in which a pattern of activity in a region of cortex
makes a prediction about future expected reinforcement. At time t, the prediction
of future reward Vt is viewed as an excitatory drive from the cortex onto one or
more subcortical nuclei (pathway B). The high degree of convergence in B en-
sures that this drive predicts only a scalar output of the nucleus R. Consider a



pattern of activity onto layer II which provides excitatory drive to R and concomi-
tantly causes some output, say a movement, at time t+1. This movement provides
a separate source of excitatory drive rt+1 to the same nucleus through independent
connections conveying information from sensory structures such as stretch recep-
tors (pathway C). Hence, at time t + 1, the excitatory input to R is the sum of
the ’immediate reward’ rt+1 and the new prediction of future reward Vt+1. If the
reinforcement nucleus is driven primarily by changes in its input over some time
window, then the difference between the excitatory drive at time t and t + 1, ie
[(rt+1 + Vt+1)� Vt] is what its output reflects.

The output is distributed throughout a region of cortex (pathway D) and permits
Hebbian weight changes at the individual connections which determine the value
function Vt. The example hinges on two assumptions: 1) Hebbian learning in the
cortex is contingent upon delivery of the neuromodulator, and 2) the reinforcement
nucleus is sensitive to temporal changes in its input and otherwise habituates to
constant or slowly varying input.

Initially, before the system is capable of predicting future delivery of reinforcement
correctly, the arrival of rt+1 causes a large learning signal because the prediction
error [(rt+1+Vt+1)�Vt] is large. This error drives weight changes at synaptic con-
nections with correlated pre- and postsynaptic elements until the predictions come
to approximate the actual future delivered reinforcement. Once these predictions
become accurate, learning abates. At that point, the system has learned about
whatever contingencies are currently controlling reinforcement delivery. For the
case in which the delivery of reinforcement is not controlled by any predictable
contingencies, Hebbian learning can still occur if the fluctuations of the prediction
error have a positive mean.

In the presence of multiple statistically independent sources of control of the reinforce-
ment signal (pathways onto R), the system can separately ’learn away’ the contin-
gencies for each of these sources. This passage of control of reinforcement delivery
can allow the development of connections in a region to be staged. Hence, con-
trol of reinforcement can be passed between contingencies without supervision. In
this manner, a few nuclei can be used to deliver information globally about many
different circumstances. We illustrate this point below with development of a sen-
sorimotor mapping.

4 EXAMPLES

4.1 Learning to calibrate without sensory experience

Figure 2 illustrates the architecture for the next two examples. Briefly, cortical lay-
ers drive four ‘motor’ layers of units which each provide an equilibrium command
to one of four extraocular muscles. The mapping from the cortical layers onto these
four layers is random and sparse (15%-35% connectivity) and is plastic according
to the learning rule described above. Two external events control the delivery of
reinforcement: eye movement and foveation of high contrast objects in the visual
input. The minimum eye movement necessary to cause a reinforcement is a change
of two pixels in any direction (see figure 3).

We begin by demonstrating how an unbalanced mapping onto the motoneuron
layers can be automatically calibrated in the absence of visual experience. Imagine
that the weights onto the right/left and up/down pairs are initially unbalanced, as
might happen if one or more muscles are weak or the effective drives to each mus-
cle are unequal. Figure 3, which shows the position of the fovea during learning,
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Figure 2: Upper layer is a 64 by 64 input array with 3 by 3 center-surround filters at each
position which projects topographically onto the middle layer. The middle layer projects
randomly to four 4 X 4 motoneuron layers which code for an equilibrium eye position sig-
nal, for example, through setting equilibrium muscle tensions in the 4 muscles. Reinforce-
ment signals originate from either eye movement (muscle ’stretch’) or foveation. The eye is
moved according to h = (r � l)g; v = (u � d)g where r,l,u,d are respectively the average
activities on the right, left, up, down motoneuron layers and g is a fixed gain parameter. h
and v are linearly combined to give the eye position.

indicates that the initially unbalanced weights cause the eye to move immediately
to an extreme position (figure 3, A).

Since the reinforcement is controlled only by eye movement and foveation and nei-
ther is occurring in this state, rt+1 is roughly 0. This is despite the (randomly gen-
erated) activity in the motoneurons continually making predictions that reinforce-
ment from eye-movement should be being delivered. Therefore all the weights
begin to decrease, with those mediating the unbalanced condition decreasing the
fastest, until balance is achieved (see path A). Once the eye reaches equilibrium,
further random noise will cause no mean net eye movement since the mappings
onto each of the four motoneuron layers are balanced. The larger amplitude eye
movements shown in the center of figure 3 (labeled B) are the result of increasing
the gain g (figure 2).

4.2 Learning a foveation map with sensory experience

Although reinforcement would be delivered by foveation as well as successful eye-
movements, the former would be expected to be a comparatively rare event. Once
equilibrium is achieved, however, the reinforcement that comes from eye move-
ments is fully predicted by the prior activity of the motoneurons, and so other
contingencies, in this case foveation, grab control of the delivery of reinforcement.
The resulting TD signals now provide information about the link between visual
input on the top layer of figure 2 and the resulting command, and the system learns
how to foveate correctly. Figure 4 shows the motor map that has developed after
2000 learning cycles. In the current example, the weights onto the four layers of
motoneurons initially were balancedand the gain g was 10 times larger than before
calibration (see figure 3). This learning currently assumes that some cortical area
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Figure 3: Learning to calibrate eye movement commands. This example illustrates how
a reinforcement signal could help to organize an appropriate balance in the sensorimotor
mapping before visual experience. The dark bounding box represents the 64x64 pixel work-
ing area over which an 8x8 fovea can move. A Foveal position during the first 400 cycles of
learning. The architecture is as in figure 2, but the weights onto the right/left and up/down
pairs are not balanced. Random activity in the layer providing the drive to the motoneu-
rons initially drives the eye to an extreme position at the upper right. From this position, no
movement of the eye can occur and thus no reinforcement can be delivered from the propri-
oceptive feedback causing all the weights to begin to decrease. With time, the weights onto
the motoneurons become balanced and the eye moves. B Foveal position after 400 cycles of
learning and after increasing the gain g to 10 times its initial value. After the weights onto
antagonistic muscles become balanced, the net excursions of the eye are small thus requir-
ing an increase in g in order to allow the eye to explore its working range. C Size of foveal
region relative the working range of the eye. The fovea covered an 8x8 region of the work-
ing area of the eye and the learning rate � was varied from 0.08 to 0.25 without changing
the result.



Figure 4: Development of foveation map. The map after 2000
learning cycles shows the approximate eye movement vector
from stimulation of each position in the visual field. Lengths
were normalized to the size of the largest movement. The
undisplayed quadrants were qualitatively similar. Note that
this scheme does not account for activity or contrast differ-
ences in the input and assumes that these have already been
normalized. Learning rate = 0.12. Connectivity from the mid-
dle layer to the motoneurons was 35% and was randomized.
Unlike the previous example, the weights onto the four layers
of motoneurons were initially balanced.

X

selects the salient targets.

4.3 Learning to align separate mappings

In the primate superior colliculus, it is known that cells can respond to multiple
modalities including auditory input which defines a head centered coordinate sys-
tem. Auditory receptive fields shift their position in the colliculus with changing
eye position suggesting the existence of a mechanism which maintains the regis-
tration between auditory and visual maps (Jay and Sparks, 1984). Our framework
suggests a developmental explanation of these findings in terms of an activity-
dependent self-organizing principle.

Consider an intermediate layer, modeling the parietal cortex, which receives sig-
nals representing eye position (proprioception), retinal position of a visual target
(selected visual input), and head position of an auditory target and which projects
onto the superior colliculus. This can be visualized using figure 2 with parietal cor-
tex as the top layer and the colliculus as the drive to the motoneurons. As before
(figure 2), assume that foveation of a target, whether auditory or visual, delivers
reinforcement and that learning in this layer and the colliculus follows equation 3.
In a manner analagous to the example in figure 4, those combinations of retinal, eye
position, and head centered signals in this parietal layer which predict a foveating
eye movement are selected by this learning rule. Hence, as before, the weights
from this layer onto the colliculus make predictions about future reinforcement. In
figure 4, a foveation map develops which codes for eye movements in absolute co-
ordinates relative to some equilibrium position of the eye. In the current example,
such a foveation map would be inappropriate since it requires persistent activity
in the collicular layer to maintain a fixed eye position. Instead, the collicular to
motoneuron mapping must represent changes in the balance between antagonistic
muscles with some other system coding for current eye position.

Why would such an initial architecture, acting under the aegis of the learning
rule expressed in equation 3, develop the collicular mappings observed in exper-
iments ? Those combinations of signals in the parietal layer that correctly predict
foveation have their connections onto the collicular layer stabilized. In the current
representation, foveation of a target will occur if the correct change in firing be-
tween antagonistic motoneurons occurs. After learning slows, the parietal layer is
left with cells whose visual and auditory responses are modulated by eye position
signals. In the collicular layer, the visual responses of a cell are not modulated by
eye position signals while the head-centered auditory responses are modulated by
eye position.

The reasons for these differences in the colliculus layer and parietal layer are im-
plicit in the new motoneuron model and the way the equation 3 polices learning.
The collicular layer is driven by combinations of the three signals and the learn-



ing rule enforces a common frame of reference for these combinations because
foveation of the target is the only source of reinforcement. Consider, for example,
a visual target on a region of retina for two different eye positions. The change in
the balance between right and left muscles required to foveate such a retinal target
is the same for each eye position hence the projection from the parietal to collicu-
lar layer develops so that the influence of eye position for a fixed retinal target is
eliminated. The influence of eye position for an auditory target remains, however,
because successful foveation of an auditory target requires different regions of the
collicular map to be active as a function of eye position.

These examples illustrate how diffuse modulatory systems in the midbrain and
basal forebrain can be employed in single framework to guide activity-dependent
map development in the vertebrate brain. This framework gives a natural role to
such diffuse system for both development and conditioning in the adult brain and
illustrates how external contingencies can be incorporated into cortical representa-
tions through these crude scalar signals.
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