
P1: QPU

NECO_a_00051-Moazzezi NECO.cls September 8, 2010 14:53

U
nc

or
re

ct
ed

Pr
oo

f

LETTER Communicated by Mark Goldman

Change-Based Inference in Attractor Nets: Linear Analysis

Reza Moazzezi
rezamoazzezi@berkeley.edu
Peter Dayan
dayan@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit, UCL, London, WC1N 3AR, U.K.

One standard interpretation of networks of cortical neurons is that they
form dynamical attractors. Computations such as stimulus estimation are
performed by mapping inputs to points on the networks’ attractive man-
ifolds. These points represent population codes for the stimulus values.
However, this standard interpretation is hard to reconcile with the obser-
vation that the firing rates of such neurons constantly change following
presentation of stimuli. We have recently suggested an alternative in-
terpretation according to which computations are realized by systematic
changes in the states of such networks over time. This way of performing
computations is fast, accurate, readily learnable, and robust to various
forms of noise. Here we analyze the computation of stimulus discrimina-
tion in this change-based setting, relating it directly to the computation
of stimulus estimation in the conventional attractor-based view. We use
a common linear approximation to compare the two methods and show
that perfect performance at estimation implies chance performance at
discrimination.

1 Introduction

Dynamical interactions among recurrently connected networks of nonlin-
ear cortical neurons are widely believed to play a central role in information
processing (Douglas, Martin, & Whitteridge, 1989). One prominent theoret-
ical account of these networks considers them in terms of attractors, with
computation consisting of mapping inputs by recurrent dynamics into par-
ticular attractors or particular locations on a continuous attractor. A readout
mechanism, which is often some form of feedforward network, then reports
a characteristic of the final, attracted state. We describe these as forms of
conventional attractor-based computation, and the value that emerges from
the readout as attractor-based readout.

R. Moazzezi is now at the Redwood Center for Theoretical Neuroscience, Helen Wills
Neuroscience Institute, University of California, Berkeley.
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2 R. Moazzezi and P. Dayan

One class of such networks involves point attractors, which act as poten-
tial memories to be recalled from partial or noisy inputs (Hopfield, 1982).
A class that has more recently been investigated, called surface (line) at-
tractor networks (Seung, 1996; Zhang, 1996; Pouget, Zhang, Deneve, &
Latham, 1998; Deneve, Latham, & Pouget, 1999, 2001; Wang, 2001; Wu &
Amari, 2005; Wu, Nakahara, & Amari, 2001; Renart, Song, & Wang, 2003;
Camperi & Wang, 1997), involves (null-stable) attractive manifolds that de-
fine population-coded representations of continuous valued stimuli, such
as the orientation of a visual bar or the direction the head of a rat is point-
ing in an environment. Attractor-based computation has been shown to
perform nearly as well as is statistically possible on an important set of
problems involving estimating such continuous-valued quantities (Pouget
et al., 1998; Deneve et al., 2001).

Unfortunately, there is little evidence that such attractor states exist in
cortical networks. Neurons in sensory cortical areas rarely exhibit persis-
tent activity in vivo (Reinagel, 2001; Vinje & Gallant, 2000), which strongly
suggests that their states do not converge to any attractor. Even neurons
in prefrontal cortical areas that are well known for their persistent activity
during delayed memory tasks show systematic changes in their activity lev-
els during delay periods (Brody, Hernandez, Zainos, & Romo, 2003). Such
changes in activity during persistent firing are inconsistent with the view
that the state of the network has converged to a conventional attractor.

These facts motivated our recent investigation of the information pro-
cessing that recurrent network dynamics can perform during the transient
evolution of the network’s state toward, but without necessarily reaching,
a surface attractor (Moazzezi & Dayan, 2008). We showed that significant
computations can be performed by the mapping from inputs to changes
over time in a statistic of the network’s activity. We call this change-based
computation and the value that emerges from the change in the activity
statistic change-based readout.

Figure 1A explains the method in the discrimination context that we
investigated previously. In this case, input patterns came from one of two
classes, and the recurrent network had to determine which. The figure
shows an abstract rendition of the (N-dimensional) state space of the net-
work; its weights were set to realize two different continuous attractor
manifolds, M1 and M2. The trajectory labeled X, Y, Z, and T shows the
evolution of the state of the network from the initial input pattern (X) to the
converged state (T) on the attractor.

Conventional attractor-based readout decides about the class of X based
on the attractor to which it converges (M1 represents class 1, and M2 rep-
resents class 2; for example, here, T is on M1, and so class 1 would be re-
ported). In contrast, the change-based method decides on the input’s class
based on comparing a statistic of the neural activity at two intermediate
points (e.g., Y and Z) as the network’s state evolves from X to T. We consid-
ered a statistic μ : �N → � that maps every state to a scalar. The choice of
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Change-Based Inference in Attractor Nets 3

Figure 1: Change-based readout. (A) Point X represents the state of the net-
work associated with the input. As time evolves, the network’s trajectory takes
it through new states (Y, Z, . . .), finally converging to a point on the low-
dimensional manifold M1. Conventional attractor-based readout is based on
the final state of the attractor—in this case of discrimination, whether point
T is on manifold M1 or M2. By contrast, change-based readout decides based
on how a statistic of the neural activity (e.g., the center of mass of the neural
activity) changes over time between two points, say X and Y, long before con-
vergence. (B) The model consists of units arranged on a line according to their
preferred tuning values. They are recurrently connected. The input is presented
only in the first iteration, after which the network evolves toward an attractor.

class is determined by whether this statistic increases or decreases (whether
μ(Y) > μ(Z) or μ(Y) < μ(Z)). The statistic we considered is the center of
mass (CoM) of the neural activity.

In our previous paper (Moazzezi & Dayan, 2008), we showed that the
performance of the change-based method is statistically near optimal, ex-
tracting almost all the available information in this and a variety of other
tasks. Performance is also robust to very high levels of dynamical noise.
Change-based readout permits fast decoding; for instance, in a network
with time constants of about 20 ms, near-optimal performance was achieved
within 100 ms of the onset of activity. Inferential quality is insensitive to
the timing of points Y and Z as long as these points are far enough from
each other and from the attractor manifolds. We have also shown that the
change-based method allows easy learning using the biologically implausi-
ble backpropagation through time (BPTT) algorithm. Finally, change-based
readout can offer a perfect solution to the problem of invariance that mo-
tivated the original study by Zhaoping, Herzog, and Dayan (2003) that
inspired our previous paper. That is, the class of the input X has to be
determined in a way that is invariant to particular of its features (in that
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4 R. Moazzezi and P. Dayan

case, invariant to the location on a one-dimensional array at which it is
presented). If the network’s weights are invariant to these features (in that
case, being translation invariant to that dimension), then change-based dis-
crimination will also be invariant. In Figure 1A, the attractor manifolds M1
and M2 are defined by these dimensions of invariance. Invariance is critical
for many neural computations.

In our previous work, we exhibited empirical evidence only for the near
optimality of change-based readout, in a highly nonlinear regime (in the
transition from X to Z) when the network’s state is far from any underlying
attractor (see Moazzezi & Dayan, 2008). This nonlinearity makes it quite
difficult to analyze the change-based method theoretically and understand
how it works. However, linear analysis is possible if the state of the network
is near its attractor (or manifold attractor). Therefore, in this letter, we take
a first step toward analyzing the method by considering a subtly different
discrimination task from the one we considered in the previous work. In
the new task, change-based readout operates near optimally in the linear
regime near the network’s line attractor and therefore allows linear anal-
ysis. In particular, this very same linearizable regime has previously been
used to elucidate the workings of estimation in conventional attractor-based
readout (Pouget et al., 1998; Deneve et al., 2001). The similarity between the
discrimination task that we consider in this letter and the conventional esti-
mation task, together with the fact that both readout methods here operate
in the linear regime, allows us to relate change-based discrimination and
attractor-based estimation precisely. We show that change-based discrimi-
nation can be successful only near the attractor since attractor-based esti-
mation is slightly flawed, an analysis that we confirm directly by exhibiting
a trade-off between the two. In other words, in the near-attractor regime, if
the attractor-based estimation had been perfect for an estimation task, then
the change-based method would have performed the discrimination task
at chance level. The excellent performance of change-based discrimination
shows that this is not the case. We also show that the linear analysis is able
to predict the performance of a broader class of networks accurately.

In the following, we describe discrimination and estimation tasks, the re-
current network, and change- and attractor-based inference in detail. Then
we provide simulation results that confirm the near-optimality of our net-
work at both estimation and discrimination in linearizable and nonlinear
regimes. Next, we analyze the network in the linear regime and show
how change-based computation works. Finally, we consider broader issues
raised by our analyses.

2 Methods

2.1 The Model and the Task. The recurrent network that we consider is
an abstract model of topographically arranged processing in a retinotopic
early visual area. It is a (noncircular) version of one of the best-studied
line attractor networks that has been shown to perform estimation from
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Change-Based Inference in Attractor Nets 5

noisy input (in this case of retinotopic location) at a level near to that
of an ideal observer (Pouget et al., 1998). Recurrent interactions include
topographically local interactions and divisive normalization (Carandini &
Heeger, 1994; Pouget et al., 1998).

The network consists of N units arranged topographically on a line (see
Figure 1B); we consider stimuli in just the central portion and thereby
avoid edge effects. These units form a population code for visual inputs.
For simplicity, we consider all the inputs to be short vertical bars, but
inference is about the absolute or relative locations of the bars, not about
their orientations (thus, we assume that all units are vertically tuned). Units
are selective to different locations in the input, with the preferred location
of unit i being denoted by xi (we also use xi to identify unit i in formulas
and plots).

We consider two different tasks for the network. The main task involves
discriminating between two classes of input and is solved by change-based
readout. For this, two very nearby bars are presented anywhere on the line,
one having a lower contrast than the other. The task is to decide whether
the low-contrast bar is to the left or the right of the high-contrast bar (see
Figure 2A). This first task is solved using change-based readout. The second
task provides the analytical backdrop for the first task. In this, only the
high-contrast bar is presented, and the problem is to estimate its location
on the topographic array. This is solved using conventional, attractor-based
readout. Note that the inputs for both tasks are presented to the same
network; it is just that depending on the task, different readout mechanisms
are involved. Also note the relationship between the two tasks: the variable
that must be estimated in the estimation task (location of the high-contrast
bar) is the invariant dimension in the discrimination task. In other words,
the variable that is important for the discrimination task is the relative
location of the two bars, not the absolute location of the high-contrast bar.

2.2 Discrimination Task

2.2.1 Task. The visual discrimination task involves reporting whether a
low-contrast bar, which we refer to as the signal, is slightly to the left or
the right of a high-contrast bar, which we call the carrier (see Figure 2A).
The carrier is presented at location y, and the signal is presented at location
ε + y, and so the task is to decide if ε > 0 or ε < 0 (see Figure 2A). Note that
y represents the invariant dimension.

2.2.2 Model. We assume that the bars activate the units additively. If the
carrier is presented by itself to the network at location y, then the mean
activity of unit i is

āic = e− (y−xi )2

2σ2

H
, (2.1)
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6 R. Moazzezi and P. Dayan

Figure 2: The discrimination and estimation tasks. (A) Top: Discrimination task.
Two bars are presented simultaneously to the network, one with high contrast
(called the carrier) and one with low contrast (the signal). The task is to decide
if the signal is to the left or the right of the carrier. Bottom: Estimation task. Only
the high-contrast bar is presented to the network, and the task is to estimate
its location. (B) On average, each bar generates a gaussian hill of activity with
different heights reflecting their different contrasts. Note that units are arranged
on the y-axis. The high-contrast bar (carrier) generates the average hill of activity
āc , and the low-contrast bar (signal) generates the average hill of activity ās . For
the discrimination task, on each trial, the actual input is a noisy version of the
linear sum of the two hills of activity āc + ās . For the estimation task, on each
trial, the actual input to the network is a noisy version of the average hill of
activity elicited by the carrier, āc . (C) Left: The synaptic weight between the
unit at position zero and other units. The weight matrix is translation invariant
(away from the boundary). Right: The carrier and the converged state of the
network (note that both patterns have very nearly the same form).

where in āic , the first index, i , represents the unit number (between 1 and N),
and the second index, c, stands for “carrier”; σ is the width of the smooth

hill activated by the carrier; and H = ∑
i e− (y−xi )2

2σ2 is the summed weight of
this hill. H normalizes the mean activity associated with the carrier so that
the mean activity associated with the carrier is very similar to the form of the
converged state of the recurrent network (as we explain below). Similarly,
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Change-Based Inference in Attractor Nets 7

the average activity received by unit i when the signal is presented by itself
at location ε + y is

āis = ζ e− ((ε+y)−xi )2

2η2σ2

H
, (2.2)

where in āis , the first index, i , represents the unit number (between 1 and N),
and the second index, s, stands for “signal,” η scales the width, and ζ scales
the contrast or strength of the signal. We mostly use a very small value for
ζ (i.e., a weak signal) to make discrimination challenging. This also permits
linearization of the network around the activity associated with the carrier.
Since we assume that the effects of the bars sum linearly, the overall average
activity received by neuron i is

āi = āic + āis . (2.3)

These average activities are cartooned in Figure 2B.
We consider two noise models: scaled Poisson noise and gaussian mean

dependent noise. For both noise models, the actual input to the network
(a = (a1, a2, . . . , a N) is generated in two stages. The first stage controls the
strength of the noise, while the second stage is necessary in order to have
〈a〉 = āc (in the absence of the signal) where 〈a〉 denotes average over infi-
nite random draws of a and āc = (ā1c, ā2c, . . . , ā Nc). This way of generating
the inputs is for analytical convenience, and it also allows a more straight-
forward comparison between the two noise models. Although we scale the
strength of the noise (to limit its nonlinear effects), the discrimination and
estimation performance of the networks are always compared with those
of ideal observers experiencing exactly the same patterns.

For the Poisson noise model, we first generate vector a′ = (a ′
1, a ′

2, . . . , a ′
N)

according to a Poisson distribution with mean qλā (the reason to decompose
the coefficient into q and λ is to simplify the comparison between Poisson
and gaussian noise models):

P(a ′
i |qλāi ) = e−qλāi

(a ′
i )!

(qλāi )a ′
i , (2.4)

where 1/q controls the strength of the noise. Note that the elements of vector
a′ are mutually independent. The mean and standard deviation of a ′

i are
qλāi and

√
qλāi , respectively. Thus, the signal-to-noise ratio is

√
qλāi , which

increases as q increases.
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8 R. Moazzezi and P. Dayan

Since the dynamics of the network in any case involve normalization
(Carandini & Heeger, 1994), the second step is consider the actual input to
the network to be

a = a′

qλ
. (2.5)

For the gaussian noise model, in the first stage, we generate a vector
a′ = (a ′

1, a ′
2, . . . , a ′

N) from a gaussian distribution with mean λā and variance
λā
q :

P
(

a ′
i

∣∣∣∣λāi

q

)
= 1√

2π
(

λāi
q

) exp

⎛
⎝−

(
a ′

i − λāi
)2

2
(

λāi
q

)
⎞
⎠ , (2.6)

where 1
q determines the strength of the noise. Again, the elements of vector

a′ are independent. For the gaussian noise case, in the second step, the
actual input to the network is

a = a′

λ
. (2.7)

As we mentioned above, defining the input to the network by equations
2.5 (for Poisson noise) and 2.7 (for gaussian noise) ensures that 〈a〉 = āc

(in the absence of the signal—the low-contrast bar) for both noise models.
Note that the scaled Poisson and gaussian noise models have the same
signal-to-noise ratio.

We consider the following discrete dynamics for the network:

un+1 = f(Wun), (2.8)

where n indicates the iteration number, u(n) = (u(n)
1 , u(n)

2 , . . . , u(n)
N ) and u(0) =

a defines the input to the network (equations 2.5 and 2.7 for Poisson and
gaussian noise, respectively). The weights W are translation invariant, and
their form (see appendix A) is shown in Figure 2C, left. We define the
weights W and the dynamics of the network f(.) such that if u(0) = āc , then
the converged state of the network, u(∞), and the carrier, āc , are nearly the
same (see Figure 2C, left). In general, the weights Wand the dynamics of
the network f(.) are defined such that u(∞) and āc have nearly the same form
(see Figure 2C, left), but they might not be at the same location because of
the discrimination signal and the noise that corrupt āc .
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Change-Based Inference in Attractor Nets 9

We follow Deneve et al. (2001) in defining the network’s nonlinear ac-
tivation function f(.) = ( f1(.), f2(.), . . . , fN(.)) as the squaring, normalizing
nonlinearity,

fi (r) = r2
i∑
j r2

j

, (2.9)

where r = (r1, r2, . . . , rN)is an arbitrary vector. Normalization has been
shown to realize a particularly convenient (Deneve et al., 1999; Wu & Amari,
2005) and neurobiologically relevant (Heeger, Simoncelli, & Movshon, 1996;
Carandini, Heeger, & Movshon, 1997) form of attractor network. How-
ever, change-based readout does not depend on this. In our earlier paper
(Moazzezi & Dayan, 2008), we considered a threshold linear hinge func-
tion. Since the weights are symmetric and translation invariant (at least in
the network’s central regime), there is at least one one-dimensional line of
attractor states. These states are smooth, unimodal bumps, which have very
nearly the same form as the mean activity associated with the carrier (see
Figure 2C right).

2.2.3 Change-Based Discrimination. According to change-based readout,
the decision about the location of the signal relative to the carrier depends
on whether the center of mass (CoM) of the neural activity in the network
moves to the left or to the right. The CoM of the neural activity u(n)at
iteration n is defined as

μ
(
u(n)) =

∑
i u(n)

i xi∑
i u(n)

i

. (2.10)

For this discrimination task, the decision about the sign of ε (which is the
distance between signal and carrier; see Figure 2A) is based on the sign of
μ(u(∞)) − μ(u(0)) (which is equal to μ(u(∞)) − μ(a) given u(0) = a). This is an
example of change-based readout. Compared with our previous application
of this method, which we described in section 1, here we measure the change
between start and end rather than two intermediate times. However, this
does not materially affect the network’s performance on the task.

2.3 Estimation Task. In the estimation task, the carrier is presented
by itself, and the task is to estimate its location, y. Therefore, the average
activity is generated from the carrier only, with the signal being absent, that
is, āi = āic for all i . The noisy input activity a is generated from ā, as for
discrimination (equations 2.4 and 2.5 for Poisson noise and 2.6 and 2.7 for
gaussian noise). The network performs the task of estimating y from this
noisy input by mapping the input to the line attractor and reporting the
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10 R. Moazzezi and P. Dayan

Figure 3: Performance of the network and the ideal observer. (A) Performance
level of the ideal observer and the network as a function of ε for Poisson
noise. (B) Same as A except that the noise is mean-dependent gaussian. In both
cases, the network’s performance is near optimal.

location on the attractor of the converged state. We call this attractor-based
readout. Since the converged state is smooth, noise free, and unimodal, its
location can be accurately characterized by its CoM, that is, μ(u(∞)).

2.4 Parameters. The main parameters were set to xi+1 − xi = .05, N =
81, σ = .1, λ = 20H, η = .5, creating a smooth population code. We ex-
plored two regimes for the tasks: one that enabled linearization, with very
small signal and noise, (ζ = .1, q = 100), and the other to show that perfor-
mance remains good in a more realistic, nonlinear regime, with large signal
and noise (ζ = 1, q = 1). The network is found to have converged by 10
iterations.

3 Results

3.1 Performance of the Network and the Ideal Observer. We mea-
sured the performance of the ideal observer and change-based readout for
the discrimination task for weak (scaled) Poisson and gaussian noise. Since
the signal is also weak in this regime, the ideal observer, which knows the
height and width of both the carrier and the signal and the full distributions
of likelihoods and priors (though not y), was not perfect. Figures 3A and
3B compare the performance levels of the network for the discrimination
task for both noise models with those of the corresponding ideal observers
for a range of ε. The network is evidently near optimal. Doubling the num-
ber of units by increasing their density twofold led to a performance that
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Change-Based Inference in Attractor Nets 11

improved in line with that of the ideal observer. This indicates that high-
quality inference is a stable characteristic of the network.

Attractor-based readout was also near optimal at estimation for both
Poisson and gaussian noise, having a standard deviation of only about
1.1 times that of the ideal observer. This same ratio was preserved when
we increased the density of the units in the population code eightfold,
indicating, as expected from previous studies of estimation, that such good
performance is a stable characteristic of such networks. Note that for the
Poisson noise, the ideal observer has a simple interpretation as the CoM
of the input to the units (a). This immediately follows from the fact that
the form of the carrier is gaussian. The same is approximately true for low
levels of gaussian noise.

3.2 Linearization of the Network. Figure 4A shows the carrier, an ex-
ample input (a) generated from the carrier plus signal (equations 2.4 and
2.5 for Poisson noise and 2.6 and 2.7 for gaussian noise) and the output of
the network after convergence. Figure 4B shows that the difference between
the converged state and the example input is very small relative to their
magnitudes and motivates an approximation to the action of the network
about a single point in state space (the carrier at one particular location) in
terms of a linear filter Jcb . This filter, which is shown in Figure 4C, predicts
the change δμcb in the CoM of the neural activity as

δμcb = μ
(
u(∞)) − μ(a) ≈ JT

cb .(a − āc), (3.1)

where āc = (ā1c, ā2c, . . . , ā Nc) is the carrier, a = (a1, a2, . . . , a N) is the input
to the network, and u(∞) = (u(∞)

1 , u(∞)
2 , . . . , u(∞)

N ) is the converged state of the
network. Note that the difference a − āc in equation 3.1 includes the signal
(ās) for the discrimination task, where ās is defined as ās = (ā1s, ā2s, . . . , ā Ns).

We can understand equation 3.1 intuitively (see Figure 4D). δμcb is the
amount the CoM changes as the network evolves from its initial state u(0) =
a to its final state u(∞). The change in CoM of the network activity between
the input and the converged state (μ(u(∞)) − μ(a)) is predicted based on
the difference of the input pattern and the mean activity pattern associated
with the carrier, that is, (a − āc). a is a noisy version of the underlying,
smooth, mean activity pattern associated with the carrier āc + ās , and the
change in CoM (μ(u(∞)) − μ(a)) is approximated as being linearly related
to the difference of the patterns of the input and the carrier. Note that for
the case that the attractor states and the carrier have the same form, it
is straightforward to derive the linear filter Jcb from the Jacobian of the
network (see appendix C).
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12 R. Moazzezi and P. Dayan

Figure 4: Network attractor and linearization. (A) Carrier (dashed gray line),
an example input (solid gray line) and output (solid black line) of the network.
(B) The difference between the input and the output of the network, which is
very small relative to the size of the input. (C) The equivalent linear filter that
predicts the change in the CoM. This was obtained by linearizing about the
carrier. (D) Schematic description of equation 3.1. The change in CoM of the
network activity between the input and the converged state (μ(u∞) − μ(a)) is
predicted based on the difference of the input pattern and the activity associated
with the carrier (a − āc). The difference of the carrier (āc) and example input (a) is
projected onto the change-based (linear) filter (Jcb), and its magnitude and sign
represent the magnitude and sign of the change in CoM, which is (μ(u∞) − μ(a)).

We define the signal-to-noise ratio associated with the filter as

S/N =
∣∣JT

cb ās
∣∣√

JT
cb	Jcb

, (3.2)

where 	 is the noise covariance matrix of a. Note that ās is a function of ε.
Figure 5A shows the predicted signal-to-noise ratios for the filter of Figure
4C over the relevant range of ε. Figure 5B shows an example histogram for
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Change-Based Inference in Attractor Nets 13

Figure 5: Linear performance. (A) The signal-to-noise ratio (in the change of
CoM) predicted by the linear filter that was shown in Figure 4C as a function of
ε. (B) An example histogram for the linear prediction of the change in the CoM
for ε = .02. This is approximately gaussian because it can be written as a sum of
a moderate number of independent random variables. (C) Performance level of
the network predicted by the linear approximation and the actual performance
level of the network. The inset shows the same quantities for the perturbed
network (see Figure 8) showing that the linear approximation works very well
even when the initial state of the network is far from the attractor and therefore
the input-output transformation is nonlinear.

the changes of the CoM predicted by the linear filter. Since it is the sum
of independent random variables, the central limit theorem suggests that
the distribution of the change will be roughly gaussian. One can therefore
use the S/N to predict the performance of change-based readout. Figure 5C
confirms the empirical rectitude of this analysis.

3.3 Discrimination and Estimation. As well as predicting its perfor-
mance correctly, the linearization also clarifies the relationship between
change-based discrimination and attractor-based estimation (see Figure 6).
This is predicated on the facts that the CoM itself is the optimal estimator
for the case of Poisson noise and the approximately optimal estimator in
the low-noise regime for gaussian noise (see appendix B). We will show
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14 R. Moazzezi and P. Dayan

Figure 6: Change-based and attractor-based readout. This schematic shows a
case in which noisy activity (circles) came from a true value of y = 0. The
optimal ML estimate of y is μml , which amounts to fitting the shape of the mean
activity associated with the carrier to the actual activity (weighting errors by
an amount that has to do with the noise model). The network’s estimate is
μnet , whose position is determined by relaxation to the attractor. The difference
δμr = μnet − μml underlies the change-based readout.

that in a formal sense, change-based discrimination exactly exploits the
suboptimality of attractor-based estimation.

First, consider the case that y = 0, and the carrier is presented by itself
(the estimation task). This implies that ā = āc , and therefore we can write
a = āc + n, where n is either Poisson or gaussian noise. Again, the optimal
estimator of y can be linearized as

μml ≈ JT
ml (a − āc) = JT

ml (n), (3.3)

where μml is the optimal estimator of y given the input pattern a, and equa-
tion 3.3 predicts this optimal estimation as a linear function of the difference
of the input and carrier patterns. The index “ml” stands for “maximum
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Figure 7: Optimal and network filters. (A) Estimation task. The dashed line
shows the optimal filter for estimation. The dotted line shows the network’s
filter for estimation (Jnet). The solid line shows the carrier. (B) Discrimination
task. The dashed line shows the optimal filter for discrimination. The dotted line
shows the network’s filter (Jr ) for the case of Poisson noise. The solid line shows
the carrier (scaled to fit the graph) indicating where the input is substantial.
(C) Central portion of the translation-invariant weights (left) and the carrier
and converged state of the network (right), the same as Figure 2C (both patterns
have very nearly the same form).

likelihood” because the optimal estimator is the maximum likelihood esti-
mator. The linear filter Jml is derived in appendix B (see the dashed curve
in Figure 7A). As we mentioned in section 3.1, for Poisson noise and low
levels of gaussian noise, μml is the CoM of input pattern a.

If we denote the linear filter associated with attractor-based method
by Jnet (the dotted curve in Figure 7A), including the readout, then the
network’s estimate of y is

μnet ≈ JT
net(a − āc) = JT

net(n). (3.4)

Note that the network’s estimate of y is the CoM of the converged state
of the network. Equation 3.4 predicts the network’s estimate as a linear
function of the difference between the input and carrier patterns. Since
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16 R. Moazzezi and P. Dayan

the final pattern (converged state) is symmetric, μnet (see Figure 6) can
also be interpreted as the CoM of the converged state of the network.
Attractor-based readout would therefore be optimal if Jnet = Jml , that is,
if the optimal estimate and the network’s estimate are the same at every
trial (μnet = μml ). Given that Jnet �= Jml (see Figure 7A), there is a difference
between the network’s estimate and the optimal estimate δμr = μnet − μml .
We can therefore write δμr ≈ JT

r n, where Jr = Jnet − Jml .
This difference is crucial for change-based discrimination. Consider what

happens when the signal is presented along with the carrier (for the dis-
crimination task). Since μml is the CoM of the input pattern and μnet is the
CoM of the converged state of the network, we have that δμr is the change
in the CoM of the neural activity, which is exactly what change-based read-
out measures. Therefore, Jr is the linear filter associated with the change
in CoM, that is, Jr = Jcb . If the network was a perfect estimator (Jnet = Jml ),
then Jcb = Jr = Jnet − Jml = 0, and therefore by equation 3.1, δμcb = 0, and
the performance of the change-based method for discrimination would be
at chance level.

Another way of understanding this result is that if the network were to
be an optimal estimator, its converged output state would have to have the
same CoM as its input, since maximum likelihood estimation is based on the
input CoM. However, if this were true, then change-based readout would
report 0, since the CoM would not move. Thus, a necessary condition for
change-based readout to work is that Jnet �= Jml . In appendix B, we derive
the form of the optimal filter Jdis−opt for discrimination.

We can also compare the forms of the actual and optimal linear filters for
both tasks. Figure 7B presents this comparison for the case of discrimination
(also showing the weight matrix, the carrier, and the converged state of the
network); Figure 7A presents the comparison for estimation. The filter for
estimation is close to the optimal form in its central regime but then deviates
substantially. However, the input is near zero where the carrier is near zero,
and therefore this does not disturb the performance of the network. Note
that the overall scale of the discrimination filter is arbitrary, since this does
not affect its performance. Of course, the point of linearization varies with
the location of the carrier, so the linear filters track the actual value of y.

Finally, it is possible to change the weights in the network to improve its
performance at one of these two tasks, albeit to the possible detriment of the
other. Figure 7A shows that the width of the network’s linear filter is slightly
too narrow for estimation. Figure 8C shows a slightly broader set of weights,
together with the broader converged state of the network. Although this is
no longer the same as the input, it is still possible to linearize the network
and calculate its various linear filters. As for the previous case, linearization
accurately predicts the performance level of the network. Figure 8A shows
that the linear filter for estimation is now even closer to that of the optimal
linear estimator, and indeed the ratio of their standard deviations is now
1.005. However, Figure 8B shows that the discrimination filter is now much
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Figure 8: The filters of a perturbed network. The same convention is used for
all the plots as in Figure 7. (A) Estimation task. The extra breadth makes the
network’s filter a better match to the optimal estimation filter. (B) Discrimination
task. The broader weights lead to a pattern of activity of the units on the attractor
being quite different. This makes the network’s change-based filter very shallow.
(C) Central portion of the translation-invariant weights (left) and the carrier and
converged state of the network (right). (D) Performance levels of the weight
matrices shown in Figures 7C and 8C for discrimination task.

flatter in the crucial regime (although still having the appropriate sign), and
indeed its signal-to-noise ratio is worse than that with the previous weights.
Figure 8D compares the performance levels of the two sets of weights.

Note that the linear approximation predicts the performance of the per-
turbed network accurately (see Figure 5C inset), even though the widths
of the average input and output patterns are different (Figure 8C, right).
As we mentioned earlier, we considered the case where the widths are the
same mainly to simplify the comparison between the change-based and
attractor-based methods.

For the case of Figure 7C, the input is very close to the line attractor. By
contrast, for the case of Figure 8C, the input is far from the line attractor.
Nevertheless, the linear analysis accurately predicts the performance of the
network (see Figure 5C inset), and therefore the same trade-off still holds
between the change-based and the attractor-based methods. As might be ex-
pected, as long as the input-output transformation is such that the first-order



P1: QPU

NECO_a_00051-Moazzezi NECO.cls September 8, 2010 14:53

U
nc

or
re

ct
ed

Pr
oo

f

18 R. Moazzezi and P. Dayan

Figure 9: High-noise regime. Performance levels of the ideal observer, the net-
work shown in Figure 7C, and the perturbed network shown in Figure 8C for
the discrimination task in the face of high noise. The inset shows an example
input and the average input to the network for Poisson noise. They are now
substantially different.

Taylor expansion accurately predicts the effect of the first-order perturba-
tions, the linear approximation will accurately predict the performance of
the network for low levels of noise.

We have effectively shown a limiting trade-off between change-based
discrimination and attractor-based estimation. If the latter was perfect, then
the former would be at chance. Of course, we also showed that it is possible
to have both methods operating near optimally simultaneously (see Figure
3 and section 3.1). The reason is that we allowed change-based inference to
work with very small changes in the CoM. If one constrains these changes to
be not smaller than a threshold (e.g., to overcome noise in the actual readout
itself), then this will force a decrease in the performance of attractor-based
estimation and there will be a trade-off between the performance of the
change-based readout for the discrimination task and the performance of
the attractor-based readout for the estimation task.

For the convenience of the analysis, we have so far considered low levels
of input noise (and signal). Figure 9 shows that the network is also near
optimal when signal and noise are both substantially stronger. However, in
this regime, linearization is not such a good approximation, making it hard
to understand the provenance of the network’s performance. Note that the
performance level of the ideal observer changes with the high levels of
signal and noise, and the network’s performance follows the performance
level of the ideal observer.

It is interesting to note that although the linearization fails in the high-
noise regime, increasing the breadth of the weights (as in Figure 8) has the
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same effect as in the low-noise case of improving estimation and impairing
discrimination (see Figure 9).

4 Discussion

We had previously observed superior performance at invariant pattern
discrimination for an inference method based on the change over time in
the pattern of activity in a recurrent network (Moazzezi & Dayan, 2008).
In this letter, we analyzed the method in more detail. In particular, we
considered a new task for which it was possible to take advantage of the
advanced state of understanding of the near-attractor dynamics of line
attractor networks in the context of stimulus estimation (Pouget et al., 1998).
In this regime, such a network can be successfully linearized; we used the
results of this approximation to show the close relationship between optimal
and change-based inference. One striking finding was that change-based
inference performs well only because the ability of the network to perform
estimation has been compromised, so that the signal for discrimination is
not treated as noise for estimation. We analyzed the resulting trade-off.

We employed a task that to the best of our knowledge has never been
the subject of experimental test. Nevertheless, it has some interesting prop-
erties that make it an attractive target—for instance, performance in our
model is surprisingly sensitive to the relative widths of the population
hills of activity induced by the bars. Even when the heights of carrier and
signal are so dissimilar that there can be no confusion between them, in-
ference is easier when their widths are different. Though this particular
prediction might not be fully robust to factors such as multiscale receptive
fields, it would be interesting to study the dependence of error rate on this
factor.

In previous work on estimation, linear analysis was applied only when
the network’s state started and remained near its attractor (Pouget et al.,
1998). We showed that linear analysis can still offer a reasonable guide
when the network’s state starts so far from the attractor that the approx-
imation fails (because of noise or a mismatch between a large signal and
the network’s attractor state), and indeed confirmed our previous findings
that the quality of inference remains good in this case. The workings of the
network in these regimes, and also in the face of the sort of dynamical noise
that can significantly disturb inference based on nominal convergence of
the network to its attractor (Wu & Amari, 2005; Camperi & Wang, 1997;
Compte, Brunel, Goldman-Rakic, & Wang, 2000), remain key targets for
future work. We should also note that the change-based method requires
the information gathered by the first measurement to be kept in the mem-
ory for the subsequent comparison with the second measurement. Here we
assume that this memory process is noiseless.

The change-based method decides based on the change of a statistic
of the neural activity. Clearly the choice of statistic is influenced by the
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nature of the task. For the bisection task, we employed a linear statistic of
the normalized neural activity (i.e., the CoM) and observed that one could
extract nearly all the information from the change in this. For the task we
considered in this letter, we used the same statistic (CoM). Its suitability is
evident in the near-optimal performance of the task.

An alternative potential solution to the task we consider in this letter is
to design two line attractor networks, for which both get the same input
(a linear sum of signal, carrier, and noise), but whereas one of them extracts
the location of the signal, the other extracts the location of the carrier. The
decision would then be based on comparing these two estimated locations.
To the best of our knowledge, such an approach has not previously been
attempted, perhaps for the very good reason that the signal is swamped by
the noise, and so it is not clear how the first of these networks could func-
tion. Even if this idea could be made to work, the computational demands
of this approach would be substantially greater than for change-based dis-
crimination by virtue of requiring two separate networks rather than just
one. Further, we showed in our previous paper that change-based inference
is very robust to substantial levels of synaptic noise. By contrast, line attrac-
tor networks are extremely sensitive to noise because of the requirement
for, and nature of, null stability. Noise will have a significantly deleterious
effect by itself in each of the two networks and will then pose an even
more drastic problem for a computation based on the difference between
quantities estimated from each.

Change-based readout emphasizes the early portion of the trajectory of
the state of the network following presentation of an input. There is exper-
imental evidence that substantial stimulus information is available during
this time and can be extracted from the network (Hung, Kreiman, Poggio,
& DiCarlo, 2005; Mazor & Laurent, 2005; Ganguli et al., 2008). Indeed, it
has been suggested that the stochastically stable state that ultimately en-
sues after a substantial delay is informationally impoverished compared
with the early states (Mazor & Laurent, 2005). Further, recent data suggest
that relatively fine-temporal scale aspects of activity, even in early sensory
cortical areas, can significantly influence the course of decision making
(Yang, DeWeese, Otazu, & Zador, 2008); this is another facet of change-based
readout.

Conversely, the sensitivity of change-based readout to transient activity
suggests one route toward a psychophysical test of the idea based on noise
images (Dosher & Lu, 1999; Mareschal, Dakin, & Bex, 2006). Consider pre-
senting patterns corrupted by explicit spatiotemporal noise and eliciting
moderately fast responses from subjects in the task we considered here.
By correlating their ultimate decisions with the patterns of noise presented
on each trial, it would be possible to examine whether and how they are
affected by different epochs of noise (Nienberg & Cumming, 2009; Wong,
Huk, Shadlen, & Wang, 2007). We may expect change-based inference to be
particularly affected by the noise in earlier epochs, whereas attractor-based
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inference of the sort considered by Zhaoping and Dayan (Li & Dayan, 2001)
would be more influenced by explicit noise in later epochs).

Along with Zhaoping et al. (2003), our previous work on the bisection
task (Moazzezi & Dayan, 2008) required a network whose weights had
been partly sculpted by the needs of a particular task. In empirical stud-
ies, the pace of perceptual learning in that task is relatively stately (Fahle,
1994; Fahle, Edelman, & Poggio, 1995). We have shown that it is possi-
ble (Moazzezi & Dayan, 2008) to learn a set of weights for the network
that enables change-based readout to perform much more competently
than attractor-based readout using the backpropagation-through-time al-
gorithm (Rumelhart, Hinton, & Williams, 1986). Many different weight
patterns were found to work well at the task, suggesting that it might be
possible to model the provenance of change-based competence there too.

Appendix A: The Form of the Translation-Invariant Weight Matrix

The weights have the form of a truncated circular gaussian:

Wi j ∝
⎧⎨
⎩ e

cos(π |i− j |/N)−1
γ 2 if |i − j | < N/2

0 otherwise

. (A.1)

The central row of this translation-invariant weight matrix is shown in
Figures 2C, 7C, and 8C. We used γ = 0.078 for weights shown in Figures
2C and 7C and γ = .2 for weight shown in Figure 8C.

Appendix B: Linearized Form of the Optimal Discrimination
and Estimation Filters

In this appendix, we derive the linearized form of the optimal discrimina-
tion and estimation filters under the assumption that the signal and noise
are both small compared with the carrier and (scaled) Poisson or gaussian
noise. The signal-to-noise ratio of this filter controls the optimal perfor-
mance.

Consider the case that the carrier is at y∗, giving rise to mean activity for
unit i of fi (y∗), and the signal is at ε∗, with activity si (ε∗, y∗). The total mean
activity is

hi (ε∗, y∗) = fi (y∗) + si (ε∗, y∗), (B.1)

whence, assuming that noise is small, the actual activity of unit i , ai is

ai = hi (ε∗, y∗) + δai . (B.2)
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We write hε
i (ε, y) = ∂hi (ε,y)

∂ε
, and similarly for the other partial derivatives.

For scaled Poisson noise, the log likelihood associated with activities ai

is

log P(a, ε, y) = φ
∑

i

ai log hi (ε, y) + K ,

where φ and K are independent of ε, y.
Maximum likelihood inference determines ε and y as the solutions of

∂ log P(a, ε, y)
∂ε

= ∂ log P(a, ε, y)
∂y

= 0. (B.3)

We consider this to first order, where δai , ε, ε∗, and δy = y − y∗ are
very small. Further, we consider the translation-invariant limit, for which∑

i hi (ε, y) is independent of ε and y, and so

∑
i

hε
i (ε, y) =

∑
i

hy
i (ε, y) =

∑
i

hεε
i (ε, y) =

∑
i

hεy
i (ε, y) = 0 ∀ε, y.

(B.4)

If we expand the first part of equation B.3, we get

∑
i

ai

hi (ε, y)
hε

i (ε, y) = 0,

which, to first order about ε = 0, δy = 0, writing hi for hi (0, y∗) and similarly
for the other derivatives for convenience, gives

∑(
1 + δai

hi

) (
1 − ε

hε
i

hi
− δy

hy
i

hi

) (
hε

i + εhεε
i + δyhyε

i

) = 0.

And so, taking advantage of equation B.4, we get

ε

(∑
i

(
hε

i

)2

(hi )

)
+ δy

(∑
i

(
hε

i

) (
hy

i

)
(hi )

)
=

∑
i

δai
hε

i

hi
, (B.5)

and similarly

ε

(∑
i

(
hε

i

) (
hy

i

)
(hi )

)
+ δy

(∑
i

(
hy

i

)2

(hi )

)
=

∑
i

δai
hy

i

hi
. (B.6)
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If we denote α = ∑
i

(hε
i )2

(hi )
, β = ∑

i
hε

i (hy
i )

(hi )
and γ = ∑

i
(hy

i )2

(hi )
, then solving the

simultaneous equations B.5 and B.6 for ε gives

ε = 1
αγ − β2

∑
i

(
γ hε

i − βhy
i

hi

)
δai .

And thus the linearized ML discrimination filter has the ith component

J i
dis−opt = 1

αγ − β2

γ hε
i − βhy

i

hi
. (B.7)

The same procedure can be followed for the case of scaled gaussian noise,
and, given the way we defined it, it leads to the same expression as in
equation B.7.

The procedure to derive the optimal estimator is similar to above except
that the goal is to estimate δy for the case that ε = 0. This therefore involves
only equation B.6, which, imposing ε = 0, gives

δy = 1
γ

∑
i

hy
i

hi
δai .

And therefore the linearized ML estimation filter has ith component

J i
est−opt = 1

γ

hy
i

hi
. (B.8)

Appendix C: Linear Filter and How It Relates
to the Jacobian of the Network

Here we represent the linear filter for the network for which the form of the
carrier and the converged states are the same in terms of the Jacobian of the
network. We define vn = un − āc where u0 = a. If we denote the Jacobian
matrix by K then we have (Pouget et al., 1998)

Knv0 = vn.

This equation implicitly assumes that the Jacobian does not change during
the evolution of the neural activity. Note that u0 = āc + ās + n and that āc is
a function of y (āc = āc(y)) and ās is a function of both ε and y (ās(ε, y)). We
are also assuming that the converged state of the network has the same form
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as the carrier but is at a different location y + δy and therefore is represented
by āc(y + δy):

v∞ = K∞v0 = āc(y + δy) − āc(y) = δy
∂ āc(y)

∂y
. (C.1)

Therefore, we have

K∞ (ās + n) = δy
∂ āc(y)

∂y

⇒
[

∂ āc(y)
∂y

]T

K∞ (ās + n) = δy
[

∂ āc(y)
∂y

]T
∂ āc(y)

∂y

⇒ δy =
[

∂ āc (y)
∂y

]T
K∞ (ās + n)[

∂ āc (y)
∂y

]T ∂ āc (y)
∂y

. (C.2)

And therefore the network’s filter for estimation is

J =
[

∂ āc (y)
∂y

]T
K∞[

∂ āc (y)
∂y

]T ∂ āc (y)
∂y

. (C.3)
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