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The development of the nervous system requires nerve fibres to be guided accurately over long distances
in order to make correct connections between neurons. Molecular gradients help to direct these
growing fibres, by a process known as chemotaxis. However, this requires the accurate measurement of
concentration differences by chemoreceptors. Here, we ask how the signals from a set of chemoreceptors
interacting with a concentration gradient can best be used to determine the direction of this gradient. Prior
models of chemotaxis have typically assumed that the chemoreceptors produce signals reflecting just the
time-averaged binding state of those receptors. In this article, we show that in fact the optimal chemotaxis
performance can be achieved when, in addition, each receptor also signals the number of unbound-to-
bound transitions it experiences within the observation period. Furthermore, we show that this leads to an
effective halving of the observation period required for a given level of performance. We also demonstrate
that the degradation in performance observed to occur at high concentrations experimentally is likely
to result not from noise intrinsic to receptor binding, but rather from noise in subsequent downstream
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signalling.
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1. Introduction

The human nervous system is an incredibly complex struc-
ture: roughly 10'! neuronal cells, each ‘wired’ to on the order of
103-10* others. Furthermore, this structure constructs itself dur-
ing development. Understanding how this is achieved is crucial
for improving the treatment and diagnosis of neurological disor-
ders, for developing our knowledge of biological computation in
general, and perhaps for improving engineering techniques [1,2].
Wiring the nervous system requires the precise guidance of nerve
fibres (axons) to make connections with their appropriate partner
cells [3-6]. Steering a growing axon is the principal responsibil-
ity of the growth cone — a complex structure forming the tip of
the axon, which has both sensory and motor functions [7]. Growth
cones respond to chemical, electrical and mechanical cues in their
immediate environment and transduce these into directed axonal
growth [5].

Extracellular chemical gradients form an important class of
such guidance cues [5]. To respond to a chemical gradient, a growth
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cone must be able to estimate how the external concentration
varies across its spatial extent [8]. However, as with any sensory
process, making such an estimate is subject to noise that
potentially obscures any systematic concentration variation due to
an external gradient [9-16]. More specifically, two critical issues
that limit the accuracy with which the gradient can be estimated
are as follows. The first is spatial uncertainty: a growth cone
probes its environment with specialized chemoreceptors, which
transduce external cues into intracellular signals — however, the
position of a receptor on the surface of the growth cone must
be estimated from the signals it produces, reducing its reliability.
The second critical issue is temporal uncertainty associated with
stochastic binding and unbinding of receptors. In other work, we
have considered the effects of spatial uncertainty [17]; here, we
focus on the temporal issues.

The influence of noise on chemotaxis has been studied in
a number of situations other than the guidance of axons. In
particular, the slime-mold Dictyostelium discoideum and leukocytes
have been the subject of theoretical attention along these lines for
anumber of years [9,14,15,18-20]. A common assumption in these
studies is that it is the time-averaged occupancy of receptors that
is the relevant signal used by the cell to estimate the concentration.
However, whether this is in fact the optimum information for
receptors to ‘pass on’ for effective gradient detection has not been
established.
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In this article, we explicitly model ligand-receptor binding over
time, and determine the quantities of most value to a growth
cone to extract from its receptors. We find that, in contrast to the
typical assumption of receptor occupancy made in the literature,
gradient direction can be better measured by estimating the
length of time for which a receptor remains unbound, on average,
before becoming bound: a calculation requiring more information
from the receptors than simply their time-averaged occupancy. In
particular, we show that when the chemoreceptors report how
often they transition from unbound to bound, as well as their
time-averaged binding state, the observation time is effectively
doubled. These results give new insight into how fundamental
physical limits constrain the ability of growth cones, and other
small sensors, to measure external chemical gradients.

2. A general one-dimensional model for gradient sensing

We imagine that the growth cone senses its environment
through a collection of spatially distributed “measurement de-
vices”. For example, these might represent chemoreceptors or
clusters of chemoreceptors. Each of these devices interacts with its
local environment - described entirely by the local average con-
centration of guidance cue, C - and produces an observation O
with probability P(O|C). Suppose the growth cone has a collection
of such devices, located at positions 7 = (X1, X2, ..., Xy), and is
immersed in a concentration field with spatial variation C(x) =
C(0) x (1 + ux); then the joint probability of making the set of
observations O = (01, 05, ..., 0y,) is

P(0IC(0), ) = HP(OiIC(O) X (14 pxi)). (1)

Here, u is the relative change in concentration across the spatial
extent of the growth cone.

Assuming shallow gradients (i.e. small ©), and expressing
the concentration in dimensionless units, replacing C(0) with
y = C(0)/Ky (when we explicitly consider chemoreceptors, we
measure the concentration in multiples of the receptor dissociation
constant K;), we can approximate this with

P(Oly, ) = P(Oly) exp [Z log P(Oily x (1+ /fo))} (2)

> d
~ P(Oly) [1 +uZx,~ydylogP<oi|y>] (3)
i
Applying Bayes rule and marginalizing over y, we have
- d
P(1I0) o P(1) + iP(1) Y xiy = log P(Oi]y), (@)
i dy

where, to simplify the discussion, we have assumed that the
growth cone’s posterior uncertainty concerning y is negligible.

By obtaining an expression for P(0;|y), we can therefore find
P(t]0), the posterior prgbability that the gradient strength is u
given the observations O. In the case where P(u) is symmetric
about 0, the growth cone can decide between turning left or right
by comparing

> d
x(0) = foy@ log P(Ojly) 5)
to zero: if x is greater than zero then the gradient most likely points

right, while if x is less than zero, it most likely points left. We define
xi as the coefficient of x; in this sum; i.e.,

d
Xi=vq log P(Oi]y). (6)
Y

3. Gradient sensing with complete information about receptor
binding

We now derive an expression for the probability of observing a
particular sequence of receptor binding states given a particular
background concentration. We then substitute this into our
formula for optimal gradient detection, Eq. (5), and give an intuitive
explanation for the results.

We model receptor binding as a continuous time, two-state
Markov process: one state represents the receptor in its bound
configuration, while the other represents the receptor in its
unbound configuration. The transition rates between the states are
denoted r_ (for the transition from a bound state to an unbound
state) and ry = Ck, (for a transition from an unbound to a bound
state). Here, C is the local concentration of ligand at the receptor.
Following the Michaelis-Menten model of receptor dynamics, the
dissociation constant of the receptor is Ky = r_/k,. Writing y =
C/K, for the dimensionless concentration obtained by scaling C by
K4, we can also express the unbound-to-bound transition rate as
ry =yr_.

As illustrated in Fig. 1, each observation O; consists of a
function b;(t), describing the binding state of the ith receptor
for each time t during the interval for which the growth cone is
making its observation, [0, T]. Since the transitions are assumed
to be instantaneous, specifying b(t) is equivalent to specifying a
sequence of times ¢ at which a receptor changes binding states,
along with the initial state of the receptor b = b(t = 0); thus
each observation can be described by the pair (t, b), where t is of
some arbitrary length n. For example, f may be of length n = 0,
describing the case in which no transitions occur in the interval
[0, T). For ease of presentation, we will simply refer to £ and n in
the following, it being understood that neither are fixed quantities.

To obtain an expression for P(?, bly,T) - the probability of
observing binding state transitions at times ¢ with initial binding
state b, over a time T at background concentration y - we find
P(?| y, T, b), the probability of observing a series of transition times
t within a time T assuming that the receptor began in a state b, and
then multiply by the probability of observing the receptor in state
battimet = 0:

P(t,bly,T) = P(tly, T, b)P(bly). 7)

The likelihood of observing a particular trajectory of binding
states b(t) = {b, (t1,...,t;)} over a period of time T, given
background concentration y, can be obtained approximately by
dividing [0, T] into small intervals of length §t, which are small
enough that the probability of more than one transition occurring
within one interval is negligible:

St"P(ty, ty, ..., tyly, b, T)
~ exp(—rot1)rodt X exp(—ri(ty — t1))r16t
X eXp(—Tyq—1(th — th—1))rn_16t exp(—1(T — t,)), (8)

where 1, represents the appropriate transition rate for the mth
transition; i.e.,

__Jyr— ifm+biseven
rm—{r if m + b is odd. ©)

Dividing both sides by §t™ and taking the limit as §t goes to zero,
we obtain the exact result:

P(tly,b,T) = ror1...Tn1
x exp(—roty — it —t1) — -+ — (T — t))
= rﬁb”(yr_)"”b exp(—r_Tp, — yr_Ty), (10)

where np, and ny, are the number of bound-to-unbound and
unbound-to-bound transitions, respectively, and T, and T, are the
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Fig. 1. A one-dimensional framework for gradient sensing. Receptors are located at positions X1, X2, . . ., Xy, measured relative to the central axis of the growth cone (for
clarity, only five are shown in the figure). The growth cone is immersed in a time-invariant concentration gradient C(x) = C(0) x (14 ux) (shown in green). The state of the
receptors changes with time between unbound and bound, as described by b;(t) (the initial state of the receptors, as illustrated on the schematized growth cone, corresponds
to b;(tp)). The growth cone must use information gathered from its receptors about their state over a period of time T to make a decision as to whether the gradient points
left or right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

total times spent bound and unbound (i.e., T, + Ty = T). From this,
we can see that, for any ¢, P(t|y, b, T) is entirely determined by
the time the receptor spent unbound T,, and the total number of
transitions n, since we can write n,;, and ng, as functions of n and
b:

_ ) In/2] neven
n”b_{Ln/2J+1—b n odd (11)
) In/2] neven
Mpu = {Ln/ZJ +b nodd (12)
where, for any real number x, | x| is the largest integer less than or
equal to x.

Thus, it is economical to use P(Ty,n|y,T,b), rather than
P(b(t)|y,T,b) in future calculations. In order to obtain
P(Ty,nly, T, b) from P(t]y, T, b), we must account for the infi-
nite number of possible t which yield the same n and T,. Writing
t = (ty,...,ty), we have that

P(T,nly,b,T)= Y
{t1Tu @,b)=Tu}
= P(tly, T, b)V(Ty, n; T, b)
= ™ (yr_)w exp(—r_Ty — yr_T,)V(Ty, n; T, b), (13)
where V(Ty, n; T, b) denotes the ‘volume’ taken up by vectors t for

which n(f) = nand T, (&, b) = T,.
This volume is given by

V(Tm n; T’ b)

T T T
=/ dtlf dtz...f de,6(Ty(tq, ..., tn) — Ty)
0 tq th—1
Ty Ty Ty Ty
(/ dsl.../ dsnu1> (/ dq1.../ dqnb1>
0 Sny—1 0 Anp—1

TMu Tnb
=L b (14)
ny! np!
where n, and n,, are the number of “free” transitions from unbound
to bound and bound to unbound, respectively:

_ {Ln/ZJ nodd

P(tly, T, b)

Y7 )In/2] —b neven (15)

n odd

_ {LH/ZJ (16)
neven.

™=1\[n/2] —1+b

By “free” transition, we mean those transitions for which we have
no constraints concerning the time within the interval [0, T] at
which they occur. For example, if only one transition occurs (n =
1), then there are no free transitions, as this transition must occur
in such a way that the total time the receptor spends unbound is
T,.

Substituting into our expression for P(Ty, n|y, b, T), we have

(yr> T, Tp) ")
P(Ty,nly,b, T) = W exp(—yr_T, —r_Tp)
yi=° nodd
n/2
X Ll_Jb nevenandn # 0. (17)
TbT,)

For n = 0, we have
P(Ty,nly,b,T) = bexp(—r_T)&(T,) + (1 — b) exp(=yr_T)3(Tp)

(yr2T,Ty) /2!
= ——exp(—yr_T, —r_Ty) (bé (T,
/2] p(—yr-Ty b) (b8 (Ty)
+ (1-b)5(Tp)), (18)
where §(T,) and 8(T},) are Dirac delta functions, so
_Jo ifogl
/,5(")‘1"— {1 ifo e 1. (19)

Assuming that the growth cone’s receptors are at equilibrium
at the beginning of the measurement period, and hence that
P(bly) = y?/(1 + y), then writing P(T,, n, bly, T) = P(Ty, n|y,
b, T)P(b|y), we obtain

exp(—yr_T, — r_Tp) Y (yr2 T, Tp) /2!

P(TLhnsbh/vT): 1+y Ln/ZJ'Z
bS(T) + (1—b)s(T) n=0
1-b dd
X |_n/2J no (20)

nevenandn # 0.

TbT) P
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We can now use this to determine x in Eq. (5), given 0; = {n®,
1", bV}:

d . . .
Y4y log P(T", n®, b@ |y, T)

Xi =
. . . —bD ifn® odd
— 10D /21 +pD — v 70 1-b ifn" o
/2] + 1+y yr=l o ifn® even.
(21)

Since ny is just [n/2] if nis even, or [n/2] + 1 — b if nis odd, this
is just
p_ Y 0
= pD n
Xi 1+ % + ub

This expression can be decomposed into two terms. The first
characterizes the information provided by the initial state of the
receptor:

—yr T, (22)

W _ pG) 4
X bV — ———. (23)
init — -1 + J/
The second term corresponds to information obtained by
following the receptor’s state over time:
X t(!) — (!)
This term is essentially equivalent to comparing an estimate of
the local concentration at the ith receptor to an estimate of the
concentration at the center of the growth cone. More specifically,
given n,, complete bound-unbound-bound sequences of total
time T, we could estimate the local concentration y; by noting that
the expected time t, for the ith unbound receptor to become bound
is 1/(r_y;),and hence = 1/(r_t,). Given T." and nf,'g, an obvious
estimate of ¢, is T.” /nsg, and this gives us p; = nf,'; r_T").
We assumed that the growth cone has accurate knowledge of the
average background concentration y, so Eq. (24) is just

x(7i—v). (25)

If there was no gradient (u = 0), we would expect Xr(l) to be zero
on average, as any systematic deviation in y; from y is a result of a
non-zero /.

Finally, substituting Eq. (22) into Eq. (5), we find that the growth
cone’s optimal strategy is to compare

X = Zx,- X (b(i) Tay 4+l — yr_T(')> (26)
1

with zero. This is the main result of this section.

—yr_T. (24)

X() —r T(l)

4. Gradient sensing with time-averaged occupancy

We now focus on the case in which the growth cone knows only
the average occupancy f of each receptor, where f = T, /T. Hence,
we need an expression for P(T,|y, T) independent of the initial
binding state and the number of state-changes. We can obtain this
by marginalizing over b and n in (20):

P(Tyly,T) = Y Y P(Ty,n,bly,T)
b n

_ Z (yr2T,Tp) 2! exp(—yr_T, — r_Tp)

n Ln/2]1? T+vy
y8(T) +8(Ty)  n=0
2r_y nodd

[n/2] (— + —) nevenandn # 0
T, T

_exp(=yr-Ty —r_-Tp)
- 1+y

T, Tp)"
(M(TU) +8(Ty) +2r_y Z u

= I1?
y
(T

I(yr2T,T,)
Tb)Z I? ) (27)

This can be expressed more succinctly by making use of the series
expansion for integer-order modified Bessel functions [21],

AR (/4"
v =(3%) Laro s )

leading to
exp(—yr-Ty —r_Tp)
1+vy

x (J/S(Tu) + 8(Ty) 4 2r_ylo (2\/ yriTuTb>
1
+ Sy T, (TZ n TT,) I (;/yriTuTb)) . (29)

We can now determine the probability of observing an average
occupancy f by recasting Eq. (29) in dimensionless units (with
T, > Tp/T=fand Ty - (T —Tp)/T=1—f,andt =r_T):

rexp(=t(y(1—=f)+f))
1+y

x (3300 + Lo 1)+ 2910 (26570 -D)

1

7fa=D (f - ﬁ) h (20 vvfC —f))) SN
In making the change of variables T, — f, we have multiplied
by T in Eq. (29), and divided by T in §(T,) and 8(T}), so that the
transformed formula is also a probability distribution.

Given Eq. (30), we find y% log(P(f|y, t)), and approximate
by substituting the first term in the asymptotic expansion of the
Bessel function I, (x), which is

P(Tyly,T) =

P(fh/v T) =

X

e
I,(x) ~ . 31
*) Nors (31)
After some rearrangement, this gives
yilogP% ! lm_ 1=/
dy 1+y  2/yf+J/1—F
+WrfA=f) =y -t (32)

which holds for large 7/yf(1 — f).

To explore further, we note that, for shallow gradients, f; should
be close to for large 7, and hence replace f; with 5 V +8i. Under

the addltlonal assumptions that §; < 7 V and §; <<
the ith receptor, Eq. (32) can be approxnmated by

1 1Y 1+1+7V3i— 1=+ y)é
_’_7
TRy 2y i By JT= T+ )8

<\/(1+J;”5)(1—(1+y)3)

- 1-0+ V)&'))

1+ , then for

Xi =

T
1+y
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11 1
~ 3 + 551‘4‘ S+ y)diT
7+1(1+(1+y)r)<f——” ) (33)
T+y

This approximate expression is the main result of this section, and
it shows how the growth cone’s optimal steering decision is re-
lated to the ith receptor’s time-averaged binding state f;, the total
(dimensionless) observation time T = r_T, and the mean concen-
tration y. We can compare Eq. (33) to the related expression for the
full-knowledge case (Eq. (22)) by rewriting it in the following form:

X~ (1 i HrD Ay ) STl (34)
The final term in this expression is identical to the final term in Eq.
(22). We hypothesize that the first term estimates nf,'l),; however,
more analysis is required to establish this definitively.

5. Comparing the performance of the full-knowledge and time-
averaged occupancy cases

It may be that, when the growth cone is restricted to knowing
only the time-averaged occupancy of its receptors, its performance
is significantly impaired when compared with the situation in
which it has full knowledge of its receptors’ states; or it could be
that its performance is barely affected. Thus, we now compare the
performance of the two decision mechanisms developed in the
previous sections, described by Eqs. (26) and (33).

We define the sensitivity of a particular strategy x under
particular gradient conditions (i.e., a single choice of (y, n)) as
the probability Py that the growth cone will choose the correct
gradient direction using the x strategy under those gradient
conditions. In order to estimate this probability, we apply Monte
Carlo simulation, using Gillespie’s Stochastic Simulation Algorithm
[22] in order to generate sequences of receptor binding states
over time. We then estimate Py based on the fraction of such
trajectories for which a correct decision would be made.

For each concentration, we generated Nigjecrories = 10000
receptor binding trajectories each of length t = 80. For each
trajectory we determined the optimal decision the growth cone
could make at various time-points given its assumed level of
knowledge about the binding states of its receptors. The error bars
shown reflect the standard deviation in the mean for a binomial
distribution with success probability given by the estimated value
of Peorrect: 0 = \/Pcorrect(l — Peorrect )/ Nirgjectories- In €ach simulation,
u = 0.01 (i.e. a 1% gradient), and the growth cone was assigned
200 receptors. Note that while real growth cones probably have
many more receptors than this, our aim in these simulations was to
explore the performance of the optimal strategies, not to compare
them to real growth cones. Thus, to reduce the simulation time, we
considered areduced number of receptors. In any case, because the
model assumes no interactions between receptors, changing the
number of receptors can have only trivial effects on performance
(i.e., performance scales with the square root of the number of
receptors).

Fig. 2A illustrates the gradient sensing performance in the
long time limit (z > 1) for the full-knowledge and average
occupancy situations. Each curve is for a different value of t. One
interesting feature of Fig. 2A is that the performance plots of
the full-knowledge and average occupancy situations both have
very similar characteristics — in particular it appears that the
average occupancy performance is essentially identical to the full-
knowledge performance, assuming that half the time was allowed
for observation.

Some intuition for this effect comes from assessing the Fisher
information I, in the knowledge about the gradient steepness

in the two cases. Expanding the exponential in Eq. (2) to second
order, then substituting the definition of yx; from Eq. (6), we obtain
an approximate expression for the Fisher information in u for the
general case we considered in Section 2:

92 -
I, = —<3M210gP(O|y, u)>6
- —le}zy2<d)ﬁ>&. (35)

dy v [

It is now straightforward to approximate the Fisher information
concerning w in the full-knowledge and average occupancy
situations. For the full-knowledge case we obtain

NZ( (l) >6_p2)

~ N(pt + p(1 — p)), (36)

where we have used (b;) ~ p and <nfj;> ~ pt (justified below).
Similarly, for the average occupancy case, combining Egs. (33) and
(35), we obtain

P

lOgP(O |J/)>

I ~ Z(<1+r)<ﬁ> +(1—p)(1+p))

N
~ 5(pf+p(1 -+ (37)

noting that (f;)5 ~ p. When 7 is large, we see that roughly twice
the information is available in the full-knowledge case compared
to the average occupancy case, as observed in Fig. 2A.

A second feature of Fig. 2A is that, for each value of t,
the gradient sensing performance increases monotonically with
concentration. This contrasts with experimental observations, in
which the performance is typically biphasic, peaked near the
dissociation coefficient of the relevant receptors, as shown in
Fig. 2B. In the case of our simulations, this unrealistic behaviour
occurs because, under the current assumptions of the model, the
growth cone can measure the interval of time for which a receptor
is unbound with perfect accuracy. As a result, as the concentration
increases and the length of time the receptor spends unbound
decreases, the growth cone essentially reaches a limit to sensing
accuracy related to the number of unbound-to-bound transitions
that can occur within the observation period. In other words,
each unbound-to-bound transition constitutes a “measurement”
of the local concentration, and each individual measurement has
the same degree of uncertainty associated with it, regardless of
the background concentration, because we have assumed that the
only uncertainty stems from the inherent stochasticity of receptor
binding, not in downstream processing. As a result, the gradient
sensing accuracy is limited by the number of such measurements
that can occur in a given period of time, which is in turn limited by
the time it takes to “reset” the receptor to its unbound state.

This means that the gradient detection performance of the
growth cone should be determined solely by the number of such
measurements that can be made. We can estimate this by noting
that, on average, the time it takes a receptor to make a single mea-
surement, and return to the unbound state, is given by the sum of
the average time it takes the receptor to become bound, 1/y1_,
and the average time for which it remains bound, 1/r_. In an ob-
servation time T, the number of measurements a single receptor
can make is roughly

T

ot e

~
Nineas ~
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Fig. 2. Theoretical and experimental sensitivity curves. A: The solid lines show the theoretically optimal performance when it has full knowledge of its receptors’ dynamics,
while the dashed lines show the performance when only the time-averaged occupancy of each receptor is known. Note that the time-averaged occupancy performance closely
matches the full-knowledge performance when the observation time is halved. B: Experimentally measured gradient sensing performance (data reproduced from [23]). Rat
pup dorsal root ganglia were exposed to a gradient of nerve growth factor (NGF), allowed to grow for 48 hours, and then imaged. The degree of asymmetry in the resulting
neurite growth was quantified and plotted against concentration (see [23] for details). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig.3. The performance of both the full-knowledge and average occupancy optimal
strategies is directly proportional to ,/pt at long times. The data from Fig. 2A is
replotted, showing direct proportionality between Py and ,/pT.

r_T
a+y)/y
= pT,
and therefore we would expect the growth cone’s gradient sensing
performance to be proportional to /fpeqs = /o 7. Indeed, this is

exactly what we observe in our simulation results for both the full-
knowledge and average occupancy cases, as illustrated in Fig. 3.

(38)

6. The effect of downstream noise on gradient sensing

If we included a realistic mechanism for measuring time inter-
vals - such as the production of second messenger molecules at a
rapid, but finite rate - smaller time intervals would be measured
with diminishing accuracy until, eventually, the limiting factor in
determining the sensing accuracy at high concentrations would be
the accuracy to which small time intervals can be measured, rather
than the number of measurements that can be made. To illustrate
this, we estimate the degradation in performance at high concen-
trations, supposing that unbound receptors produce downstream
signals as a Poisson process with rate gq.

Denoting the quantity of signalling molecules produced by a
given receptor by m, we have

(qTy)™ exp(—qTy)

P(m|Ty) = o (39)
where Ty is a random variable defined by

Nmeas
Ty ~ Z t. (40)

I=1

The t; are independent, exponentially distributed random variables
with mean (yr_)~!, and npeq is the number of “measurements”
(i.e. unbound-to-bound transitions) that occur. Since we are
particularly interested in the case where y is large, we will assume
that the number of measurements is determined by the time
it takes a receptor-ligand complex to dissociate. Hence, nyeqs is
closely approximated by a Poisson random variable with expected
value r_T = t. We will focus on the limits where both t and
q(Ty) are large. Under these conditions, the Central Limit Theorem
allows us to assume that P(m|y,T) = fOT P(m|Ty)P(Tyly, T)dTy
is roughly normally distributed. Thus, to approximate P(m|y, T),
we need to find the mean (m), r and variance (m?), r — (m)? ; of
m.

In order to calculate the mean and variance of m, we first
calculate the moment generating function for m,

o0
Mn(2) = Y P(mly, T)e™
m=0
T e’}
= f dTyP(Tyly, T) Y P(m|Ty)e™
0 m=0
TdTPT T o ! T e?)" T,
—/O Pty D3 (aToe)” )

T
= / dTyP(Tyly, T) exp (qTy (¢* — 1))
0

= M, (a ("~ 1)), )

where My, is the moment generating function for Ty. To calculate
My, we use the fact that the probability distribution for a random
variable which is a sum of independent, identically distributed
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Nmeas

(iid.) random variables (i.e, Ty = > ™" t;, where each of the t;
are i.i.d.) is just the convolution of the distributions of the summed
variables (i.e., P(Ty|y, T, Nmegs) = [*"™e P(t;]y)] (Ty), where %" is
defined recursively by [«"t1f(t)] = fO[ dsf (s)[*"f(t — s)]), and
then

T
Mg, (s) = / dTyP(Tyly, T)e’v
0

)
= 3 Pltnasly T) [ dluP(Tuly. T. 1y
0

Nmeas
T

= Y Pltmaly. D) [T [ PGilp)] T)e™

Nmeas 0

T Nmeas

= > P(Nmeasly, T) [ f dtP(tw)e“]

Nmeas 0
=Y P(easly . TIMy,(5)"™

Nmeas

1 Nmeas

=Y —— (M) exp(—1)

Nmeas nmeas-
= exp [t (M(s) — 1)], (42)

where we have used the fact that the Laplace transform of a convo-
lution of functions is just the product of the Laplace transform for
each function individually. The moment generating function for ¢;
can be found by an elementary integration:

M;,(s) :/ dtP(t]y)e™
0

/ de(yr_)expl(s — yr) ]
0

r_
yr_ —s
and so, combining all of the above, we obtain
Mn(2) Y 1
Z) = ex - -
" PP —qe@ -
2 —1
= exp ‘L’M . (44)
yr-—q(e —1)

We can easily determine the mean and variance of m from the
moment generating function by noting that, given the moment
generating function of a random variable X, the kth moment is
given by

dk
ky zX
(X = <—dzke >

k

d

and hence

s=0

d qe*—1)
(m) = —exp|ltT——mm——
dz yr_ —rq(e* — 1)
yr_qe* |:
=1 exp
(q(er —1)—yr)?
L9 9,
yir? .y
and (without giving details of the differentiation)
2T2 2¢°T? T\?
o ()
14

z=0
qe*—1) }
yro—q(er—1)

z=0

(46)

1
(m?) — (m)? = —qT + “— -
14 14 r-y

15 T

low + approximation

——er_fqg=1
- == /g =100
7 /g = 10000

Performance (arbitrary units)

1072 100 102 10* 108
Scaled concentration, 7

Fig. 4. The gradient sensing performance degrades at high concentration when
downstream constraints on how accurately the period of time for which a receptor
is unbound can be measured are included. The concentration at which performance
is impacted depends on the relative timescales of receptor-ligand interaction,
and downstream signalling. While our methods do not allow us to estimate the
entire sensitivity curve, we might expect performance to behave somewhat like
the product of the low-concentration (in blue) and high-concentration (in red)
estimates. This is shown in green for the case in which downstream signalling
occurs on the same timescale as receptor-ligand interaction. Note that now, the
performance decreases at high concentrations, consistent with experimental data.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

1 2q
—qT | 1+ —
v r-y

a4, <1 + 2—q> . 47)
r-y r-y

Assuming that the receptors are distributed symmetrically
around the center of the growth cone, then, for small u, the
gradient sensing performance should be proportional to the signal-
to-noise ratio:

P 1)
2 ((m) — (m)?)
wy lldimy/dy |

Thus, the concentration at which gradient sensing performance
begins to decay is determined by the ratio of timescales of receptor
signalling to receptor binding, ¢ = r_/q. This is illustrated
in Fig. 4, in which the performance at high concentrations is
compared for a range of different €, with T = 100. As the rate of
downstream signalling increases, the performance is maintained at
higher concentrations; this is to be expected, as the accuracy with
which a short interval can be estimated by counting the number of
Poisson-distributed events that occur within it is proportional to
the expected number of signalling events within that interval.

7. Discussion

We have introduced a general framework for modelling gra-
dient detection in one dimension, and have applied it specifically
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to the problem of extracting optimal information from individual
chemoreceptors, given their binding states over time. We found
that, for optimal detection of an unchanging external gradient, a
receptor needs to provide two key quantities: the total time spent
unbound within the observation period, and the number of tran-
sitions from unbound to bound occurring within that period. This
contrasts with what is generally assumed in the chemotaxis mod-
elling literature: namely, that a cell or growth cone knows only
the time-averaged binding state of its receptors. We demonstrated
that signalling in this manner effectively decreases the sampling
time by a factor of a half — in other words, when only the time-
averaged binding state is known, half the information available to
the cell is discarded.

By simulating the gradient sensing performance achievable by
these two signalling strategies, we found that the performance was
monotonically increasing with concentration. This contrasts with
experimental results, where the gradient sensing performance is
biphasic with concentration. We proposed one possible explana-
tion for why the performance might decay at high concentrations:
as the concentration increases, it is increasingly difficult for the
receptor to transmit accurate information about its binding trajec-
tory, leading to a degradation in performance at high concentra-
tions. The concentration at which this decay occurs is determined
by the maximum rate at which downstream signalling molecules
can be produced.

An interesting corollary of this suggestion is that it ought to be
possible to independently manipulate the concentrations at which
the gradient sensitivity initially rises from zero, and falls back to
zero, by varying the ligand-receptor interaction kinetics and rate
of downstream signalling, respectively. We might expect these to
be at least partially decoupled in physical receptors, as presumably
the rate of downstream signalling is primarily determined by the
intracellular domain of the receptor, while the kinetics of ligand
interaction may be primarily determined by the extracellular
domain.

Finally, we note that while we have specifically focussed on
temporal aspects of gradient sensing here, the interface between
temporal and spatial uncertainty might provide a wealth of
interesting problems. Ligand molecules diffuse in the surrounding
medium and can interact with multiple receptors over a period of
time (introducing correlations between adjacent receptors). The
growth cone moves through its environment, and the environment
is itself dynamic: the very quantities the growth cone is trying to
estimate can be changing with time. Somehow, the growth cone
must make reliable and useful decisions and estimates against this
dynamic backdrop.

Acknowledgements

Funding comes from an Australian Postgraduate Award (DM),
an Australian Research Council Federation Fellowship (KB), the

Gatsby Charitable Foundation (PD), the Australian Research
Council (Discovery Grant DP0666126) and the Australian National
Health and Medical Research Council (Project Grant 456003).

References

[1] Hugh D. Simpson, Duncan Mortimer, Geoffrey J. Goodhill, Theoretical models
of neural circuit development, Curr. Top. Dev. Biol. 87 (2009) 1-51.

[2] Johannes K. Krottje, Arjen van Ooyen, A mathematical framework for modeling
axon guidance, Bull. Math. Biol. 69 (2007) 3-31.

[3] Marc Tessier-Lavigne, Corey S. Goodman, The molecular biology of axon
guidance, Science 274 (1996) 1123-1133.

[4] H.Song, Mu-Ming Poo, The cell biology of neuronal navigation, Nat. Cell. Biol.
3(2001) E81-ESS.

[5] Barry]. Dickson, Molecular mechanisms of axon guidance, Science 298 (5600)
(2002) 1959-1964.

[6] Celine Plachez, Linda ]. Richards, Mechanisms of axon guidance in the
developing nervous system, Curr. Top. Dev. Biol. 69 (2005) 267-346.

[7] Phillip R. Gordon-Weeks, Neuronal Growth Cones, Cambridge University
Press, 2000.

[8] Duncan Mortimer, Thomas Fothergill, Zac Pujic, Linda J. Richards, Geoffrey ].
Goodhill, Growth cone chemotaxis, Trends Neurosci. 31 (2) (2008) 90-98.

[9] H.C. Berg, E.M. Purcell, Physics of chemoreception, Biophys. J. 20 (2) (1977)
193-219.

[10] GJ. Goodhill, J.S. Urbach, Theoretical analysis of gradient detection by growth
cones, J. Neurobiol. 41 (2) (1999) 230-241.

[11] GJ. Goodhill, M. Gu, J.S. Urbach, Predicting axonal response to molecular
gradients with a computational model of filopodial dynamics, Neural Comput.
16 (2004) 2221-2243.

[12] Jun Xu, William J. Rosoff, Jeffrey S. Urbach, Geoffrey J. Goodhill, Adaptation
is not required to explain the long-term response of axons to molecular
gradients, Development 132 (20) (2005) 4545-4552.

[13] William Bialek, Sima Setayeshgar, Physical limits to biochemical signaling,
Proc. Natl. Acad. Sci. USA 102 (29) (2005) 10040-10045.

[14] Masahiro Ueda, Tatsuo Shibata, Stochastic signal processing and transduction
in chemotactic response of eukaryotic cells, Biophys. J. 93 (1) (2007) 11-20.

[15] Peter J.M. Van Haastert, Marten Postma, Biased random walk by stochastic
fluctuations of chemoattractant-receptor interactions at the lower limit of
detection, Biophys. J. 93 (5) (2007) 1787-1796.

[16] J.M. Kimmel, R.M. Salter, P.J. Thomas, An information theoretic framework for
eukaryotic gradient sensing, in: Advances in Neural Information Processing
Systems, 19, MIT Press, 2007, pp. 705-712.

[17] D. Mortimer, ]. Feldner, T. Vaughan, 1. Vetter, Z. Pujic, W ]. Rosoff, K. Burrage,
P. Dayan, L. Richards, G.J. Goodhill, A Bayesian Model predicts the response
of axons to molecular gradients, Proc. Natl. Acad. Sci. USA 106 (2009)
10296-10301.

[18] W.J. Rappel, H. Levine, Receptor noise and directional sensing in eukaryotic
chemotaxis, PRL 100 (2008) 228101.

[19] R.T. Tranquillo, D.A. Lauffenburger, Stochastic model of leukocyte chemosen-
sory movement, J. Math. Biol. 25 (3) (1987) 229-262.

[20] Burton W. Andrews, Pablo A. Iglesias, An information-theoretic characteriza-
tion of the optimal gradient sensing response of cells, PLoS Comp. Biol. 3 (8)
(2007) e153.

[21] M. Abramowitz, LA. Stegun (Eds.), Handbook of Mathematical Functions,
Dover publications, Inc., New York, 1970.

[22] D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J.
Phys. Chem. 81 (25) (1977) 2340-2361.

[23] William ]. Rosoff, Jeffrey S. Urbach, Mark A. Esrick, Ryan G. McAllister,
Linda ]. Richards, Geoffrey ]J. Goodhill, A new chemotaxis assay shows the
extreme sensitivity of axons to molecular gradients, Nat. Neurosci. 7 (6) (2004)
678-682.



	Optimizing chemotaxis by measuring unbound--bound transitions
	Introduction
	A general one-dimensional model for gradient sensing
	Gradient sensing with complete information about receptor binding
	Gradient sensing with time-averaged occupancy
	Comparing the performance of the full-knowledge and time-averaged occupancy cases
	The effect of downstream noise on gradient sensing
	Discussion
	Acknowledgements
	References


