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Chemotaxis plays a crucial role in many biological processes, includ-
ing nervous system development. However, fundamental physical con-
straints limit the ability of a small sensing device such as a cell or growth
cone to detect an external chemical gradient. One of these is the stochastic
nature of receptor binding, leading to a constantly fluctuating binding
pattern across the cell’s array of receptors. This is analogous to the un-
certainty in sensory information often encountered by the brain at the
systems level. Here we derive analytically the Bayes-optimal strategy
for combining information from a spatial array of receptors in both one
and two dimensions to determine gradient direction. We also show how
information from more than one receptor species can be optimally in-
tegrated, derive the gradient shapes that are optimal for guiding cells
or growth cones over the longest possible distances, and illustrate that
polarized cell behavior might arise as an adaptation to slowly varying
environments. Together our results provide closed-form predictions for
variations in chemotactic performance over a wide range of gradient
conditions.
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1 Introduction

Motion directed by an external inhomogeneous concentration field—
chemotaxis—is an extremely common strategy used by many biological
systems. For example, chemotactic behaviors are displayed by the slime
mold Dictyostelium discoideum as it hunts for food and responds to stress
from its environment, and neutrophils as they migrate to sites of inflamma-
tion (Downey, 1994; Parent & Devreotes, 1999; van Haastert & Devreotes,
2004). Chemotaxis also plays a crucial role in the development of the ner-
vous system, allowing both migrating cells and axonal growth cones to find
appropriate target regions (Song & Poo, 2001; Mortimer, Fothergill, Pujic,
Richards, & Goodhill, 2008; Lowery & van Vactor, 2009). The importance
of cellular chemotaxis for the correct functioning of organisms across many
different contexts suggests that cells may have evolved sophisticated strate-
gies for extracting as much information as possible from their environment
about the direction of chemical gradients. However, their performance is
ultimately limited by physical constraints, in particular noise intrinsic to
the process of measuring an external gradient. The three most important
sources of such noise are fluctuations in the external concentration as indi-
vidual molecules diffuse, the stochastic nature of receptor-ligand binding,
and fluctuations in signaling events inside the cell due to limited protein
copy numbers (Berg & Purcell, 1977; Bialek & Setayeshgar, 2005).

Since the seminal work of Berg and Purcell (1977) investigating noise con-
straints on the measurement of local concentration, there has been much the-
oretical interest in understanding these fundamental limits to chemotaxis
and gradient sensing (DeLisi & Marchetti, 1982; Lauffenburger, 1982; Tran-
quillo & Lauffenburger, 1986, 1987; Strong, Freedman, Bialek, & Koberle,
1998; Goodhill & Urbach, 1999; Bialek & Setayeshgar, 2005; Andrews & Igle-
sias, 2007; Ueda & Shibata, 2007; Kimmel, Salter, & Thomas, 2007; Endres
& Wingreen, 2008, 2009; Fuller et al., 2010). Further modeling work has fo-
cused on potential biochemical implementations of chemosensory behavior
in cells and growth cones (Hentschel & van Ooyen, 1999; Aeschlimann &
Tettoni, 2001; Levchenko & Iglesias, 2002; Levine, Kessler, & Rappel, 2004;
Sakumura, Tsukada, Yamamoto, & Ishii, 2005; Skupsky, Losert, & Nossal,
2005; Narang, 2006; Skupsky, McCann, Nossal, & Losert, 2007; Onsum &
Rao, 2007; Naoki, Sakumura, & Ishii, 2008). However, none of this work has
addressed the question of the strategy by which a gradient sensor should
combine information from a spatially distributed array of receptors to op-
timally determine gradient direction. We took a step in this direction in
Mortimer, Feldner, et al. (2009), inspired by the analogy with recent work in
systems neuroscience examining Bayes-optimal strategies for making de-
cisions in the face of uncertain sensory information (Green & Swets, 1966;
Ernst & Banks, 2002; Knill & Pouget, 2004; Kording & Wolpert, 2004; Kord-
ing, 2007; Doya, Ishii, Pouget, & Rao, 2007). In particular, we determined
analytically the optimal strategy for a one-dimensional gradient sensor to
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determine whether its local concentration gradient increases toward the
left or the right by formulating this as a problem in statistical decision
theory. In addition, we performed a comprehensive experimental charac-
terization of the response of axons to gradients and showed that variations
in chemotactic performance as gradient steepness and concentration were
systematically varied were consistent with the predictions of the Bayesian
model.

In this article, we initially recapitulate the one-dimensional model, fill-
ing in many technical details that for reasons of space were omitted in
Mortimer, Feldner, et al. (2009). We then significantly extend this theory
in several ways. First, we show how these results predict a limit on how
far a cell or growth cone can be guided by a single gradient. Second, we
extend the model to predict how a cell or growth cone would respond op-
timally to multiple rather than just single gradients. This is an issue of key
importance in nervous system development, where the correct guidance of
axons depends on information gleaned from many different guidance cues.
Third, we extend our model to two dimensions, a more realistic represen-
tation of receptor distributions, which allows a discussion of the model in
the context of polarized versus unpolarized cells. Besides making several
experimentally testable predictions, these results suggest more generally
that a Bayesian approach to predicting optimal performance can be fruitful
at the cellular as well as systems scale.

2 Theory

2.1 Gradient Sensing in One Dimension. We first describe the theory
for a one-dimensional array of receptors, which establishes a framework for
the extensions described later. We model individual cells as collections of
chemoreceptors at positions {x, . . .} ⊂ R and describe an ensemble of cells
by giving a distribution over receptor arrangements Pr ({x}). We assume
that the probability of a receptor being bound is determined by the equilib-
rium condition for Michaelis-Menten kinetics (Lauffenburger & Linderman,
1996) and that all receptors have identical dissociation constants Kd . Thus,
for a receptor exposed to a local ligand concentration c, the probability that
it is bound at any instant is

P(bound) = c/Kd

1 + c/Kd
. (2.1)

We further assume that the cell’s local environment is completely de-
scribed by a function c(x), giving the concentration of ligand at position x.
We focus on gradients that are sufficiently shallow that, on spatial scales on
the order of a cell’s diameter, they are effectively linear (i.e., second- and
higher-order terms in the Taylor expansion of c(x) are strongly dominated
by the first-order term) and can be accurately described by a function of
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the form c(x) = c0 (1 + mx), where c0 is the concentration at x = 0 and m
is the relative rate of change of concentration with position—m = 1

c0

d
dx c(x).

Equivalently, we use dimensionless units obtained by scaling concentration
by Kd , defining γ = c0/Kd as the nondimensional concentration, and scal-
ing distance by the diameter of the cell, l. Positions given relative to this
length scale are denoted r = x/ l, and the dimensionless gradient is μ = ml.
Thus, the probability that a receptor at position r is bound is

P(bound|γ, μ, r ) = γ × (1 + μr )
1 + γ × (1 + μr )

(2.2)

= γ

1 + γ

1 + μr
1 + ρμr

, (2.3)

and the probability that it is unbound is

P(unbound|γ, μ, r ) = 1 − P(bound|γ, μ, r ) (2.4)

= 1
1 + γ

1
1 + ρμr

, (2.5)

where ρ is the probability that a receptor at r = 0 is bound.
The states of the cell’s receptors at any moment are described by two

sets B and U containing the positions of the bound and unbound receptors,
respectively. We assume that receptor binding occurs independently for
different receptors, in which case the probability of obtaining such a state is

P(B,U |γ, μ,R) = CR=B∪U (R)
(

γ

1 + γ

)n (
1

1 + γ

)N−n

×
∏
r∈B

1 + μr
1 + ρμr

∏
r∈U

1
1 + ρμr

, (2.6)

where n = |B| is the number of bound receptors, N = |R| is the total number
of receptors, and CR=B∪U (R) is 1 if R = B ∪ U and 0 otherwise.

We assume that the cell does not have a priori access to complete infor-
mation about the states and positions of its receptors when estimating the
direction of the gradient. It seems unlikely that the cell will have an accu-
rate record of where each of its possibly thousands of receptors are (though
perhaps it might keep track of some summary statistic of receptor positons).
Alternatively, the cell might precisely position its receptors (i.e., perhaps in
a crystalline array). However, cell surface receptors have been observed to
diffuse relatively freely (Ueda, Sako, Tanaka, Devreotes, & Yanagida, 2001;
Tani et al., 2005). Thus, we assume that the cell must infer state and loca-
tions of its receptors on the basis of downstream signals that they produce.
We treat in detail the case when only bound receptors produce signals, and
these signals allow the cell to perfectly determine the positions of the sig-
naling receptors. However, we also provide analogous results for the case
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when only unbound receptors signal, and when both bound and unbound
receptors produce distinguishable signals. We distinguish between these
situations with this shorthand: B for only bound receptors signaling, U for
only unbound receptors signaling, and (B,U) for both bound and unbound
receptors signaling.

We model the cell’s knowledge of its environment and the positions of
its receptors (bound or unbound) with the prior distribution P(μ, γ,R).
Bayes theorem then states that the cell’s knowledge of the environment and
its own configuration after observing receptor signals B is given by

P(μ, γ,R|B) ∝ P(B|μ, γ,R)P(μ, γ,R), (2.7)

where P(B|μ, γ,R) = P(B,R/B|μ, γ,R). In other words, observing the sig-
nal B allows the cell to update the probability distribution representing its
knowledge of the environment and its sensory state from P(μ, γ,R) to
P(μ, γ,R|B).

From this posterior distribution, the cell can make decisions about the
gradient direction. A strategy for gradient sensing is then a function that
relates available sensory input, B, to a direction estimate δ = ±1. Following
the standard decision theory nomenclature, we refer to such mappings as
policies. The aim of our analysis is to find the policy π : {B} → {δ}, which
is optimal in the sense that it maximizes a utility function G(δ; W). This
utility function measures the usefulness of selecting a direction δ, given
that the system is in a particular state, W. In our case, W corresponds to a
particular instantiation of R, γ , and μ. While there are many expressions
that we might choose for G(δ; W) ≡ G(δ;R, γ, μ), for simplicity we take

G(δ;μ, γ,R)attr = δ × sign(μ), (2.8)

that is, the cell maximizes its utility by selecting the direction in which the
gradient points, thus maximizing the correlation between δ and μ.

If the cell knew the state of its environment with certainty, it would be
simple (in principle) for it to select its optimal action by choosing the action
that maximizes the utility function. However, because the cell does not
have perfect knowledge of the state of its environment, it must reason on
the basis of the posterior distribution P(μ, γ,R|B), given its sensory input
B, and prior information P(μ, γ,R). The Bayes optimal policy, πbayes(B) is
defined as the policy that maximizes the expected value E[G(δ;μ, γ,R)] of
the utility function over the posterior distribution:

πbayes(B) = argmax
δ

E[G(δ;μ, γ,R)]P(μ,γ,R|B) (2.9)

= argmax
δ

∫ ∞

0
dγ

∫ ∞

−∞
dμ

∫
d NRG(δ;μ, γ,R)P(μ, γ,R|B).

(2.10)
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Since G(δ;μ, γ,R) depends only on μ and δ, this can be simplified to

πbayes(B) = argmax
δ

E[G(δ;μ)]P(μ|B) , (2.11)

where

P(μ|B) =
∫ ∞

0
dγ

∫
d NRP(μ, γ,R|B). (2.12)

We approximate this strategy for the case when

1. The prior distribution factorizes, that is, P(μ, γ,R) = P(μ)P(γ )P(R),
2. The receptors are distributed independently of each other, that is,

P(R) ∝ ∏
r∈R P(r )—with E[r ] = 0,

3. The cell expects a shallow gradient, that is, P(μ) is strongly concen-
trated near zero—in other words,

∫ ε

−ε
dμP(μ) ≈ 1 for some ε � 1.

4. The cell has a sufficient number of receptors that it can estimate the
background concentration essentially without error.

Under these assumptions we have

P(μ|B) ∝ P(μ)P(B|μ), (2.13)

where

P(B|μ) ∝
∫

d NRP(R)P(B|μ, γ,R) (2.14)

∝
∫
R⊃B

d NRP(R)
∏
r∈B

1 + μr
1 + ρμr

∏
r∈R/B

1
1 + ρμr

(2.15)

=
(∏

r∈B

1 + μr
1 + ρμr

) (∫
dr P(r )

1
1 + ρμr

)N−n

, (2.16)

where we have split the integral over R into a product of integrals over
individual receptors. Since P(μ) is concentrated near zero, we can approx-
imate P(B|μ) by taking a Taylor expansion of its logarithm about μ = 0 to
second order in μ:

log P(B|μ) ≈ constant + μ
∂

∂μ
log P(B|μ)

∣∣∣
μ=0

+ μ2

2
∂2

∂μ2 log P(B|μ)
∣∣∣
μ=0

. (2.17)
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Defining Rb = ∑
r∈B r and Sb = ∑

r∈B r2 and noting that E[r ] = 0, we have

∂

∂μ
log P(B|μ)

∣∣∣∣∣
μ=0

=
(∑

r∈B

r
1 + μr

− ρ
∑
r∈B

r
1 + ρμr

− (N − n)ρ
∫

dr P(r )
r

(1 + ρμr )2

) ∣∣∣∣∣
μ=0

(2.18)

= (1 − ρ)Rb, (2.19)

and similarly,

∂2

∂μ2 log P(B|μ)
∣∣∣
μ=0

= −(1 − ρ2)Sb + 2(N − n)ρ2 E
[
r2] . (2.20)

Thus, we obtain

P(μ|B) ∝ P(μ) exp
[

(1 − ρ) Rbμ

−1
2

(
(1 − ρ2)Sb − 2(N − n)ρ2 E

[
r2]) μ2

]
. (2.21)

In this expression, the first term in the exponential tends to shift the mean of
the posterior distribution for μ in the direction of the center of mass of the
bound receptors, Rb : larger values of Rb tend to indicate stronger gradients.
As long as the term proportional to μ2 is negative (which it almost surely is,
provided ρ is not too close to 0 or 1 and N is sufficiently large), it contributes
to reducing the variance of the posterior estimate of μ.

From this expression, we find the expected value of the utility function,

E[G(δ;μ)]P(μ|B) = δ × E
[
sign(μ)

]
P(μ|B) . (2.22)

Equation 2.22 obtains its maximum value when δ and E
[
sign(μ)

]
P(μ|B) have

the same sign. If the cell is initially completely agnostic about the direction
of the gradient, so that P(μ) is symmetric, then this decision is entirely
determined by the sign of RB, so that πbayes(B) = sign(RB).

The performance of this strategy is given by E
[
G(πbayes(B);μ)

]
P(B|μ,γ ) =

sign(μ) × (P(RB > 0|γ, μ) − P(RB < 0|γ, μ)). We will also refer to this quan-
tity as �P(γ, μ), the probability that μ and RB have the same sign, minus
the probability that they have opposite sign. Since RB is the sum of many
independent random variables, each of finite variance, the central limit the-
orem ensures that (for some range of γ and μ) RB will be well approximated
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by a gaussian distribution. We have

E[RB]P(B|μ,γ ) = E

⎡
⎣∑

j

r j b j

⎤
⎦

= NE
[
r E[b]P(b|μ,γ,r )

]
P(r )

= NE
[
rρ + μρ(1 − ρ)r2]

P(r ) + O(μ2)

= Nμρ(1 − ρ)E
[
r2]

P(r ) + O(μ2), (2.23)

Var(RB)P(B|μ,γ ) = NVar(rb)

= NE
[
r2 E[b]P(b|μ,γ,r )

]
P(r )

− NE
[
r E[b]P(b|μ,γ,r )

]2
P(r )

= ρNE
[
r2]

P(r ) + O(μ2). (2.24)

We can then approximate the performance as

�P(μ, γ ) ≈ sign(μ)erf

(
E[RB]√

2Cov(RB, RB)

)
(2.25)

= |μ|
√

2
π

√
NE

[
r2

]
P(r )

√
ρ(1 − ρ) + O(μ2).

We refer to the term

SNRB = |μ|√ρ(1 − ρ) (2.26)

as a signal-to-noise ratio (SNR). Expressed as a function of concentration,
this is

SNRB = |μ|
√

γ

(1 + γ )3 . (2.27)

Thus, the model predicts a simple linear dependency of gradient sensing
performance on gradient steepness μ, but a variation with concentration γ

that is peaked at γ = 1/2 and falls off away from this value.
Up to an unknown constant of proportionality, this fits well to experi-

mental data for growth cone chemotaxis to nerve growth factor as reported
in Mortimer, Feldner et al. (2009). Furthermore, we obtain a good fit to
previously published data from two other chemotactic systems: leukocyte
chemotaxis to FMLLP (Zigmond, 1981) and D. discoideum chemotaxis to
cyclic-AMP (Fisher, Merkl, & Gerisch, 1989); (see Figure 1). Finally, this
model suggests that signals generated by peripheral receptors ought to be
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Figure 1: The gradient sensing model fits two different model systems in ad-
dition to axonal growth cones (Mortimer, Feldner, et al., 2009). (A) Chemo-
taxis accuracy of D. discoideum in response to cyclic AMP (data from Fisher
et al., 1989). (B) Percentage of leukocytes orienting towards a gradient of
n-Formylnorleucylleucylphenylalanine (FNLLP) (data from Zigmond, 1981).
Experimental data are shown in black in each panel; error bars are 90% limits
in A and SEMs in B. Gray curves are least-squares best fits of performance of
the optimal strategy assuming only bound receptors produce localized signals.
To fit, we assumed a linear relation between the experimental measures and
the signal-to-noise ratio and allow the receptor dissociation constant Kd to vary.
Best-fitting Kd values agree well with published experimental measurements.

weighted more highly than those generated by receptors located near the
cell center (for a discussion of how this might be implemented biologically,
see Mortimer, Feldner et al., 2009).

In this derivation, we focused on signals generated by bound receptors.
However, in principle, unbound receptors might also produce signals in the
absence of signaling from bound receptors or distinguishable from signals
produced by bound receptors. This changes the information available to the
cell and thus alters its gradient sensing performance. Following a similar
process to that described above, it can be shown that when both bound and
unbound receptors produce signals that can be distinguished from each
other (so that in principle, the cell knows the locations of all of its receptors),
gradient sensing performance is determined by a modified signal-to-noise
ratio,

SNR(B,U) = |μ|
√

ρ(1 − ρ), (2.28)

while if only unbound receptors produce signals, performance is deter-
mined by

SNRU = |μ|ρ
√

1 − ρ. (2.29)
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Figure 2: Gradient sensing performance depends on the signaling model. When
only bound, or only unbound, receptors produce well-localized signals, perfor-
mance is degraded at high or low concentrations, respectively, compared to the
case when both bound and unbound receptors produce distinguishable signals.

Figure 2 illustrates the variation in performance with concentration for
these three signaling conditions (equations 2.26, 2.28, and 2.29). As is clear
from the figure, when both bound and unbound receptors produce signals,
the gradient performance is better than when only bound or only unbound
receptors produce signals. When only bound receptors produce signals, per-
formance is degraded at high concentrations. This reduction in performance
comes about because the cell is unable to distinguish between asymmetric
signals due to the concentration gradient or signals stemming from asym-
metries in how the receptors are distributed. These latter spurious signals
play a larger role at high concentrations, thus reducing performance. This
situation is reversed when only unbound receptors produce signals.

2.2 Maximum Distance for Guidance by a Single Gradient. We now
use the theory above to predict the gradient shapes that would be opti-
mal for guiding a chemotactic device over the longest possible distance
(Goodhill & Baier, 1998). During neural development, chemical gradients
are often involved in directing neurons and their axons to their appropri-
ate target locations. In order to achieve robust developmental repeatability,
presumably a threshold level of allowable error can be accepted: as long
as errors are not made too frequently, they can be corrected by subsequent
behavior. In general, we would expect there to be an inverse relationship be-
tween the maximum possible distance over which guidance can occur, and
the level of error that can be tolerated, for a fixed investment of resources
(such as number of receptors, or cell size) in the cell’s sensory equipment.



346 D. Mortimer, P. Dayan, K. Burrage, and G. Goodhill

While it seems unlikely that we will be able to determine how an organism
might trade off between cell sensory performance and energy that might
otherwise be used elsewhere, we can consider what general features we
would expect to see in gradients that are designed to provide guidance
over the largest possible distance to within a tolerable level of error to cells
with fixed sensory capabilities.

In previous work we considered what gradient shapes would be optimal
in this sense under simpler models of the constraints underlying chemotaxis
(Goodhill, 1997; Goodhill & Urbach, 1999). Under the Bayesian framework,
the idea of a maximum error rate or threshold for successful guidance
naturally maps to a threshold on the signal-to-noise ratio. Thus, we consider
a gradient γ (x) to provide effective guidance over a region 	, when, for each
position x within 	, the signal-to-noise ratio is greater than or equal to some
threshold θ . In other words, no matter where the cell is within the gradient,
the gradient provides enough information to the cell for its error rate to
remain below threshold.

Substituting μ = l
γ

dγ

dx = l 1
ρ(1−ρ)

dρ

dx into equation 2.25 and comparing with
the threshold θ , we find that effective guidance can be achieved whenever

l
ε

1√
ρ

dρ

dx
≥ θ, (2.30)

where l is the width of the cell (and thus sets the relevant length scale for

the problem) and ε =
√

π/2NE
[
r2

]
P(r ).

The gradient that would provide guidance over the longest distance is
therefore obtained by enforcing equality in equation 2.30. Integrating the
resulting differential equation yields an expression for the one-dimensional
distribution of guidance cues that achieves this theoretically optimal
performance:

∫ ρ

0
dρ ′ 1√

ρ ′ = 2
√

ρ = x
l/εθ

. (2.31)

Rearranging to get concentration as a function of distance, we have

γB(x) =
( x

2l/εθ

)2

1 − ( x
2l/εθ

)2 . (2.32)

On inspection (and illustrated in Figure 3), this expression asymptotes
to infinity as x approaches X = 2l

εθ
. In other words, the concentration of

the guidance cue must rise more and more rapidly as x approaches X, so
that in fact, it is impossible to exceed the distance X. Thus, even neglecting
practical constraints on the maximum concentration of guidance cue that
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Figure 3: Optimal gradients for guidance over long distances given the three
different signaling mechanisms. Both B (optimal gradient shape shown in dark
gray) and U (in light gray) can guide the cell over the same maximum distance
X, represented on the figure as x/X = 1. The optimal gradient for guidance by
the (U,B) strategy is shown in black.

can be produced, X is the maximum distance that can be obtained given
the B signaling mechanism, with a threshold for effective guidance of θ .

Similar arguments yield optimal gradients for the U and (B,U) signaling
mechanisms: making use of equations 2.29 and 2.28, we can write expres-
sions analogous to equation 2.30 for the U and (U,B) cases: For U ,

l
ε

1√
1 − ρ

dρ

dx
≥ θ, (2.33)

and for (U,B),

l
ε

1√
ρ(1 − ρ)

dρ

dx
≥ θ. (2.34)

Again, these differential equations can be integrated by separation of
variables and rearranged to express the optimal gradient in terms of con-
centration, yielding for U ,

γU (x) = 1
(1 − x/X)2 − 1, (2.35)

and for (U,B),

γU ,B(x) = tan2 (x/X). (2.36)
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Figure 4: Symmetry in the optimal gradient shapes for the three signaling
mechanisms. The data in Figure 3 are replotted on a log scale, with the curve
for S = U shifted to the right by π/2 − 1 (as indicated by the arrow) in order
to demonstrate that it converges to the optimal gradient for S = (B,U) at high
concentrations.

The optimal gradient shapes for the three signaling mechanisms (B, U ,
and (U,B)) given by equations 2.32, 2.35, and 2.36 are plotted in Figure 3.
In both the B and U cases, the concentration asymptotes to infinity at the
same value, X, representing the maximum possible guidance distance by
these gradients. It is unsurprising that these two mechanisms both provide
the same maximum guidance distance owing to the symmetry of the two
situations—for example, the optimal strategy and performance for the B
signaling mechanism can be mapped to that for the U mechanism by ev-
erywhere exchanging b for 1 − b (similarly, ρ for 1 − ρ). For the (B,U) case,
guidance can be achieved over a longer distance, π

2 X, consistent with the
fact that more information is available to the cell in this situation. Chang-
ing the threshold θ does not change the shape of the optimal gradient, but
rather rescales the gradient by stretching or compressing it along the x-
axis. Similarly, the maximum achievable guidance distance scales with

√
N,

the square root of the number of chemoreceptors, though again the overall
shape of the gradient is unaffected.

The symmetry of the B and U situations is illustrated in Figure 4:
this demonstrates that the optimal gradient shapes for B and U attain
the same shape as the (B,U) gradient in the low-concentration and high-
concentration limits, respectively.

Note that for the B case, a much lower maximum ligand concentration
is required to reach any given distance, as compared to the U case, as
is illustrated in Figure 5. The B signaling mechanism is therefore more
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Figure 5: Optimal gradients for B and U approximate the (U,B) gradient at low
and high concentrations, respectively. Here, the maximum guidance distance
possible is plotted given a maximum allowed concentration, γ . Distances are
expressed as fractions of the maximum possible guidance distance X for the
S = B and S = U cases. As can be seen in this figure, S = B approaches its
saturating value much more rapidly than S = U , suggesting that effective long-
range guidance can be achieved without requiring the expression of as much
ligand as is required for the S = U case.

“efficient” for guidance over long range, in that less guidance cue is required
to achieve a given distance. This is because when only bound receptors
signal, the cell is more sensitive at low than high concentrations, and hence
a greater proportion of the maximum guidance distance is achieved at low
concentrations. This is reversed for the U case.

This improved efficiency suggests that localized signaling by bound
receptors may be preferred over signaling from unbound receptors for
chemotaxing structures such as growth cones and neutrophils, which fol-
low gradients established in vivo, as less guidance cue is required. Axon
guidance molecules are typically large, and hence metabolically expensive
proteins. By making use of a B signaling strategy for its growth cones, an
organism may achieve guidance over a given distance for a lower metabolic
cost.

The (U,B) strategy does better than both of the other signaling strategies,
as we would expect given that more information is available to the cell in this
case. However, as is apparent from Figure 5, much of the additional effective
guidance distance provided in principle by the (U,B) signaling strategy
over the B strategy requires a great increase in concentration over that
required to achieve within a few percent of the maximum guidance distance
achieved by the B strategy. Coupled with additional complexity in the
signaling mechanism and intracellular machinery that would presumably
be required to implement the (B,U) strategy, this strategy may become less
desirable despite its greater in-principle maximum guidance distance.
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A key assumption made in deriving equations 2.32, 2.35, and 2.36 is that
the cell or growth cone does not adaptively modify its sensory apparatus
as the gradient conditions change in order to improve its performance. For
example, it could do this by expressing more receptors on its surface, mod-
ifying the kinetics of its receptors, or increasing its spatial extent. In this
case, we would expect that rather than observing a single optimal gradient
shape, we would observe correlations between local gradient conditions
and the properties of the cell. Another way in which the results obtained
above might be “outperformed” would be if the cell or growth cone were
able to tolerate occasional sharp decreases in concentration while main-
taining some memory of the correct growth direction. How this would be
achieved would depend on details of the cell or growth cone’s motion. For
example, memory of past gradient estimates might be maintained by a po-
larized intracellular molecule with slow dynamics (Arrieumerlou & Meyer,
2005), or the cell might actively ignore concentration changes that occur too
rapidly. This would allow the gradient to be “reset,” in principle allowing
for guidance over unlimited distance.

2.3 Optimal Responses to Multiple Gradients. So far we have consid-
ered only guidance by a single gradient. However, cells or growth cones
may be exposed to multiple chemotactic cues simultaneously (Song & Poo,
2001; Hao et al., 2001; Heit, Tavener, Raharjo, & Kubes, 2002; Charron, Stein,
Jeong, McMahon, & Tessier-Lavigne, 2003; McLaughlin & O’Leary, 2005).
In this case, they must somehow combine the information obtained from
each gradient. To see where such a combination of cues might be useful,
we consider how far a growth cone might be guided by a combination of
two guidance cues. It is easy to see that two cues offer immediate advan-
tages over a single cue. Consider two growth cones, both with a total of N
guidance cue receptors. However, the first has receptors for only one kind
of guidance cue molecule, while the second has receptors for two different
kinds of molecule, each of which is perfectly distinguishable by the recep-
tors (i.e., there is little or no cross-reactivity). Then, denoting the maximum
distance achievable by the first growth cone (i.e. guidance by a single guid-
ance cue) by X, we can ask whether we might achieve guidance over a
longer distance by using multiple guidance cues. While we do not know
the optimal arrangement of guidance cue concentrations for achieving this
task, it is easy to see that guidance over a longer distance can be achieved
by simply placing two optimal gradients for each guidance cue by itself,
one after the other. Since the total number of receptors is N, we know that
the number of receptors for the first type of guidance cue, and that for the
second, must sum to N. Since the maximum guidance distance scales with
the square root of the number of receptors, we have

XN1,N2 =
√

N1

N
X +

√
N2

N
X =

(√
N1/N +

√
1 − N1/N

)
X. (2.37)
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This is maximized when N1 = N2 = N/2, achieving

XN/2,N/2 =
√

2X > X. (2.38)

In other words, by stacking two optimal gradients for different cues one
after the other and assuming an equal share of receptors for the two classes
of guidance cue, we can increase the maximum guidance distance by at
least a factor of

√
2.

We consider the simplest possible extension of our one-cue model to
multiple cues: we assume that there are now two classes of receptor, each
perfectly selective for just one of two guidance cues. We also assume that
only bound receptors produce well-localized signals. Treating the receptors
independently and identifying the two guidance cues and their receptors
by subscripts 1 and 2, we can extend the likelihood function to include both
cues:

P(B1,B2|γ1, μ1, γ2, μ2,R1,R2)

= P(B1|γ1, μ1,R1)P(B2|γ2, μ2,R2) (2.39)

= γ
n1
1

(1 + γ1)N1

∏
r∈B1

1 + μ1r
1 + ρ1μ1r

∏
r∈R1/B1

1
1 + ρ1μ1r

× γ
n2
2

(1 + γ2)N2

∏
r∈B2

1 + μ2r
1 + ρ2μ2r

∏
r∈R2/B2

1
1 + ρ1μ1r

, (2.40)

where ni = |Bi | and we have used dimensionless concentrations γi = Ci/Kdi

and ρi = γi/(1 + γi ).Bi andRi are multisets, containing the positions of only
bound receptors, and both bound and unbound receptors, respectively.

As is apparent from equation 2.40, we are making a straightforward
extension of the one-gradient case in order to describe the local distribution
of the two guidance molecules. For each cue, we have assumed that on the
length scale relevant to a single cell, the local spatial distribution of cue can
be approximated by

γi (r ) = γi (0) (1 + μi r ) , (2.41)

where γi (r ) is the concentration of guidance cue i at relative position r ,
scaled by the dissocation constant of its cognate receptor (thus, γi (0) is the
concentration at the center of the cell), and μi is the relative change in γi

across the width of the cell. Hence, in order to describe the cell’s prior
distribution for its environment, we need a probability distribution over
four parameters: P(γ1, μ1, γ2, μ2).
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To constrain this distribution, we focus on situations in which the guid-
ance cues are distributed in a distinct spatial pattern, such that they all vary
along the same direction, each either increasing or decreasing in concentra-
tion. In other words, the gradients are correlated with each other. Since the
cell has coevolved with this arrangement of gradients, it can make use of
these correlations to improve its estimates of the direction of each gradient
individually. If the cues were entirely independent of one another (and the
cell “knew” this), the prior would be of the form P(γ1, μ1)P(γ2, μ2). On
the other hand, for the situation we are particularly interested in, a simple
expression for P(γ1, μ1, γ2, μ2) can be obtained by making as many indepen-
dence assumptions as are reasonable while retaining structure in the prior
that specifies that the two gradients always point in the same directions.
This puts only one constraint on the prior; that the signs of the gradients are
perfectly correlated. So, for example, if the gradients are known to always
point in the same direction, we can write the prior in the form

P(γ1, μ1, γ2, μ2) =
{

P(γ1, γ2, |μ1|, |μ2|) if sign(μ1) = sign(μ2), or

0 if sign(μ1) �= sign(μ2).

(2.42)

In this case, the prior takes a positive value only if both μ1 and μ2 have
the same sign (in which case the prior depends on only the magnitudes
of the two gradients)—that is point in the same direction. Similarly, for
two gradients known to point in opposite directions, an appropriate prior
would be

P(γ1, μ1, γ2, μ2) =
{

P(γ1, γ2, |μ1|,−|μ2|) if sign(μ1) = −sign(μ2), or

0 otherwise.

(2.43)

Applying Bayes’ theorem and taking a Taylor expansion to first order in
μ1 and μ2, we obtain an approximate expression for the posterior distribu-
tion of μ1 and μ2, given B1 and B2:

P(μ1, μ2|B1,B2) ∝ P(μ1, μ2) (1 + μ1(1 − ρ̂1)Rb1 + μ2(1 − ρ̂2)Rb2)

(2.44)

where we have assumed that P(R1,R2) = P(R1)P(R2), and
P(μ1, μ2, γ1, γ2) = P(μ1, μ2)P(γ1, γ2) and that P(μ1, μ2) is nonzero
only for small μ1 and μ2. Here, ρ̂i represents the best a posteriori estimate
for ρi , assuming μ1 = μ2 = 0. Note that in general, under these assump-
tions, ρ̂1 and ρ̂2 depend on the number of bound molecules of both types of
ligand; this is because γ1 and γ2 would in general be correlated, and hence
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obtaining information about γ1 also gives information about γ2. Under the
additional assumption that these concentrations are independent—that is,
the prior for the concentrations factors, P(γ1, γ2) = P(γ1)P(γ2) — ρ̂1 and ρ̂2,
are dependent on only the binding of the related ligand.

We now make the key assumption that, as described earlier, the directions
of the gradients are not independent—in other words, that

P(μ1, μ2) =
{

P(|μ1|, |μ2|) if sign(μ1) = sign(μ2), or

0 if sign(μ1) �= sign(μ2)
, (2.45)

or, equivalently, P(μ1, μ2) ≡ P(a )P(|μ1|)P(|μ2|) where μ1 = a |μ1| and μ2 =
a |μ2|. Thus, while the gradient strengths are independent, they always point
in the same direction a .

The cell is thus trying to infer a from signals B1 and B2. We need to
calculate P(a |B1,B2). This is achieved by integrating equation 2.44 with
respect to the magnitudes of the two gradient steepnesses:

P(a |B1,B2) =
∫ ∞

0
dμ1

∫ ∞

0
dμ2 P(a )P(|μ1|)P(|μ2|)P(a |μ1|, a |μ2|

∣∣B1,B2)

≈
∫ ∞

0
dμ1

∫ ∞

0
dμ2 P(a )P(|μ1|)P(|μ2|) (1 + a |μ1|(1 − ρ̂1)Rb1

+ a |μ2|(1 − ρ̂2)Rb2)

= P(a )

(
1 + a

∑
i=1..2

〈|μi |〉(1 − ρ̂i Rbi )

)
. (2.46)

Assuming that a = ±1 are equally likely a priori, the most likely a pos-
teriori value for a is

aMAP = sign(〈|μ1|〉(1 − ρ̂1)Rb1 + 〈|μ2|〉(1 − ρ̂2)Rb2). (2.47)

In other words, the cell’s optimal decision about the appropriate direction
to turn is made by comparing

∑
i=1..2〈|μi |〉(1 − ρ̂i )Rbi with zero. This simply

extends the single gradient case by linearly combining the contributions for
the two cues, with prefactors that discount information at high concentra-
tions. The contribution to the decision of each signal Rbi from its cognate
receptors should be reduced according to the term 1 − ρ̂i , where ρ̂i is the
cell’s best estimate of the fraction of the corresponding receptors that are
bound. This “preprocessing” improves performance because at high con-
centrations of cue i (when (1 − ρ̂i ) ≈ 0), the input Rbi is dominated by biases
due to the inevitable fluctuations in receptor density.
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It is also worth noting that the extension to more than two cues follows
along identical lines. If M guidance cues are present, all pointing along the
same axis, then the optimal decision is to compare

χ =
M∑

i=1

〈μi 〉(1 − ρ̂i )Rbi

with zero, where the subscript i refers to the ith such gradient.
We now calculate the performance of this two-gradient decision strategy,

again, by estimating the probability of the cell making the correct choice of
gradient direction. We assume that the cell expects two gradients to be pre-
sented, with both pointing along the same axis. With the additional assump-
tion that the cell’s prior P(γ1, γ2, μ1, μ2) expresses no correlation between
gradient steepness and concentration for the two gradients, the optimal de-
cision is obtained by comparing χ = 〈|μ1|〉(1 − ρ̂1)Rb1 + 〈|μ2|〉(1 − ρ̂2)Rb2

with zero. As it is experimentally feasible to present opposed gradi-
ents, despite the cell’s expectations, we consider the cell to have made
the correct decision if it elected to turn in the direction of the first cue.
Hence, we wish to obtain an analytic expression for Pcorrect (γ1, γ2, μ1, μ2) =
P(χ > 0 | γ1, γ2, μ1 > 0, μ2) + P(χ < 0 | γ1, γ2, μ1 < 0, μ2) .

We assume that the prior for γ1 and γ2 satisfies P(γ1, γ2) = P(γ1)P(γ2)
and that the individual priors are beta distributions in ρi , that is,

P(γi ) dγi = P(ρi )dρi = �(αi + βi )
�(αi )�(βi )

ρ
αi −1
i (1 − ρi )βi −1dρi , (2.48)

in which case ρ̂i = ni +αi
Ni +βi

. Here, �(x) is Euler’s gamma function (Abramowitz
& Stegun, 1970). We make this choice of prior distribution as it enables us
to explicitly calculate a value for ρ̂i , which is not possible in general.

Again, for suitably large values of γ1 and γ2, we can approximate
P(χ |γ1, γ2, μ1, μ2) with a normal distribution with mean 〈χ〉 and variance
〈χ2〉 − 〈χ〉2. Following similar but more involved calculations than for the
one-cue case in section 2.1, we arrive at the results:

〈χ〉 ≈
2∑

i=1

1
12

(
Ni − 1 + αi

Ni + βi
− Ni − 1

Ni + βi
ρi

)
(1 − ρi )ρi Niμi (2.49)

≈ 1
12

(
N1(1 − ρ1)2ρ1μ1 + N2(1 − ρ2)2ρ2μ2

)
(2.50)

〈χ2〉 − 〈χ〉2 ≈
2∑

i=1

1
12

((
Ni − 1 + αi

Ni + βi

)2

− 2
Ni − 1
Ni + βi

Ni − 2 + αi

Ni + βi
ρi +

(2.51)
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Figure 6: Sensing performance when presented with two gradients indicating
the same target direction. The probability of the cell’s making a correct decision
about the gradient direction is plotted against the concentrations of two ligands.

Ni − 1
Ni + βi

Ni − 2
Ni + βi

ρ2
i

)
ρi Ni (2.52)

≈ 1
12

(
N1(1 − ρ1)2ρ1 + N2(1 − ρ2)2ρ2

)
, (2.53)

where we have expanded the expressions to first order in μi and assumed
that Ni � αi , Ni � βi and Ni � 1.

Hence, we have that the probability of selecting the correct direction is
given by

Pcorrect(γ1, γ2, μ1, μ2)

≈ 1
2

erfc

(
−

∣∣∣∣∣ 1√
24

N1(1 − ρ1)2ρ1μ1 + N2(1 − ρ2)2ρ2μ2√
N1(1 − ρ1)2ρ1 + N2(1 − ρ2)2ρ2

∣∣∣∣∣
)

, (2.54)

where erfc(x) is the complementary error function. This combination rule
leads to the sensitivity surface illustrated in Figure 6, which shows the
fraction of times the correct turning decision is made under the influence
of two gradients of the same steepness as a function of their background
concentrations. This shape is consistent with the performance obtained by
a cell exposed to only one guidance cue, as can be seen by considering the
appropriate limits (γ1 = 0 or γ2 = 0).

Suppose the cell does not optimally weight the signals from its recep-
tors, but instead makes its decision based on the unweighted sum of the
signals: Rb1 + Rb2. Noise would then reduce performance when the concen-
tration of one or both cues is high. Experimentally, we could distinguish
between this, and the optimal rule, by presenting a gradient of one cue over
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Figure 7: Predicted experimental sensitivity curve trends when a gradient of
one guidance cue is presented over various uniform “interfering” backgrounds
of a second cue. The concentration of the interfering cue is varied over the
range indicated on the x-axis. The sensitivity curve for the optimal combination
strategy (see equation 2.47) is in light gray; the black curve is predicted when
signals are combined without accounting for noise. In each case, the number of
receptors for the two cues is equal.

a uniform background concentration of the other (see Figure 7). Increasing
the concentration of the second cue initially degrades performance for both
strategies: since no gradient of this cue is present, noise is progressively
added to the system. Counterintuitively, the suboptimal strategy “outper-
forms” the optimal strategy at low concentrations. This occurs because both
strategies assume that both the informative and interfering guidance cue
are providing useful information. At low concentrations of the interfering
cue, the optimal strategy gives greater relative weight to the interfering cue
than the informative cue, effectively increasing the noise in the response
and reducing the growth cone’s ability to sense the gradient. This occurs
only because we are probing these strategies with an artificial situation not
modeled by the prior distribution.

As the concentration increases further, however, the optimal combina-
tion rule regains sensitivity as the signals from the second cue are dis-
counted. In contrast, if the cues are combined simply by adding signals,
performance is further reduced in this case as more noise is introduced
through Rb2. We might expect to observe the suboptimal direct addition
combination rule when an organism is attempting to respond to cues not
usually present together in an ecologically relevant setting—under such
conditions, there would be no evolutionary pressure toward discount-
ing one cue in favor of the other. In contrast, we may observe the opti-
mal combination rule in systems where the two cues are usually present
simultaneously.
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Figure 8: Leukocyte receptor downregulation is consistent with predictions of
the optimal cue combination strategy. Leukocytes downregulate their receptors
in response to stimulation with FNLLP. The points on the graph show the
fraction of receptors that remains on the surface plotted against the fraction ρ

of receptors that would be bound at a given FNLLP concentration (calculated
from [F NL L P]/([F NL L P] + Kd )) (data from Zigmond, 1981). The solid line
shows the prediction from our model, assuming that receptor downregulation
is the primary method by which leukocytes discount signals from a class of
receptors that are mostly bound. We obtain a good fit with no free parameters.

The preprocessing advocated by the optimal strategy could be imple-
mented through an adaptation process in which the strength of signals gen-
erated by a receptor depends on the average ligand binding to that receptor.
The ideal observer approach makes quantitative predictions concerning the
nature of this adaptation process: specifically, that the contribution of a class
of receptors to downstream signaling pathways should be proportional to
(1 − ρ). G-protein coupled receptors are known to display such adapting
behavior: sustained signaling leads to receptor phosphorylation and, sub-
sequently, reduced downstream activity (Kohout & Lefkowitz, 2003).

Alternatively, adaptation might be achieved by downregulating recep-
tors at high concentrations. Indeed, this has been observed in leukocytes
exposed to high concentrations of FNLLP (Zigmond, 1981). Furthermore,
according to the optimal combination rule, receptors should be downregu-
lated so that the fraction of receptors remaining on the surface of the growth
cone is proportional to (1 − ρ). Figure 8 shows that, remarkably, receptor
downregulation data for polymorphonuclear neutrophils (Zigmond, 1981)
give an excellent match to this prediction, where there are no free param-
eters. We suggest that adaptation or receptor downregulation may play
a role in optimally combining noisy sources of information, regardless of
subsequent downstream processing.
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2.4 Gradient Sensing in Two Dimensions. So far we have considered
only a one-dimensional array of receptors. While this is clearly a useful
approximation and leads to predictions that fit well with experimental data
(Mortimer, Feldner, et al., 2009), in reality cells and growth cones are two-
dimensional. It is thus natural to extend the model to a two-dimensional
distribution of the receptors and ask whether this changes the predictions
of the model.

It is in fact straightforward to extend the results of section 2.1 to two
dimensions. Receptor positions are now two-dimensional column vectors,
r , and the gradient steepness is also a column vector, μ = l

c0
∇c(0), so that

the concentration at position r is

γ (r) = γ × (1 + μ · r) , (2.55)

or, equivalently,

γ (r) = γ × (
1 + rTμ

)
. (2.56)

Furthermore, as the cell can now elect to step in any direction, θ , rather
than simply turn to the left or right, we redefine the utility function as

G(θ;μ) = uT
θ μ, (2.57)

where uθ is the unit vector in the θ direction.
Again, we assume that the receptors are in equilibrium with the local

ligand concentration, that binding and unbinding occur independently for
each receptor, and that the cell is making a single observation at an instant
in time. Thus, the probability that a particular binding configuration (B,U)
will occur given μ, γ , and R is

P(B,U |μ, γ,R) = CR=B∪U (R)
γ n

(1 + γ )N

∏
r∈B

1 + rTμ

1 + ρrTμ

∏
r∈U

1
1 + ρrTμ

.

(2.58)

Applying the arguments made in the one-dimensional case to transition
from equation 2.13 to equation 2.21, we obtain

P(μ|B) ∝ P(μ) exp
[

(1 − ρ)Rb
Tμ − 1

2
μT

(
(1 − ρ2)Sb − 2(N − n)ρ2 E

[
r rT ])

μ

]
, (2.59)
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where Rb = ∑
r∈B r and Sb = ∑

r∈B r rT , and we assume that (1 − ρ2)Sb −
2(N − n)ρ2 E[r rT ] is positive definite.

Given the posterior distribution P(μ|B), the Bayes optimal policy maxi-
mizes the expected value of the utility function. We have:

πbayes(B) = argmax
θ

∫
dμ uθ .μP(μ|B)

= argmax
θ

uθ .E[μ]P(μ|B)

= argmax |E[μ]P(μ|B) | cos (θ − � E[μ]P(μ|B))

= � E[μ]P(μ|B B) , (2.60)

where E[μ]P(μ|B) denotes the expectation value of μ over the posterior and
� μ denotes the angle μ forms with respect to the x-axis. In other words, the
Bayes’ optimal strategy states that the cell ought to select the direction of
the mean a posteriori estimate of the gradient, E[μ]P(μ|B).

If we assume that P(μ) is radially symmetric around μ = 0 (i.e., the cell
does not have any a priori bias toward any particular direction), the Bayes’
optimal policy is to select the direction of Rb. This is because the term
exp [(1 − ρ̂)Rb.μ] in the posterior distribution increases most rapidly in the
direction μ = Rb, which skews probability mass to the side of the μ prior
distribution in the direction of Rb.

More generally, we could consider prior distributions for μ that are
not radially symmetric around μ = 0. While there are many such possible
distributions, we will limit ourselves to bivariate gaussian distributions.
Assuming that P(μ) has a nonsingular covariance matrix M, and mean μ0,
and that (1 − ρ2)Sb − 2(N − n)ρ2 E

[
r rT

]
is positive definite (which it almost

surely is when the concentration is not too low), we have:

P(μ|B) ∝N (μ;μ0, M) exp
[

(1 − ρ)Rb
Tμ − 1

2
μT

(
(1 − ρ2)Sb − 2(N − n)ρ2 E

[
r rT ])

μ

]

∝N
(
μ;μ′

0, M′), (2.61)

where

μ′
0 = (

1 + (
(1 − ρ2)Sb − 2(N − n)ρ2 E

[
r rT ])

M
)−1

(μ0 + M(1 − ρ)Rb)

(2.62)

M′ = (
1 + (

(1 − ρ2)Sb − 2(N − n)ρ2 E
[
r rT ])

M
)−1

M, (2.63)
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and thus

πbayes(B) = �
(
1 + (

(1 − ρ2)Sb − 2(N − n)ρ2 E
[
r rT ])

M
)−1

(μ0 + (1 − ρ)MRb) . (2.64)

Thus, the optimal policy combines both prior and sensory information
in order to select a step direction. As the cell’s prior certainty about the gra-
dient direction (quantified by |M−1μ0|) decreases, the relative importance
of sensory information increases compared to prior information. Vice versa,
when the cell’s prior certainty is high, sensory input has reduced influence
on the direction chosen.

2.5 Performance of the Two-Dimensional Bayes Optimal Policy. Gi-
ven the gradient sensing strategy derived in the previous section, we would
now like to estimate its performance over various environmental conditions
for an entire ensemble of cells (described by the distribution of receptor ar-
rangements, Pr (R)). In other words, we wish to determine how the expected
utility, E

[
G(πbayes(B);μ)

]
P(B|μ,γ,R),P(R) behaves as a function of (μ, γ ). This

involves two steps:

1. Obtaining an expression for the distribution of actions performed
under the Bayes optimal policy for a given set of gradient conditions
(μ, γ ): P(θ = πbayes(B)|μ, γ )

2. Finding the expectation of the utility function E[G(θ;μ)]P(θ |μ,γ ) under
this distribution.

We will focus on the unbiased prior case, in which the Bayes optimal
policy is purely a function of Rb. Thus, in order to obtain the distribu-
tion of actions under the policy, we proceed by estimating the distribution
P(Rb|μ, γ ). As for the one-dimensional case, we approximate the distribu-
tion of Rb with a gaussian distribution:

P(Rb|γ,μ) ∝ exp
[
−1

2
(Rb − E[Rb])T Cov(Rb, Rb)−1 (Rb − E[Rb])

]
,

(2.65)

where E[Rb] is the expectation value of Rb for given μ and γ and
Cov(Rb, Rb) is the covariance matrix of Rb, again at fixed μ and γ . This
approximation can be justified through the central limit theorem, as Rb is a
sum of many independent random variables.

Assuming E[r] = 0, we have

E[Rb] = NE[br] (2.66)

= Nρ(1 − ρ)Cov(r, r)μ + O(μ2) (2.67)
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and

Cov(Rb, Rb) = NCov(br, br) (2.68)

= N
(
E

[
br rT ] − E[br] E

[
brT ])

(2.69)

= NρE
[
r rT ] + ρ(1 − ρ)E

[
r rT rTμ

] + O(μ2). (2.70)

We now have the covariance and mean of Rb in terms of two functionals
of the receptor distribution: Cov(r, r) and E

[
r rT rTμ

]
. To proceed, we need

to make assumptions about the form of Pr (r). We do this for Pr (r) elon-
gated along a single axis (along the direction β) but centered on r = 0. This
includes as a special case a radially symmetric Pr (r). This yields

Cov(r, r) = E
[
r rT ] = κ2Rβ

[
ζ 2 0

0 ζ−2

]
R−β (2.71)

E
[
r rT rT ] = 0, (2.72)

and hence the expectation and covariance of Rb are

E[Rb] = κ2 Nρ(1 − ρ)Rβ

[
ζ 2 0

0 ζ−2

]
R−βμ

Cov(Rb, Rb) = κ2 NρRβ

[
ζ 2 0

0 ζ−2

]
R−β,

where ζ determines the strength of the elongation (without loss of generality
and for later ease of presentation, we assume that ζ < 1, which corresponds
to elongation along the y-axis).

We now wish to estimate P(θ |μ, γ ), the probability of the cell taking a
step in the direction θ , given gradient conditions μ and γ . Given P(Rb|μ, γ ),
we can obtain an expression for P(θ |μ, γ ) by evaluating

P(θ |μ, γ ) =
∫

{Rb|πbayes (B)=θ}
d2 Rb P(Rb|μ, γ ), (2.73)

where the integration is performed over the values of Rb for which the Bayes
optimal policy elects to step in the direction θ . Making the approximation

P(Rb = v|μ, γ ) ≈ 1

2π

√∣∣Cov(Rb, Rb)
∣∣

× exp
[
−1

2
(v − E[Rb]) Cov(Rb, Rb)−1 (v − E[Rb])

]
, (2.74)
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where |Cov(Rb, Rb)| is the determinant of Cov(Rb, Rb) and substituting 2.74
into 2.73, we obtain:

P(θ |μ, γ ) = 1

2π
√|Cov(Rb, Rb)|

∫ ∞

0
dr r

× exp
[
−1

2
(r uθ − E[Rb])T Cov(Rb, Rb)−1 (r uθ − E[Rb])

]
. (2.75)

To proceed, we incorporate the expressions for E[Rb] and Cov(Rb, Rb)
obtained above. Defining

A= uθ
T Cov (Rb, Rb)−1 uθ

= κ−2 N−1ρ−1uθ
T Rβdiag

(
ζ−2, ζ 2) R−β uθ , (2.76)

B = E[Rb]T Cov (Rb, Rb)−1 uθ

= (1 − ρ) μT uθ , (2.77)

and

C = E[Rb]T Cov (Rb, Rb)−1 E[Rb]

= κ2 Nρ (1 − ρ)2
μT Rβdiag

(
ζ 2, ζ−2) R−βμ, (2.78)

we can rewrite equation 2.75 in the form

∫ ∞

0
dr r exp

(
−1

2

(
Ar2 − 2Br + C

))

= 1
A

exp
(

−1
2

C
) (

1 + √
π Q exp Q2 (1 + erf (Q))

)
, (2.79)

where Q = B√
2A

.
Without loss of generality, we can assume that β = 0, since it is only the

relative angle, φ = � μ − β, between the true direction of the gradient and
the axis along which the cell is elongated that should enter into the final
expression. This simplifies our expressions to

A= κ−2 N−1ρ−1uT
θ diag

(
ζ−2, ζ 2) uθ

= κ−2 N−1ρ−1χ2 (θ, ζ ) , (2.80)

C = κ−2 Nρ (1 − ρ)2
μTdiag

(
ζ 2, ζ−2) μ

= d2χ2 (
φ, ζ−1) , (2.81)
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and

Q = κ

√
N
2

√
ρ (1 − ρ) |μ|

uT
� μ

uθ√
uθ

T diag (ζ−2, ζ 2) uθ

= d ′ cos (θ − φ)
χ (θ, ζ )

, (2.82)

where we have defined

χ (θ, ζ ) =
√

uθ
T diag (ζ−2, ζ 2) uθ (2.83)

and a signal-to-noise ratio

d ′ = κ

√
N
2

|μ| √ρ(1 − ρ)

= κ

√
N
2

SNRB, (2.84)

where SNRB is the signal-to-noise ratio defined in equation 2.26 in
section 2.1.

Substituting everything into equation 2.75, we have:

P(θ |μ, γ ) = 1
2π

exp (−d ′2χ2(α, ζ−1)/2)
χ2(θ, ζ )

×
(

1 + √
πd ′ cos (θ − φ)

χ(θ, ζ )
exp

(
d ′2 cos2 (θ − φ)

χ2(θ, ζ )

)

×
(

1 + erf
(

d ′ cos (θ − φ)
χ(θ, ζ )

)))

≈ 1
2
√

π
d ′ cos (θ − φ)

χ3(θ, ζ )
(2.85)

to first order in the signal-to-noise ratio d ′.
It is then straightforward to estimate the performance of the optimal

strategy in terms of the expected value of the utility function:

E[G(θ;μ)] = |μ|
∫

dθ cos (θ − � μ)P(θ |μ, γ ). (2.86)
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After incorporating equation 2.85, this integral simplifies to

E[G(θ;μ, γ )] = |μ| 1
2
√

π
d ′

∫ 2π

0
dθ

cos2 (θ − φ)
χ3(θ, ζ )

.

For ζ = 1, this can be evaluated immediately to give

= |μ|
√

π

2
d ′, (2.87)

while for ζ < 1, we have

E[G(θ;μ, γ )] = |μ| 1
4
√

π
d ′ ×

∫ 2π

0
dθ

1 + cos 2θ cos 2φ + sin 2φ

χ3(θ, ζ )
(2.88)

Symmetry arguments show that the sin 2φ term integrates to zero, and the
entire expression reduces to

E[G(θ;μ, γ )] = |μ| 1√
π

d ′ × (I0(ζ ) + I1(ζ ) cos 2φ) (2.89)

where the integrals

I0(ζ ) =
∫ π/2

0
dθ

1
χ3(θ, ζ )

= 1
ζ

E
(√

1 − ζ 4
)

(2.90)

and

I1(ζ ) =
∫ π/2

0
dθ

cos 2θ

χ3(θ, ζ )
= 2

ζ 3

1 − ζ 4 K
(√

1 − ζ 4
) + 1

ζ
E

(√
1 − ζ 4

)
(2.91)

can be evaluated in terms of the complete elliptic integrals K (v) = ∫ π/2
0

dθ (1 − v2 sin2 θ )−1/2 and E(v) = ∫ π/2
0 dθ (1 − v2 sin2 θ )−1/2 (note, however,

that this form is correct only for ζ < 1; results for ζ > 1 can be obtained
by rotating the coordinate systems by π/2).

There are several noteworthy features of equations 2.87 and 2.89. First,
note that performance is proportional to

√
ρ(1 − ρ). This is exactly the result

we obtain for the analogous one-dimensional situation—that is, when solely
bound receptors signal. Hence, our predictions concerning the shape of
the performance curve (with respect to concentration) are the same for
both the one-dimensional and two-dimensional situations. Similarly, we
observe the same dependence on receptor number and variance in the
receptor distribution, κ2, with performance proportional to κ

√
N. Thus, the
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basic conclusions from the one-dimensional case carry over to the two-
dimensional case.

3 Integrating Information over Time

So far we have considered the cell’s ability to detect a gradient based on
only the states of its receptors at a single instant in time. However, in
order to interact optimally with its environment, the cell must integrate
information from its receptors over time. In this situation, the dynamics of
the environment play an important role in determining the timescale on
which information remains relevant. At a concrete level, this modifies the
Bayesian analysis we have presented so far, as the cell’s prior must now
also describe its knowledge of the dynamics of its environment. Under the
assumptions that

� the cell makes inferences at a series of discrete (dimensionless) times
t = 1, 2, . . .,

� these times are sufficiently separated that correlations between recep-
tor binding states at adjacent times are negligible, and

� that the state of the environment at time t + 1 can depend only on the
state of the environment at time t,

we can formulate the problem as estimating the state of a hidden Markov
model, to which we apply recursive Bayesian filtering.

Under this formulation, we are trying to estimate the gradient μt at
time t, assuming known dynamics P(μt|μt−1) based on observations Bt =
B0,B1, . . . ,Bt made up to and including the current time. The problem is to
obtain the distribution P(μt|Bt) of possible states given the observations. It
can be shown that this can be obtained iteratively through

P(μt|Bt) = P(Bt|μt)P(μt|Bt−1)
P(Bt|Bt−1)

(3.1)

and

P(μt|Bt−1) =
∫

d2μt−1 P(μt|μt−1)P(μt−1|Bt−1). (3.2)

Equation 3.1 is simply an application of equation 2.59, with P(μt|Bt−1)
acting as the prior distribution. Assuming that P(μ0) is normally distributed
and that the gradient steepness vector drifts according to a diffusion process,
we can express equations 3.1 and 3.2 as transformations of multivariate
normal distributions:

N
(
μt;μ

(t)
0 , M(t)

)
→N

(
μt;μ

(t)′
0 , M(t)′

)
(3.3)
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Figure 9: Expected rate of environmental change determines sensitivity to fluc-
tuations and interpolates between unpolarized and polarized behavior. Each
trajectory was generated by repeatedly generating binding distributions B, ac-
cording to the specified gradient conditions, applying equations 3.1 and 3.2, then
taking a unit step in the direction mandated by equation 2.60. For each trajectory,
the gradient is pointing to the right for the first 500 time steps (shown as solid
lines), and pointing up for the second 500 time steps (shown as dotted lines).
Depending on the expected rate σ 2 of drift of the gradient steepness vector, the
cell either responds slowly to changes in the gradient direction (as illustrated by
the σ = 0.0001 case) or responds immediately to changes in gradient direction
at the potential cost of being overly sensitive to stochastic fluctuations (e.g.,
σ = 0.1). In each case, |μ| = 0.1 and ρ = 0.5.

N
(
μt−1;μ

(t−1)
0 , M(t−1)

)
→N

(
μt;μ

(t−1)
0 , M(t−1) + σ 2

)
, (3.4)

where μ
(t)′
0 and M(t)′ are as defined in equations 2.62 and 2.63 and σ 2 defines

the rate at which the cell expects the gradient steepness vector to drift.
Figure 9 illustrates the influence of the parameter σ 2 on trajectory of

a cell exposed to a sudden rapid change in gradient direction. Cells that
expect a dynamic, rapidly changing environment (σ large) display an im-
mediate change in their direction of travel, while cells expecting a slowly
changing environment tend to display smoother “turning” behavior. These
behaviors are reminiscent of the behavior of cells with different levels of
polarization: unpolarized cells tend to display random walk behavior, re-
sponding rapidly to any changes in the gradient direction, while polarized
cells tend to change direction by executing smooth turns.

We should note that the model of environmental dynamics we have
used in this section is highly simplified: our intent was to demonstrate that
chemotactic behavior reminiscent of that of polarized and unpolarized cells
can emerge naturally from the Bayesian framework. The model we have fo-
cused on here assumes that the direction and strength of the gradient change
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independent of any action the cell might take and that the background con-
centration is constant. While this situation may be approximately the case
when, for example, the cell is attempting to follow a moving concentration
source, a more sophisticated environmental model would need to include
predicted changes in the background concentration due to the cell’s mo-
tion. Strong et al. (1998) demonstrate more complex environmental models
of this sort in the context of bacterial chemotaxis.

4 Discussion

Other recent work has also focused on the role of noise in eukaryotic
chemotaxis and gradient sensing (e.g. Ueda & Shibata, 2007; van Haastert
& Postma, 2007; Andrews & Iglesias, 2007; Endres & Wingreen, 2008; Fuller
et al., 2010). Our approach differs from these studies in that we focus on
understanding how to optimally combine information from spatially dis-
tributed receptors and how various assumptions about receptor signaling
(i.e., whether bound or unbound receptors signal) influence gradient sens-
ing ability. However, we should note that there are several important phe-
nomena that our model does not incorporate. These include, for exam-
ple, receptor trafficking (Aquino & Endres, 2010), receptor clustering (Bray,
Levin, & Morton-Firth, 1998) and intrinsic noise in receptor signaling (Ueda
& Shibata, 2007).

An important issue with the results presented here (and by other authors:
Andrews & Iglesias, 2007; Fuller et al., 2010) is that we ignore temporal (Mor-
timer, Dayan, Burrage, & Goodhill, 2009; Endres & Wingreen, 2009) and spa-
tiotemporal correlations (Berg & Purcell, 1977; Bialek & Setayeshgar, 2005),
in particular, their dependence on concentration. Our model implicitly as-
sumes that the rate at which the cell’s sensory apparatus makes independent
measurements of the gradient has no dependence on concentration. How-
ever, studies estimating the accuracy with which cells can measure absolute
concentration find that the time over which the binding state of receptors
remains correlated is inversely proportional to the background concentra-
tion, which suggests that independent measurements can be made faster as
concentration increases (Berg & Purcell, 1977; Bialek & Setayeshgar, 2005;
Endres & Wingreen, 2009). This would mean that our model underesti-
mates performance at high concentrations. Indeed, we have shown that
when the cell has access to the full trajectory through time of its receptors,
its optimal gradient sensing performance is monotonically increasing with
concentration (Mortimer, Dayan, et al., 2009). One effect that may provide
a lower bound on the correlation time of gradient measurements is the
rate at which receptors are mixed on the surface of the cell. If only bound
receptors signal, fluctuations in the receptor distribution bias the gradient
measurement. At high concentrations, these dominate gradient-induced
asymmetries in receptor-generated signals, and thus the correlation time
would be dominated by the rate of receptor mixing.
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What does the two-dimensional Bayesian analysis we have presented
here suggest for biological chemotactic systems? Observations from D. dis-
coideum and neutrophils have led to the broadly accepted view that three
related phenomena underlie eukaryotic chemotaxis (van Haastert & De-
vreotes, 2004; Willard & Devreotes, 2006; Mortimer et al., 2008):

� External signals are transduced through a directional sensing mech-
anism, by which a shallow external gradient of guidance molecules
drives the production of a significantly steeper intracellular gradient
of activity. This is achieved through two submodules: an amplification
module, which magnifies weak intracellular asymmetries through
positive feedback, and an adaptation module, which ensures that
gradient sensing works effectively over a wide range of background
concentrations (Levchenko & Iglesias, 2002).

� This intracellular activity in turn regulates cytoskeletal dynamics and
cell adhesion, leading to motility.

� Motility and directional sensing occur in the context of cell or growth
cone polarization, or the persistent arrangement of key signaling
molecules into distinct “front” and “rear” regions.

We suggest, in direct analogy to the decision theory framework, that
directional sensing might be thought of as decision making. Under this in-
terpretation, the amplification and adaptation submodules act to make an
unambiguous estimate of the gradient direction, through a winner-takes-all
mechanism promoting pseudopod extension only at points on the periphery
that exhibit sufficiently high levels of receptor-mediated signaling. As am-
plification processes are generally highly nonlinear but subject to saturation
effects, they would act most effectively at a specific input level—a set point.
Adaptation achieved through “local excitation, global inhibition” (Parent
& Devreotes, 1999; Levchenko & Iglesias, 2002) would maintain global sig-
naling levels near this set point, thus maximizing the effectiveness of the
amplification module. Under this conceptual framework, amplification of
a weak asymmetry is considered a decision-making process, leading to the
cell or growth cone extending a process in a specific direction to enact a turn.

Thinking of amplification as decision making also allows an intuitive
decision-theoretic interpretation to cell polarization. Polarized cells tend
to be significantly more sensitive to chemotactic stimulation at their lead-
ing edge. An interpretation of this is that in polarized cells, the cell already
“knows” roughly where the gradient is pointing, and thus its response tends
to be a local change in this direction, rather than rapid turning. From the
perspective of statistical decision theory, we can identify the polarization of
a cell with an asymmetric prior distribution for the gradient direction. This
is also consistent with experiments in which D. discoideum cells were tran-
siently stimulated by growing them in a medium containing caged cAMP,
then using a short laser pulse to uncage the cAMP (Samadani, Mettetal, &
van Oudenaarden, 2006). In this study, Dictyostelium cells were observed
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to show more or less ‘bias’ towards some apparently random prior direc-
tion. Extending this experimental paradigm would provide one test of our
model: if the cells were exposed to a gradient pointing in a single direction
for a long period, we would expect any underlying bias in the response to
a point stimulation by optical uncaging to be aligned with the previously
imposed gradient. We would also predict the strength of the underlying
biases to be related to the time for which the cells were exposed to the
external gradient.

Indeed, Andrews and Iglesias (2007) recently demonstrated through an
approach based on rate-distortion theory that a near-optimal rate-distortion
trade-off can be achieved by such a strategy, given sufficient downstream
amplification. A distinction between our approach and that of Andrews and
Iglesias (2007) is that we directly characterize how a cell can make best use
of all of the information it receives through its receptors in order to make
its decision. In contrast, the definition of optimality taken by Andrews and
Iglesias (2007) cannot distinguish between a cell that extracts all possible
information from its receptors and one that, for example, ignores the signals
from a uniform subset of its receptors: both strategies will yield the same
rate-distortion curve, but the second is certainly not making optimal use of
the information from all of its receptors.

What might be the biological substrate underlying this memory? In po-
larized Dictyostelium, G-proteins are distributed in a graded way, so that
more are found at the leading than trailing edge (Jin, Zhang, Long, Parent, &
Devreotes, 2000). Under this scheme, the concentration of G-protein at a par-
ticular point on the periphery is proportional to the prior probability that the
gradient is increasing in that direction. A simple model in which bound re-
ceptors noncooperatively recruit and activate G-proteins then immediately
results in downstream activity proportional to the posterior distribution:
the product of likelihood and prior. An approximation to the statistically
optimal decision would then follow through downstream amplification.

In conclusion, we have extended the one-dimensional model presented
first in Mortimer, Feldner, et al. (2009) in several ways. We have shown
that based on this model, there is a limit to the distance over which a
cell can be guided by a single gradient. We have extended our model
to treat the case of guidance by multiple correlated gradients and have
demonstrated that optimally integrating information from multiple gradi-
ents requires a “weighting” step in order to account for variability in source
reliability. Finally, we have extended our model to two dimensions, demon-
strating both that the key features observed in the one-dimensional model
are unchanged and that we can reproduce behavior observed in several
cell types. Specifically, we have demonstrated a clear connection between
prior information about gradient direction and cell polarization. The opti-
mal strategy for a cell or growth cone with no prior information about the
gradient direction leads to behavior reminiscent of that of an unpolarized
cell, while the optimal strategy assuming strong prior information about
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the gradient direction leads to behavior consistent with that of polarized
cells.
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