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Abstract
Aversive processing plays a central role in human phobic fears and may also be important in
some symptoms of psychosis. We developed a temporal-difference model of the conditioned
avoidance response, an important experimental model for aversive learning which is also a
central pharmacological model of psychosis. In the model, dopamine neurons reported
outcomes that were better than the learner expected, typically coming from reaching safety
states, and thus controlled the acquisition of a suitable policy. The model accounts for normal
conditioned avoidance learning, the persistence of responding in extinction, and critical
effects of dopamine blockade, notably that subjects experiencing shocks under dopamine
blockade, and hence failing to avoid them, nevertheless develop avoidance responses when
both shocks and dopamine blockade are subsequently removed. These postulated roles of
dopamine in aversive learning can thus account for many of the effects of dopaminergic
modulation seen in laboratory models of psychopathological processes.

Keywords: Conditioned avoidance response, dopamine, psychosis, blockade

Introduction

There is a wide disparity between the sophistication of our understanding of

learning and choice in appetitive vs. aversive contexts. Appetitive learning has

attracted theories of the acquisition and expression of habits based on temporal
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difference (TD) learning, which somewhat seamlessly link statistical, psychological

and neural ideas and data (Schultz et al. 1993; Montague et al. 1996). There is also

a developing understanding at all these levels of the relationship between habits and

motivationally sophisticated goal-directed actions. By contrast, despite some

notable studies (Grossberg 1972; Schmajuk and Zanutto 1997; Daw et al. 2002;

Johnson et al. 2002; Seymour et al. 2004), the functional bases of aversive learning

remain more obscure.

We consider a paradigmatic case of aversive learning, namely the conditioned

avoidance response (CAR). The CAR has particular significance for psychiatry,

having inspired the development of behavioural therapy techniques (e.g. response

prevention) by psychologists. It is also a standard test-bed for assessing antipsychotic

drugs by psychopharmacologists (e.g. Anisman 1978; Bardin et al. 2007; Siuciak

et al. 2007) It has therefore been very important to understand the CAR in detail.

Despite this, efforts towards such understanding waned as it was realized that

classical, operant, cognitive-expectancy and possibly other brain mechanisms were

all involved. In more recent years, interest in the CAR resumed as both theoretical

(e.g. Smith et al. 2005, 2006, 2007) and psychopharmacological (e.g. Wadenberg

and Hicks 1999; Samaha et al. 2007) progress was made. Further, although the role

of specifically aversive learning mechanisms in psychopathology is yet to be

completely understood, the CAR is likely to involve key psychobiological

mechanisms that may be activated to an exaggerated degree in clinically paranoid

anticipation of threats (Moutoussis et al. 2007).

In this article, we explore three hypotheses. First, we suggest that a temporal-

difference learning model of the CAR can capture its key qualitative, empirical

psychological findings. Second, we show that the pharmaco-behavioural findings

imply that dopamine is unlikely to be involved in the learning of aversive

associations to stimuli, a conclusion that is in contrast to the main theories so far

suggested for its role in the CAR, including those based on TD ideas (notably Smith

et al. 2005, 2006, 2007). Third, we show that our model helps transcend the

difficulties of the classical, qualitative psychological accounts of aversive learning

even without appealing to special, additional features of the mechanisms involved.

At the end, we draw out the predictions of our analysis relevant to the study of

human appraisal of threat, including paranoia.

Conditioned avoidance responses

In a typical rodent version of the CAR, a subject learns that a neutral warning

conditioned stimulus (CS) will be followed by an unconditioned aversive stimulus

(US) – usually an electric shock (Figure 1). After the onset of the CS, the subject

can avoid the US altogether by performing an experimenter-determined skeletal

response within a specific CS-onset - to - US interval. This is termed the avoidance

response (AR), and, for rats, usually consists of shuttling to a different part of the

experimental enclosure. Generally, the AR interrupts the CS and aborts the US.

Shuttling after US onset interrupts exposure to the US and is termed an escape

response (ER). In the human version of the CAR, the US is often a burst of loud

white noise, and the AR/ER generally involves pulling a lever rather than shuttling

(Unger et al. 2003).

138 M. Moutoussis et al.
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Under normal circumstances, animals take only a few shocks to discover that

shuttling interrupts the shock (ER). From then on they quickly learn to perform the

AR. Subjects achieve a high percentage of ARs in a few tens of trials [cf. Figure 2(a)

(Beninger et al. 1980a)]. As learning proceeds, their latencies of responding

decrease [cf. Figure 2(b) (Solomon and Wynne 1953)], and they lose any sign of

overt fear to the CS. Once the AR is well-learnt, providing the shocks have been

of sufficient magnitude, responding continues for many trials even if no shocks are,

or would be, delivered (Figure 2b and c) (Solomon and Wynne 1953; McAllister

et al. 1986). Extinction can be accelerated by physically preventing the animal from

shuttling (response prevention Figure 1d). This initially leads to an increase in signs

of anxiety, which successful avoidance-responding had eliminated. If, however, after

a few trials the animal is allowed to shuttle, the frequency of AR is much reduced –

even in the presence of residual signs of anxiety (Mineka 1979).

A variant of the CAR designed to separate a phase of Pavlovian-like aversive

learning from a phase of instrumental-like learning is the escape-from-fear (EFF)

paradigm (McAllister et al. 1980). Here again a warning stimulus is followed by a

shock for a set number of training trials and, during these trials, the animal has no

way of terminating the shocks. In the immediately subsequent trials, however,

shuttling becomes available as a response. In most experiments, shocks also stop

being delivered following the warning stimulus. Animals are observed to acquire

a shuttling response quickly, but not immediately; its latency then decreases.

Shuttling may again persist for dozens of trials before gradually extinguishing

(Figure 2c).

Critically, the CAR is suppressed by blocking Dopamine receptor type 2 (D2)

function with antipsychotic drugs (Figure 2a). Although at high doses, motor output

itself is compromised, at lower doses, the escape response is unaffected, suggesting

that antipsychotics affect acquisition during training (Smith et al. 2007).

Figure 1. The onset of the Warning Stimulus signifies the start of a conditioned
avoidance trial. The aversive (Shock) stimulus follows after a standard interval Ts
(a). Performing a specific safety behaviour after US onset (ER) stops both CS and US (b).
If the safety behaviour is performed with a latency Tl < Ts, (AR) the CS is aborted and no US
is delivered (c). After acquisition, response may be blocked while no US is given (response
prevention, (d)).

Avoidance learning, TD and Dopamine 139
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(a)

(c)

(d)

(b)

Figure 2. (a) Pooled avoidance probability data from rats. In normal CAR learning, near-
perfect avoidance is achieved within a few trials (from (Beninger et al. 1980b)). DA block
shows a powerful dose-dependent effect (Pimozide doses in mg/kg). (b) Sample of data from
a dog (Solomon and Wynne 1953) where response latencies decrease for many trials after
achievement of 100% avoidance. (c) Pooled latency data from animals subject to Escape-
From-Fear training. Following the CS they were first given inescapable shocks; then they
were given the opportunity to shuttle with the shocks turned off. Performance increases (i.e.
latency decreases) for about 20 trials, remains stable for another 50 trials, then declines slowly
first, then faster. From (McAllister and McAllister 1991). (d) Latency data from rats (similar
to a.). Unfilled diamonds: unmedicated rats performing the standard CAR in training and
testing. Unfilled squares: shocks turned off (normal extinction) during testing. 10 s is
indicated, being the delay with which the US was given in training trials. Filled symbols are
data from rats that received Pimozide during training only. From Beninger et al. (1980b).

140 M. Moutoussis et al.
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Equally, DA blockers reduce expression of the AR, in a way that resembles the

extinction-like effect that administering such drugs has on reward-motivated

behaviour (Wise et al. 1978).

One might think that dopamine is involved in pathways reporting aversive events

in a way analogous to its role in reporting better-than-expected outcomes in reward

learning (Schultz et al. 1993). Indeed, microdialysis and other studies showed that

dopamine is released in response to aversive stimuli (Horvitz 2000). In addition,

imaging studies showed activation in response to aversive stimuli in areas innervated

by the monoaminergic systems (Jensen et al. 2003; Menon et al. 2007).

There are, however, reasons to believe that dopamine is not directly involved in

reporting negative outcomes. First, the ventral-tegmental neurons that are excited

(at least under some conditions) by aversive stimuli are likely not dopaminergic,

as originally thought, (Ungless et al. 2004). Second, dopaminergic neurons that do

predict outcomes only code better-than-expected ones (Bayer and Glimcher 2005)

with any substantial fast fidelity. Third, in a recent human imaging study (Menon

et al. 2007) it was noted that dopaminergic enhancement or blockade did not affect

the subjectively reported anxiety experienced in response to a conditioned stimulus

predicting pain; neither did dopaminergic manipulations affect the subjects’ ability

to learn which conditioned stimulus predicted the painful one.

However, perhaps the most significant challenge to existing dopaminergic (Smith

et al. 2005; Smith et al. 2006, 2007) and indeed some non-dopaminergic (Schmajuk

and Zanutto 1997) models of the CAR is from a condition that turns out to

resemble escape from fear. In this, the animals are trained with a blockade of

dopamine D2 receptors, and thus fail to acquire the AR. However, if the dopamine

blockade and the shocks are removed after the subjects have experienced a few

shocks, subjects actually acquire the AR (Beninger et al. 1980b), following a

learning curve that resembles that obtained in the EFF paradigm (Figure 2c).

The obvious interpretation of this is that dopamine is more likely to be involved in

learning to respond based on the Pavlovian CS-US association, rather than in the

formation of the association itself.

In the present study, we built a temporal-difference learning (Sutton and Barto

1998) model of the CAR and investigated the consequences of manipulating

dopamine in the model. The model successfully reproduced a broad range of CAR

phenomena. We argue that this bolsters the hypothesis that DA is involved in

boosting predictions and actions when outcomes are better than expected. Other

systems, putatively (though controversially) serotonin (Daw et al. 2002) could play a

similar role for aversive prediction learning when outcomes are worse than expected,

but appear not to be able to affect action learning by itself, at least in contexts like

CAR. The model does not seek to account for slow (tonic-like) timescale dopamine

effects, which are important for understanding some results of pharmacological

manipulations and some microdialysis findings. We shall refer to these separately.

The model

In the TD variant of reinforcement learning (RL), subjects come to expect

particular gains or losses (collectively value) to accrue from each situation or state

they encounter. The change in these expectations should stochastically match the

Avoidance learning, TD and Dopamine 141
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immediate gains and losses they experience; if it does not, then there is a prediction

error (PE) that can be used to improve the estimates of the returns. Based on the

substantial evidence about the phasic activity of dopamine cells (Schultz et al. 1993;

Bayer and Glimcher 2005), we modelled the appetitive portion of the PE as being

dopaminergic. In the CAR context, appetitive PEs arise when the subject performs

the avoidance response, and so changes from being in a state of fear, anticipating the

shock, to being in a state of safety, when the shock has been averted. It is this

transition that is reported by phasic dopamine. On the other hand, given our TD

architecture, the post-dopamine-blockade avoidance acquisition data (Beninger

et al. 1980b) suggest that aversive value-learning can proceed even in the presence

of dopamine blockade. This conclusion is also consistent with theoretical

suggestions about appetitive-aversive opponency (Solomon and Corbit 1974; Daw

et al. 2002).

Values are only one part of RL; and are normally acquired in the service of

learning policies, which are a systematic (though possibly stochastic) ways of

assigning actions to states. In several variants of TD, the aversive values and PEs can

be directly used to learn actions that minimize the values. This can be seen as a form

of Mowrer’s two-factor theory (Mowrer 1947), with the conditioned fear (or anxiety

(Gray and McNaughton 1996)) arising from the value predictions; and with the

(dopaminergically reported) reduction in conditioned fear acting like an appetitive

reinforcer, boosting the subsequent selection of the associated action. There are

several ways that policies may be represented, notably indirect methods, in which

they are derived from predictions of long run values, and direct methods, in which

they have their own parameters. For appetitive learning, about which rather more is

known in this respect, there may even be functional and indeed structural

transitions between different forms of policy over the course of learning (Belin and

Everitt 2008).

More precisely, the class of models that the present work belongs to is termed

actor–critic (Sutton and Barto 1998) models. They have two key components:

. A critic which learns affective expectations. This is the part of the model which

associates with each distinct state that the animal perceives the affective value

which summarizes how good or bad this state is (a measure of the total return to

be expected to follow this state).

. An actor which learns to make appropriate decisions in the light of these

expectations. The (usually probabilistic) rules of taking these decisions is what the

actor learns and is termed the ‘behavioural policy’. In our case, the optimal policy

is the one that minimizes long-term costs.

Long-term costs, and thus values themselves, will therefore depend in turn on the

actions that the animal takes (e.g., whether it avoids the shock or not). Note that the

output of the critic embodies the expectations and predictions that appeared so

puzzling to some in the purely behaviourist era (Lovibond 2006).

Advantage learning (Dayan and Balleine 2002) is a form of the actor–critic in

which action choice depends on a particular aspect of the value of an action.

The advantage m(a, s) of action a in state s quantifies how much better this action

is compared to the policy followed on average, i.e. it is defined as the

difference between the value of the particular action Q(a, s) and the value of the

state V(s). A major spur to our use of it is that O’Doherty and co-workers

142 M. Moutoussis et al.
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(O’Doherty et al. 2004) showed that advantage learning provided a good model for

the BOLD signal in the dorsal striatum during the acquisition of a simple

(appetitive) instrumental task.

The experimental data strongly constrained the architecture of our model. First,

a model that used only one set of values (i.e. action values) to learn could be

discounted in favour of one that had both state-values and action-related

(e.g. advantage) values. This is because the action-value models under dopamine

blockade or EFF would only have these action-values to remember, and hence

would have no basis for preferring the avoidance response once that becomes

available (as per Figure 2). Once we adopted an actor–critic architecture, we were

forced to interpret the PE differently in the critic (value) vs. actor (policy) limbs.

Worse-than-expected PEs could not depend on dopamine in the critic part, as

aversive value learning survives dopamine blockade as discussed above. However,

in the actor limb learning, signals should depend on dopamine, as avoidance

action learning does not survive dopamine blockade (Beninger et al. 1980b).

An additional experimental constraint determined our choice of the advantage-

learning variant of the actor–critic method. This is that under dopaminergic

blockade, the asymptotic frequency of avoidance responding appears to change

in a quantitative, dose-dependent manner (Smith et al. 2007). In other

common variants of the actor–critic formalism (e.g. Sutton and Barto 1998,

Chapter 6) the rate of policy learning would change, but not the asymptotic policy

preference.

We now provide an algebraic description of our advantage-learning model.

Given a particular environment, the animal encounters a sequence of states:

s(first) . . . s(k), s(kþ 1), . . . , s(last). The value of a state, V[s(k)] reflects the

expected return for the whole sequence following s(k). In TD learning, rewards

anticipated in a particular state of the animal are compared to rewards actually

received during the immediately subsequent state. The simplest formulation of

this difference, the PE, is

�V ðkÞ ¼ ðRðkþ 1Þ þ V ½sðkþ 1Þ�Þ � V ½sðkÞ� ð1Þ

where R(kþ 1) is the return (reward or cost) experienced in going from s(k) to

s(kþ 1). The difference between expectation and return, �V, can be used by the

learner to improve its estimate of what value to attach to the original state:

V ½sðkÞ�new ¼ V ½sðkÞ�old þ � � �V ðkÞ ð2Þ

where � is a learning rate parameter. For trials where dopamine modulation

was simulated, the term �V in Equation 2 was first scaled by an additional factor

mDA – but only if Equation 1 showed a better-than-expected outcome.

In tasks such as CAR, subjects need to associate actions with returns. If the subject

took a particular action a when it was in s(k) (and ended up in s(kþ 1)), then a

positive �V means that the action led to a more rewarding outcome than expected.

It would be beneficial for this action to be associated with this state, i.e. taken with

a higher probability P[a j s(k)] in this state.

P ½ajs�new ¼ f ðP ½ajs�old, �vðkÞÞ ð3aÞ

Avoidance learning, TD and Dopamine 143
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where f is an increasing function of �V(k). We used an important example of a

parametric expression for P[a j s(k)], the Gibbs function:

P ½aijs� ¼
emðai , sÞ=T

P
emðak, sÞ=T

ð3bÞ

where T is a parameter that determines how sharply a difference between policy

parameters m(a, s) is translated into probabilities to select these actions. In the

advantage-learning variant of TD, the learner uses Equations 1, 2 and 3, and

estimates policy parameters as follows:

mða0, sÞnew ¼ mða0, sÞold þ " � ð�V �mða0, sÞÞ ð4Þ

where " is a policy-learning rate. It can be shown that this is equivalent to the

learner coming to basing its policy m(a, s) on the advantage estimated for action a

in state s relative to the outcome expected from state s overall. To simulate

dopamine modulation, the term �V in Equation 4 was first scaled by the factor mDA

above – this time irrespective of whether the outcome was better-than or worse-

than-expected. In order to keep to the convention used in this article, where greater

values are more aversive but greater policy parameters denote greater tendency to

action, the sign of �V also has to be reversed before its use in Equation 4. Note that

for a suboptimal policy the action amax that leads to the optimal reward from state s

will not always be chosen. Therefore the �V(k) calculated in the trials where amax is

chosen will not be zero according to Equation 1. In contrast, Equation 4 will

converge for non-optimal policies to m(a,s) equalling the average (non-zero) �V for

the particular action a. This is important for the model to be consistent with

the tendency of animals to choose actions with probabilities depending on their

return, rather than simply maximizing by choosing simply the action associated with

highest return.

Parameters and implementation

The basic structure used for the simulations is shown in Figure 3. Six identical,

perfectly generalizing ‘stay’ actions and one ‘shuttle’ action were available from each

state. ‘Stay’ actions had cost zero, while the cost of shuttling was 0.2. The cost of the

Figure 3. Schematized state and action diagram for the standard CAR. The CS starts at state
labelled 1. Action ‘stay’ results in horizontal arrows and has no intrinsic cost. Action ‘shuttle’
moves from the unsafe side (top row) to the safe side of the apparatus (bottom row) and
incurs a motoric cost of jumping the barrier. There are five time steps between CS onset and
the end of each trial. The transition 5! 6 results in shock. Once in state 6 or 11 the trial
ends. States 7–11 could have been condensed to one safety state – they are shown separately
just for added clarity of timing.

144 M. Moutoussis et al.
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shock was set at or above 4.0. This 20-fold or greater ratio was meant to simulate the

traumatic nature of the traditional animal CAR (and, possibly, the dire anticipations

of persecutory ideation).

In our advantage-learning models, exploration and asymptotic behaviour depend

on a ‘brittleness’ (to use the term adopted by Williams & Dayan 2005; or ‘inverse

temperature’) parameter 1/T. The more brittle the model, the more a difference in

costs (or rewards) between actions translates to a difference in probability of their

selection. 1/T can therefore be thought of as an index of how important for action

selection the typical costs and benefits involved in the experiment are. Decreasing

1/T leads to more exploration of alternatives before the final policy probabilities are

reached. This affects, in turn, whether the learner has a propensity to modify the

policy followed once a way of avoiding shock (by shuttling from a particular state)

has been discovered. 1/T should be large enough to allow exploration around the

cost of the non-traumatic ‘shuttle’ action but not to dampen the effect of the high

cost of shock. In the simulations shown here the temperature/brittleness parameter

T was 0.2.

The learning rate for state values was 0.5, while for policies it was 0.075. As is

typical in actor–critic schemes, the learning rate of the critic must be substantially

greater than that of the actor for performance to be appropriate. For Figure 6, mDA

was set at 0.2 (see description of Equation 2 and 4 above), while for Figure 7 mDA

was 0.15 but only during the ‘shocked’ trials (trials 101–130). Each run of trials

included 100 unshocked trials initially, so that by the time shocks started the ‘stay’

vs. ‘shuttle’ policies were determined by the relative costs rather than any

initial values.

Results

Simulation of escape-from-fear learning

The inescapable-shock phase of the EFF paradigm is conceptually simpler than the

escapable-shock CAR. This phase also serves as a useful comparison for the shocked

phase of the CAR that takes place under dopamine block. Figure 4 shows a

simulation of EFF. Before the onset of shocks, the subject explores the available

actions and occasionally shuttles. The values of states 1 to 5 stay around zero, as the

only slightly aversive outcome is the small motoric cost of the occasional shuttling.

When shocks start the ‘safe’ states (S7–S11) become unavailable. The states

temporally near to the shock (e.g. S5, diamonds in Figure 4a) first acquire aversive

values. These they gradually feed back to earlier predictive states (cf. S3, triangles,

and S1, crosses, in Figure 4a).

Shuttling is then allowed. Most learners soon try shuttling again, and hence

experience a large positive PE – from high value (S1–S5) to zero (S7–S11).

This gradually reduces the values of S1 to S5, but at the same time teaches that

shuttling is quite advantageous. The probability of avoidance rises rapidly

and persists at an elevated level for tens of trials (Figure 4b; cf. Figure 2c).

Features of this latter, unshocked phase of the EFF, which resembles closely the

corresponding phase of the standard CAR, will be presented in the context of the

latter. The underlying mechanics of learning are presented in the Appendix –

Figures A1 and A2).

Avoidance learning, TD and Dopamine 145
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Figure 4. (a) First part of Escape-From-Fear trial for one subject. In this and subsequent
figures, shocks are turned on at trial 101. Lower plot: response latency. Each black diamond
corresponds to the last state of the ‘unsafe’ side visited during the trial (e.g. a value of 1 means
shuttling from state 1 while 6 means no shuttling during that trial). Top panel – Values of
states 1 (crosses), 3 (triangles) and 5 (diamonds), showing how they converge in turn to the
cost-of-shock when the latter is inescapable. (b) Second part of EFF. Bottom panel – same
as a. Top – overall probability of avoidance calculated from model variables (based on
Equation 4; See Appendix for further details). Avoidance probability increases quickly; then
decays slowly, but is boosted when later states are visited. (c) Pooled Latency for 100
simulated identical subjects. Note qualitative similarity to Figure 2(c) – and also to 2(d)
‘Pimozide Extinction’.
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Simulation of normal CAR learning

Figure 5 shows a typical example of a learning curve from our model. First, as is true

of control subjects, after receiving a small number of shocks, the model learns to

favour the avoidance action, with a probability approaching one. If adequate

exploration occurs, responses tend to move to earlier states quickly, reducing

response latency. The steep learning curve is followed by consistent avoidance,

which is quite persistent (though not wholly immune from being extinguished) even

after programmed shocks have stopped. This is similar to the animal data shown in

Figure 2(b) and (c) (Solomon and Wynne 1953; McAllister et al. 1986).

If the learner is forced to follow action ‘stay’ rather than ‘shuttle’ during

extinction, then the model learns not-to-avoid more rapidly. It is thus sensitive to

response-prevention. At the onset of this phase, the values of early states show a

transient increase (Figure 5c, first 5-10 trials of RP). If we assume that visiting a

high-value state is psychologically alarming to the animal, we have a situation

analogous to the alarm initially experienced by animals or humans subject to

response-prevention (this is similar to transient increases during response

persistence – cf. Figure A1). At the same time, values of later states decay to

zero. With more learning, all values decay to near-zero levels.

Simulation of dopaminergic manipulations in the CAR

DA manipulations can be initiated and removed at various times during learning.

Most straightforwardly, if D2 blockade is affected after acquisition, simulations

show that persistent responding in the absence of shocks is more likely to

spontaneously extinguish earlier (data not shown).

If D2 receptors are blocked during initial learning, then the model is much slower

to acquire the avoidance response (Figure 6). This is similar to the animal finding

that D2 blockade results in a dramatic decrease in AR learning. In Figure 2(d), for

example, rats treated with pimozide during training showed an average latency of

responding of 12 s, as opposed to 5 s for the control rats (Beninger et al. 1980b).

In our models, peak responding (and shortest latency) takes much longer to achieve,

and furthermore, the peak probability of response is also significantly reduced.

Empirically, if DA blockade is removed when shocks are also turned off,

avoidance dramatically strengthens in extinction (as in Figure 2(b), ‘Pimozide

Extinction’). In our model, removing the blockade affects both the probability of

response and the latency for responding (Figure 7a and b). Note that ARs are even

more persistent, and average latencies even shorter, than in the normal case shown

in Figure 4. This is largely due to these learners having been exposed to more shocks

during acquisition of the aversive state-value structure, on which the subsequent

response acquisition and persistence depends.

Finally, we simulated the effects of boosting rather than suppressing dopamine.

This increases the rate of learning and subsequently the persistence of behaviour in

the absence of further shocks, but does not result in true ‘resistance to extinction’,

i.e. an impairment of the effect of response prevention. The experimental literature

on this topic is limited but suggests that low doses of DA agonists enhance the effect

of response prevention (Cooper et al. 1974; Christy and Reid 1975), consistent with

our models (data not shown).
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Figure 5. (a) Unmodulated CAR simulation. Shocks are turned on between trials 101 and
150 (dark grey), but they are escapable. Response prevention (forced staying) occurs between
trials 250 and 280 (light grey). Top plot – overall probability of avoidance calculated from
model variables (based on Equation 4). Probabilities are shown on the left ordinate. Roman
numerals mark the trials where latency statistics in Figure 5(b) are calculated. Bottom
(‘Latency’): as in Figure 4. (b) Avoidance probabilities averaged over 300 ‘subjects’ �380
trials each, protocol as per Figure 5(a). Before training (I) most learners reach state 6, where
shock is delivered. There is relatively little degradation in performance 30 trials after shocks
stop (IV), but some degradation is evident 65 trials later (V). Avoidance is reduced faster after
response prevention (VI). 100 trials after, responding is much like pre-training (VII).
(c) Values of state 3, from which much shuttling takes place, of example of Figure 5(a). Note
that during the late parts of shocked-learning, but also the early parts of ‘persistence’ trials,
choosing action ‘stay’ results in a dramatic increase of the value of state 3. Trials 250–280
show details of response-prevention. Note the transient increase in state 3 value.
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Discussion

The temporal-difference model of avoidance successfully describes a large range of

qualitative experimental results. It suggests specific computational roles for the

elements of two-factor theory, linking it directly to dopaminergic mechanisms. The

model resolves the apparent paradox that dopamine receptor antagonists

dramatically suppress avoidance responding, and yet appear not to be involved in

reporting worse-than-expected, aversive outcomes. It also sheds light on

other findings that appear puzzling or counterintuitive from the point of view

of qualitative two-factor theory. These include the relatively persistent, efficient

shuttling in the absence of fear, which has been subject to much debate.

In our models, this naturally follows from the fact that it is the cumulative

experience of differences between outcomes, not the outcomes themselves that

result in policy learning.

There have been other models of the CAR. In the category of two-factor models

(like ours), we note the work of Grossberg (1972), who has carefully analysed

Figure 6. Example of simulation of 80% DA blockade affecting positive corrections to values
and also all corrections to policy parameters. Otherwise the trials are conducted as in
Figure 5. Grey-scale coding also as per Figure 5. (a) Example of avoidance probability and
latency. A much lower level of responding is established (cf. Figure 2a ‘Pimozide’). Response
prevention has little effect. (b) Latencies averaged over 100 ‘subjects’. DA blockade has
caused much less avoidance of state 6, where shocks were delivered in training. Some
reduction in latency took place during the ‘persistence’ trials (IV–V).
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opponency in nonlinear dynamical settings, and of Schmajuk and Zanutto (1997)

and Johnson and co-workers (2002). Despite their many attractive features, these

models are more psychological in nature. They pay less attention to the substantial

data on the involvement of dopamine in appetitive learning, together with its

apparent opponent-based role in the CAR. They therefore do not set out to address

the key experimental data that constrains our model. Note that in our model the

opponent dopamine signals (due to ‘relief ’ that the aversive stimulus has been

avoided) are on the same footing with all others, and that signals due to different

psychological sources (CS, AR) sum linearly. It was not necessary to appeal to any

special properties of the ‘safety signals’ [for instance as extinction-resistant

conditioned inhibitors of fear (Gray 1987)] that accompany the avoidance response.

A second category of model of avoidance involves versions of Expectancy

theories, the prototype of which is that of Seligman and Johnston (1973).

Expectancy theories emphasize that, subsequent to the initial associative fear-

conditioning, animals explicitly learn which events are likely to follow each action in

each state. Subjects can then decide which action to take by comparing the ultimate

Figure 7. Advantage-learning model that has been DA-blocked during learning is then freed
both from DA block and from shocks from trial 131 on. (a) Example of avoidance probability
and latency. Spontaneous learning occurs to a high level, with a dramatic increase upon
release from DA blockade. (b) Averaged latency plot, showing the dramatic response to
withdrawal of DA blockade (black curve). Light grey curve is the same as Figure 6(b),
persisting DA blockade, for comparison. Note effect of response prevention.
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expected outcomes of sequences of actions. The learner is said to use a ‘forward

model’ (Wolpert and Miall 1996), or, in a conditioning context, goal-directed

actions (Dickinson and Balleine 2001; Daw et al. 2005). Two of Smith and

co-workers’ influential models (Smith et al. 2005, 2006) are perhaps most correctly

seen in expectancy terms. Dopamine plays two roles in these particular models.

One, putatively ascribed to tonic levels of this neuromodulator, controls the course

of inference through the forward model. The second role, identified with phasic DA,

is to report a product of surprise and significance which is used to learn transition

coefficients connecting the states comprising the forward model. These models have

trouble accounting for the gradual acquisition seen in Beninger’s blockade study

(Beninger et al. 1980b), since the expectancy of fear that is clearly established does

not immediately lead to appropriate responses even when the blockade is removed.

Their contact with existing data on DA’s involvement in appetitive learning is also

somewhat distant.

In the context of appetitive conditioning it has been suggested (following

Coutureau and Killcross 2003) that model free, cached, RL methods would coexist

with model-based, goal-directed, RL (Daw et al. 2005). Expectancy theories involve

just the sort of forward models that are implicated in the goal-directed system; while

our two-factor model is a form of cached controller. Thus it would be natural to

suppose that both sorts of model may coexist in this aversive case too; a possibility

that opens up various lines of experimental enquiry. Daw and co-workers (2005)

suggested that arbitration between the two different controllers should depend on

their relative uncertainties; a suggestion that would also be suitable for this

aversive case.

Rather more sui generis is the third model of CAR suggested by Smith and

colleagues (2007). In this work, affective values translate directly to probabilities of

action and hence it is again difficult to account for the development of responding in

extinction (Beninger et al. 1980a). Compared with this, we placed particular

emphasis on the aversive framing of the CAR, and the apparent opponent

interaction between dopamine and its putative aversive opponent.

Neurobiological substrate

A rich nexus of neural areas appears to be involved in the habitual system’s

instantiation of the CAR (noting that different paradigms of aversive learning

recruit different such groupings, e.g. Reis et al. 2004). First, the basolateral

amygdala (BLA) appears necessary for the acquisition of instrumental avoidance

(Poremba and Gabriel 1995) whereas different amygdalar regions appear to be

involved in other types of fear learning, such as conditioned suppression (Killcross

et al. 1997). The human amygdala may be involved in the evaluation of

unexpected costs (Yacubian et al. 2006) although some studies did not detect

such activity (Seymour et al. 2004). The amygdala appears only to be involved in

the initial stages of aversive learning and even the passage of time alone (not

learning trials) reduces its involvement (Poremba and Gabriel 1999). This may

contribute to the heterogeneity of imaging findings (Jensen et al. 2003).

Basolateral amygdala projection neurons receive glutamatergic projections from

sensory association cortices. They also receive inhibitory input from prefrontal

cortex, via inhibitory interneurons. It is here that mesolimbic dopaminergic
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inputs intervene. Both D1 and D2 receptors on BLA neurons serve to suppress

medial prefrontal inhibition and enhance responses to sensory inputs (Rosenkranz

and Grace 2001, 2002).

The orbitofrontal cortex also plays an important role in avoidance, at least in

human subjects. There is evidence that this region encodes not-incurring the ‘cost’

or ‘loss’ associated with an aversive stimulus during avoidance tasks as if it were a

reward value (Kim et al. 2006). Such a ‘reward’ value could serve to reinforce safety

behaviours.

Imaging studies also implicate two other areas in encoding the discrepancy

between how aversive a person estimates a situation to be, and how aversive this

situation actually turns out to be (what we termed the PE). The areas involved are

the insular cortex and the corpus striatum (Seymour et al. 2004, 2007). The corpus

striatum appears to contain different functional subregions, which are preferentially

activated by rewarding PE (near the nucleus accumbens) and aversive PE (slightly

more posterior, in the putamen).

Finally, the most critical question for our model is the neural substrate for the

representation of the aversive PE to control the learning of the aversive values.

Based on various lines of evidence, it has been suggested that serotonin may play a

critical role, perhaps as an opponent (Grossberg 1972; Solomon and Corbit 1974)

to dopamine (Deakin and Graeff 1991; Daw et al. 2002). Indeed, serotonin has

been shown to play an important role in learning in the CAR (Titov et al. 1983; Ma

and Yu 1993; Wadenberg and Hicks 1999; Wadenberg et al. 2001). However, there

are known synergies between DA and 5-HT as well as this opponency (for instance,

5-HT2A receptors in the striatum appear to boost the effects of dopamine), making

this prediction complicated. Further, systemic opioids and ACh-muscarinic

agonists reportedly have less pronounced neuroleptic-like effects on the CAR

(Shannon et al. 1999; Aguilar et al. 2004).

As currently constituted, our model incorporates an important asymmetry

between dopamine and its putative opponent. (a) Value learning depends on PEs

from both dopamine and its opponent. However, (b) action learning and extinction

depend exclusively on dopaminergic activity being greater than and less than its

baseline, respectively. In the latter case, note that a PE whose net affective value is

aversive is represented by a net negative dopamine signal. This is partly a

placeholder for what must surely be a more complicated relationship underpinning

other phenomena too such as the nature (Tobler et al 2003) and non-extinction of

conditioned inhibitors. We postulate this asymmetry because of the effect of

dopamine blockade, with aversive values being well learned when DA is blocked (a),

unlike avoidance (b). Unlike current theories (Smith et al. 2006), a forward-model-

based account that would respect the DA-blockade data would also have to

differentiate between the roles of DA in appetitive vs. aversive learning and in

forward-model structure vs. action-preference learning.

One possible rationale for this asymmetry is that, at least in this particular context,

there is much more information in the one avoidance action than in the many

actions that do not prevent the oncoming shock, a fact that the subjects could learn

whilst flailing. However, it may be instead that a more fundamental role for tonic

levels of dopamine in controlling action vigour (Niv 2007; Niv et al. 2007) could

include an effect of completely blocking the impetus to learn about effortful actions

such as shuttling. Testing this possibility would require dissociating tonic and phasic
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dopamine signalling, something of active interest in the literature (Grace 2000;

Cagniard et al. 2006; Goto et al. 2007).

Our model only treats part of the involvement of dopamine in CAR, leaving out

effects of tonic or sustained concentrations or release, and also involvement in

freezing. The release of DA in aversive situations has been amply demonstrated

using microdialysis, and is known not to be simply due to the offset of punishment,

either through avoidance or otherwise (Young 2004). One interpretation of this

again comes back to tonic dopamine signalling, arguing that this release is associated

with an expectation that an effortful, vigorous, avoidance or escape action will be

required (Niv et al. 2007). The main effect of this in the model would be to enhance

the sloth of acquisition and the speed of extinction, the latter simply by reducing

exposure to the consequences of the ‘shuttle’ action (data not shown). Freezing

behaviour in response to shock is usually thought of as a Pavlovian, simpler

paradigm than the CAR. Pavlovian responses to aversive events are, in fact,

modulated in complicated and controversial ways by different dopaminergic drugs

(Miyamoto et al. 2004; Reis et al. 2004; de Oliveira et al. 2006) and there are

interesting avenues for investigation as to the best interpretation of this with respect

to PEs (Iordanova et al. 2006).

Relevance for human psychopathology and future research

There are good psychopathological grounds for focussing on aversive processing as

an essential component of psychosis. The literature has traditionally concentrated

on neurotic disorders (Forsyth et al. 2006), but recent research highlights the

importance of the aversive learning system in conditions where dopamine plays an

important role. People suffering from paranoid psychosis often have a background

of victimization (Mirowsky and Ross 1983; Janssen et al. 2003) and thus exposure to

aversive learning. They tend to make exaggerated predictions of aversive events,

even considering this background (Kaney et al. 1997; Corcoran et al. 2006; Bentall

et al. in press). Their use of safety-behaviours (strategies for avoiding situations

associated with perceived threat) seems to perpetuate their problems (Freeman et al.

2001). We have argued (Moutoussis et al. 2007) that efforts to avoid both external

threats and, crucially, threatening private experiences (Bach and Hayes 2002)

contribute to the aetiology of persecutory syndromes. The current study provides a

detailed basis for linking the psychology of anticipation of threat and the biology of

psychosis. It permits, for example, calculation of regression coefficients relevant to

avoidance-learning, so as to help locate corresponding anatomical areas by

functional imaging (as per Seymour et al. 2004). It also suggests a set of functional

mechanisms whose activity may be exaggerated in persecutory syndromes.

Our model makes some predictions that would be important to put to

experimental test. First, the basic patterns of avoidance behaviour considered here

in the CAR, as well as their modulation by dopaminergic drugs, should

correspond to analogous patterns in healthy humans. However, unfortunately,

we have been able to find little evidence on the effect of psychotropic drugs on

human aversive learning. Second, we might expect unmedicated, psychosis-prone

individuals to show biased learning in CAR-like situations. Third, our model

suggests that the ‘better than expected’ signal that follows perceived avoidance of

an aversive outcome is reported by dopamine, both within value-learning and
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within action-learning circuitries. This is consistent with a large body of

psychological research stressing the reinforcing property of reaching ‘safety

states’ and of some instances of CS offset (e.g. Gray 1987). It is also consistent

with recent fMRI evidence (Kim et al. 2006). We note that within our framework

it is not the offset of an aversive stimulus per se that would be associated with

positive dopamine activity, but its better-than-expected significance.

Experimentally, how closely dopamine is involved and whether it has similar

roles in value vs. action learning remains to be tested directly. Fourth, if the

dopaminergic-opponent process relies on serotonin, we would expect 5HT

blockade significantly to delay acquisition but not extinction. Finally we would

expect much less ‘rebound’ action-learning on removal of 5HT blockade, as

compared to DA. The activity of the goal-directed system could complicate

outcomes and therefore results would be clearer in experiments where the goal-

directed system is inhibited (Blundell et al. 2003; Killcross and Coutureau 2003).

In considering the psychobiological mechanisms involved in the CAR a clinically

important corollary immediately follows which lies outside the scope of the present

study, but is highly relevant for future research. The psychological processes

examined here, especially vigour, detection of threat and the anticipation of rewards

of actions, are very important in manic disorders. These are characterized by

pathological anticipation of positive returns. Temporal difference modelling may

help clarify the neurobiological mechanisms involved and link them to emerging

psychological research, for example to the precipitation of manic episodes by

positive goal attainment events (Johnson et al. 2000).

Finally, the present models help set the scene for an investigation of the

cooperative and competitive interactions of the habitual, forward-model and

Pavlovian controllers in aversive processing. That the goal-directed controller

favoured by expectancy theory does not appear to control performance on at least

some of the existing collection of animal CAR studies, does not imply that it will

not trump our habitual controller under any circumstance. Further, there also

appears to be a third, Pavlovian, controller, which directly couples predictions of

aversion to stereotypical defensive actions (Gray and McNaughton 1996; Dayan

et al. 2006) in a way that can be synergistic or opponent to the instrumental

choices of either the habitual or the goal-directed controller. Indeed, perhaps the

most important future direction for this work is towards understanding the

integration of these three mechanisms in terms of learning and performance, and

thus, most optimistically, the potential combination of pharmacological and

learning-based interventions in the treatment of psychotic psychopathology.
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Appendix: Details of simulation results

During the first phase of the EFF, from trials 100 on in Figure 4, subjects have

learnt that all states 1–5 predict shock for all actions. Within about 20 trials, all states

have values about equal to the return of the shock. During the second phase ‘shuttle’

actions lead to safety states of value zero. This takes place from trial 150 onwards in

the example of Figure 4(b) (same example in Figure A1 and A2). Therefore when

these shuttle actions are taken, the values of the originating states reduce according

to Equation 1. In our example, the value of state 4 decays from 4 (¼ return of shock)

towards 0.2 (¼ return of shuttle) each time shuttling occurs from that state, as

happens in trials 152, 154, etc. The reduction in value of state 5 reduces for ‘stay’

too, as there is now no shock (return¼ 0). If we take the first non-shocked trial, trial

151, as an example:

�V ð5Þ ¼ Rnon-shocked ð5! 6Þ þ V ð6Þold � V ð5Þold

¼ 0þ 0� 4 ¼ �4 ðfrom Equation 1Þ

This gives

V ð5Þnew ¼ V ð5Þold þ 0:5� �V ð5Þ ¼ 4þ 0:5�ð�4Þ

¼ 2, ðEquation 2, as per Figure A1Þ

Note the unusual dynamics for the value of state 1. When shuttling occurs, V(S1)

reduces as expected. However, since S2 is little visited, its value (V(S2)) is not

greatly reduced (in fact, mostly what was inherited from S4), Thus, when ‘stay’

is chosen in S1, and so S2 is visited, the value of S1 usually increases sharply

(trials 153, 155, 169 etc.) because of ongoing learning.

These phenomena have a very interesting effect on policy, shown in Figure A2.

The advantages for the action ‘shuttle’ (upper curve) and ‘stay’ (lower curve). While

V(S1) is high, each ‘shuttle’ leads to learning that this action is more advantageous,

according to Equation 4. Let us take trial 153 as an example. Here shuttling occurs

for the first time from state 1 (to the ‘safe’ state 7). We now have, as above:

�V ð1Þ ¼ Rshuttleð1! 7Þ þ V ð7Þ � V ð1Þold ¼ 0:2þ 0� 4 ¼ �3:8
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Figure A1.

Figure A2.
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and, substituting in Equation 4 while reversing the sign of the value of �V to respect

the convention of the model description above,

mða ¼ shuttle, s ¼ 1Þnew ¼ mðshuttle, 1Þold þ 0:075�; ð�V �mðshuttle, 1ÞoldÞ

¼ 0þ 0:075�ð3:8þ 0Þ ¼ 0:285 (as per Figure A2Þ

In addition, the occasional ‘stay’ actions in S1 lead to visiting the unextinguished

S2, and hence teach that ‘stay’ is disadvantageous. This happens, in trials 154, 169

etc. in our example. The policy of shuttling from this early state is therefore boosted

(Equation 3). This is similar to the psychological explanation that has been given for

the tendency of the CAR to persist. Conversely, delaying the AR exposes the animal

to later, still unextinguished, parts of the CS, increasing momentary fear, and thus

delaying extinction.
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