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Introduction. When deciding about the cause underlying serially presented events,
patients with delusions utilise fewer events than controls, showing a ‘‘Jumping-
to-Conclusions’’ bias. This has been widely hypothesised to be because patients
expect to incur higher costs if they sample more information. This hypothesis is,
however, unconfirmed.
Methods. The hypothesis was tested by analysing patient and control data using two
models. The models provided explicit, quantitative variables characterising decision
making. One model was based on calculating the potential costs of making a
decision; the other compared a measure of certainty to a fixed threshold.
Results. Differences between paranoid participants and controls were found, but
not in the way that was previously hypothesised. A greater ‘‘noise’’ in decision
making (relative to the effective motivation to get the task right), rather than
greater perceived costs, best accounted for group differences. Paranoid participants
also deviated from ideal Bayesian reasoning more than healthy controls.
Conclusions. The Jumping-to-Conclusions Bias is unlikely to be due to an
overestimation of the cost of gathering more information. The analytic approach
we used, involving a Bayesian model to estimate the parameters characterising
different participant populations, is well suited to testing hypotheses regarding
‘‘hidden’’ variables underpinning observed behaviours.
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INTRODUCTION

Delusions are beliefs that appear fixed but are unwarranted on the basis

of the available evidence (American Psychiatric Association, 2000). It

has therefore been hypothesised that probabilistic inference is defective in

deluded patients. A key test used to assess such inference is the ‘‘beads in a

jar’’ task (Huq, Garety, & Hemsley, 1988), which abstracts the personal

(including threat-related) content of delusions away from the inferencing
process. Here, study participants are told that a sequence of blue (b) and

green (g) beads will be drawn from one of two jars. One jar, B, has a majority

of blue beads; the other jar, G, has the same majority of green beads.

Participants are presented with beads, one by one. They are asked to think

whether B or G is the underlying cause of the bead sequence and asked to

declare which it is when they themselves are sure. The main outcome is the

number of draws that participants take to decide.

A robust finding of such studies is that participants with paranoid beliefs
or other kinds of delusions take a smaller number of draws to decide than

controls (Corcoran et al., 2008; Fear & Healy, 1997; Garety et al., 2005;

Garety, Hemsley, & Wessely, 1991). This is usually interpreted as a ‘‘Jumping

to Conclusions (JTC) bias’’ and thus claimed to reflect an aspect of delusion

formation. The unwarranted derivation of beliefs in paranoid thinking, as

well as the precipitous decisions in probabilistic-reasoning tasks, are often

attributed to increased motivation to draw conclusions, for example as part

of a cognitive style geared towards detecting threats (Dudley, John, Young,
& Over, 1997).

Further studies, however, showed that paranoid reasoning in the ‘‘beads

task’’ shows modest abnormalities compared to what one might expect if

delusions were largely due to jumping to conclusions (Fine, Gardner,

Craigie, & Gold, 2007). This challenged the validity of the standard

interpretation of precipitous decisions in the ‘‘beads task’’ in terms of the

cognitive processes involved in paranoid inference. In one variant of the task,

participants are asked to give serial estimates of the chance that the beads
are drawn from one specific jar, rather than to decide when to stop drawing.

In this version of the task paranoid subjects appear to shift their certainty

estimates more than controls when presented with beads favouring the

jar opposite to their currently preferred one (Fear & Healy, 1997; Young

& Bentall, 1997). This would be surprising if developing a preference for a jar

involved jumping to a delusion-like conclusion, as delusions are by definition

resistant to contrary evidence (American Psychiatric Association, 2000).

We thus sought to take advantage of advances in the theory of decision
making to develop a more refined view of the processes and mechanisms

associated with the beads task. Our intent was to realise the constructs

underlying decision making in a rigorous and testable ideal-observer,
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Bayesian framework that could potentially reveal even subtle biases and

inferential flaws in performance on the existing task.

The ideal-observer Bayesian approach

Models of optimal decision making explicitly parametrise all the factors,

including prior expectations, costs, and noise, that should control choice

(Dayan & Daw, 2008; Green & Swets, 2008; Kording, 2007). They can be

used to ask how subjects’ behaviour approximates this optimal solution,

and what might be the nature of any deviations from optimality. Decision

making in ideal observer models is based on two considerations: the

posterior probabilities of various scenarios, given what has been observed,

and the values of different decisions (action values) for each scenario.
In tasks such as ‘‘beads-in-a-jar’’, the likelihoods can be estimated exactly

using Bayes’ theorem (Appendix, Equations 2�3). Fear and Healy (1997)

compared the exact Bayesian likelihoods with estimates that patients and

healthy controls made in the serial-estimates version of the task. No clear

difference was found to support the hypothesis that delusion formation is

based on a deficit of estimating such probabilities. Analysing the factors

contributing to action values may therefore be quite important.

In the version of task where paranoid patients do differ from controls,
actual choices or commitments must be made, rather than estimates of

probabilities. After each sample, three choices are available: DB and DG,

which decide on jars B and G respectively, and DS, i.e., ‘‘sample again’’. In

the decision-theory literature, these problems are called optimal stopping

problems (Bertsekas, 1995; Puterman, 1994). The task instructions do not

completely specify the costs or benefits of different actions. Participants are

only told to sample beads until they are sure which jar they come from, up to

a maximum nmax�20. These instructions may suggest that the subjects
should weigh heavily the cost of deciding wrongly (CW). The cost that

normally afflicts decision-making problems under uncertainty, namely the

cost of sampling a further bead (CS), is not mentioned.

However, CS may nevertheless be important. One factor that has often

been put forward to explain delusional thinking is inflated personal cost (or

value) associated with the collection of information under uncertainty.

Different instances of this ‘‘high-cost hypothesis’’ in the psychology

literature include the ‘‘need for closure’’ reflecting a high subjective cost of
uncertainty (Bentall & Swarbrick, 2003), the cost to self-esteem (Bentall,

2003), or the cost of cognitive dissonance experienced when intensely salient

experiences strain the patient’s explanatory theories about the world

(Freeman & Garety, 2004; Kapur, 2003). A common theme is that delusional
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patients may experience sampling costs to be greater than healthy people,

and adopt cognitive strategies to minimise them.

Our primary hypothesis was that paranoid participants tend to assume

higher costs of gathering more data in serial probabilistic inferencing tasks,

which explains their early decisions (the high-sampling-cost hypothesis). Our

secondary hypothesis rendered more rigorous and testable the long-standing
psychological hypothesis that paranoid participants may show deficiencies

in Bayesian reasoning (Hemsley & Garety, 1986). We hypothesised that

paranoid probabilistic reasoning may deviate away from the Bayesian ideal

(towards a simpler model) more than that of healthy subjects. We thus built

two models for the task. The first was an implementation of ideal observer

Bayesian analysis, including Costs (the CB model). It is detailed in the

Appendix; here we just note that its calculation of the cost of gathering

more information (sampling again) involves a broad and deep considera-
tion of all future outcomes (Appendix, Equations 6�8). We expect such

calculations to be highly challenging for patients, and indeed controls, so

that in vivo approximations may be used. Our simpler model was based on

the Sequential Probability Ratio Test (SPRT, see later). This treats costs

in a less direct way, and is much simpler in practice. We estimated all

model parameters by using the Expectation-Maximisation (EM) algorithm

(Dempster, Laird, & Rubin, 1977).

One critical deviation from ideal that we can expect from both controls
and patients is behavioural noise (e.g., Pleskac, Dougherty, Rivadeneira, &

Wallsten, 2009). Consider data from 99 trials of 33 healthy people

performing the beads task that we will analyse later (Corcoran et al.,

2008). For seven trials (from five participants), a decision was taken after

the second sample, which was always discordant with the first. Thus, at

that stage participants had no information at all as to the underlying jar, and

yet they were so far from the maximum possible number of sampled beads

(20, in this case), that this limit would be unlikely to be exerting an effect.
Some type of process error or extraneous influence that we can subsume in

the concept of noise must be having an effect. A standard manoeuvre to

encompass such choices is to introduce behavioural noise by having subjects

choose randomly between the three possible actions with probabilities

depending on their relative action values. We assume that the impact of

the ‘‘noise’’ is controlled by a temperature-like parameter, t, via the sort of

Softmax or Luce choice rule employed by a bulk of other models of human

and animal decision making (e.g., O’Doherty et al., 2004).
The CB model would then have three parameters, t, CW, and CS. However

if t, CW, and CS are all scaled by the same factor, the same probabilities will

ensue. In other words, we need to choose the ‘‘currency’’ by which to

measure these three parameters arbitrarily. We thus set the cost CW�100 for
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all participants; CW can thus be seen as the ‘‘unit of internal cost’’ for each

person, relative to which all other quantities are measured.

Comparison with the sequential probability ratio test

Optimal stopping problems frequently arise in psychological studies of

decision making (Gold & Shadlen, 2001; Laming, 1968; Link, 1992; Ratcliff

& Smith, 2004; Smith & Ratcliff, 2004; Usher & McClelland, 2001). Much of

this work has been organised around the SPRT. In the SPRT one maintains

the log-likelihood ratio, l(nd, ng), that the beads come from jar G rather than

B, if ng green beads have been drawn out of nd samples. Decisions are taken

when l(nd, ng) of two thresholds, uG or uB:

DG if l(nd; ng)�uG

D�DB if l(nd; ng)BuB

DS otherwise (1)

We used thresholds equidistant from l(nd, ng)�0 (the point of maximum

uncertainty) i.e., uG��uB�u. The thresholds encode the level of certainty

(excess beads of one colour) a participant may demand to decide. In keeping

with the previous observations, we also used an additive noise term

(parameters: mean 0, variance t2) to account for behavioural noise (see
Figure 1 and Appendix, Equations 9�11).

Given appropriate thresholds, the (noise-free) SPRT would produce

exactly the same choices as the (noise-free) CB model under the assumption

that there is no limit on the number of possible samples (Wald, 1945). This is

a remarkable result, since the SPRT is computationally a vastly more

straightforward implementation of an optimal policy than is known for

almost any other case for CB, not requiring the tree of possible future states

to be explicitly enumerated. However, it is not quite statistically optimal for
the beads task, since nmax is not infinite. Noise may also perturb it in a

different way. We used the SPRT to test whether some subjects use a

decision-making strategy considerably simpler than the optimal.

METHODS

In order to test our hypotheses we applied the CB and SPRT models to

reanalyse experimental results previously obtained by Corcoran et al. (2008).
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Figure 1. (a) SPRT simulation, draw 7 of sequence 1011110 . . . (sequence 3). In this case, by draw 6

most participants have declared; only the lower tail of a Gaussian-like distribution remains, truncated

at the high threshold uG��1.25 and renormalised before considering draw 7. This draw is discordant

with the ones before (B), so that the increment in l(t) is distributed as a Gaussian with a negative mean.

The sum of the two random variables gives a left-skewed probability density function (pdf) relatively

removed from both thresholds. (b) Probability of deciding at draw 4 as a function of threshold and

noise in the estimation of the increment of l(t). The distribution peaks at near-zero error. There it still

has a finite width with respect to threshold values as the initial condition l(0) has been set to contain a

small noise term.
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Participants

The study of Corcoran et al. (2008) included three diagnostic groups of

participants aged over 65, and five groups under 65. Our hypotheses

pertained to the group with persecutory delusions who were under 65

(original N�39; we excluded three participants with very limited beads-task

data, giving N�36). We therefore analysed their data together with those of

the under-65 healthy controls (N�33). Persecutory delusions were judged
to be present on the basis of endorsement of the question ‘‘Does anyone

seem to be trying to harm you (trying to poison you or kill you?)’’ (World

Health Organization, 1997), examination of case notes, and the answer to

the question ‘‘Do you ever feel as if you are being persecuted in some

way?’’ from the Peters et al. Delusions Inventory (Peters, Joseph, & Garety,

1999). We also performed limited analyses on depressed-without-delusions

(N�26), depressed-with-delusions (N�20), and remitted-paranoid (N�29)

under-65 groups. The reader is referred to the original study for further
details of the participants.

Stimuli

Participants were tested using the original version of the beads task (Garety

et al., 1991), and a formally equivalent version of the task developed by

Dudley et al. (1997) which uses valenced words rather than coloured beads.

In the latter, participants had to choose between two surveys, each containing

good and bad comments about an individual. They were told that each jar

(or survey) contained 60% of the dominant colour (comment type). Each

version used three particular sequences, (1) 01000010001011110111; (2)
01000100101000011001; and (3) 10111101110100001000 (using ‘‘0’’ and

‘‘1’’ to stand in for a particular colour or valence). Each participant thus

provided six values of the number of beads or social words viewed before

deciding, also called ‘‘draws-to-decision’’ (2 task versions, 3 sequences).

Analysis

We considered a pair of statistical models: one generative, and its statistical

inverse, the recognition model. The generative model parametrises the process

by which the experimental data are considered to have been generated. The

recognition model takes the actual data from the participants and infers the
parameters of the generative model that are likely to be responsible. We used

the EM algorithm to fit model parameters to the experimental data. It is the

‘‘E’’ phase of the EM algorithm that involves the recognition model

(Dempster et al., 1977).

BAYESIAN REASONING AND PARANOIA 7

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 1
5:

37
 0

9 
Ju

ly
 2

01
1 



In detail, for the generative model, we assumed that each experimental

group was described by its own parametrised statistical prior distribution.

We called these group-level descriptive statistics ‘‘macroparameters’’. These

are the mean CS
m; standard deviation CS

s etc. The specific ‘‘microparameters’’

CS
i (or, for the SPRT, ui) and ti characterising participant i are considered to

be sampled from the distributions associated with the group of that
participant. These microparameters act through the CB or SPRT model of

the task to determine the distribution over possible experimental choices of

participant i. As costs are unlikely to assume positive values (i.e., mistakes or

slowness will not be positively rewarding) and uncertainty cannot be negative,

we assumed that the ‘‘microparameters’’ are sampled from independent

gamma distributions (in the case of costs with the sign ‘‘flipped’’ to negative

values). We used the EM algorithm to find the values of the macroparameters

that maximise the log-likelihood that the experimental data for each group
could have been created by each model (CB or SPRT).

We assessed how well the models accounted for the data in several

ways. First we used a parametric bootstrap resampling technique (Efron &

Tibshirani, 1993). Here we used the best-fit parameter values to simulate

the experiment of Corcoran et al. (2008) many times. The bootstrap tested

if different models of decision making produced outcomes resembling the

real data. The main outcome we examined was the difference between the

mean draws-to-decision in the two participant groups. Second, in order to
examine the null hypothesis (H0) that the different groups could be described

equally well by a single set of parameters, we merged the group data and

fitted parameters to the combined set. We then compared the ‘‘merged’’

versus ‘‘separate’’ models using the Bayesian Information Criterion (BIC;

Raftery, 1995; Schwarz, 1978). This is a measure based on model likelihood

that takes into account the number of parameters a model uses (see

Appendix). Third, we derived distributions of key parameter models through

parametric bootstrap resampling. We thus estimated ‘‘bootstrap’’ confidence
intervals (bCI) for the parameters fitted to each group. All programs used in

the analyses are freely available from the authors on request and under

General Public Licence (GNU GPL).

RESULTS

In general, both the SPRT and CB models produced good fits to the data.

That is, when the fitted parameters were used to generate artificial data sets

and these were reanalysed with the methods that we used for the original

data, the sum-of-log-likelihoods for the actual data fell well within the

distribution of values of the artificial data. Therefore the observed data

could be a typical output of our generative model.
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Most critically, the results were contrary to our high-sampling-cost

hypothesis. In the beads task analysed with the CB model, the mean and

variance of the cost of sampling converged to near-zero values for both

healthy and paranoid groups (Table 1), consistent with the experimental

instructions for the task. This finding challenged somewhat our use of a

gamma probability distribution to fit the population distribution of the
sampling-cost parameter, as the range of this distribution does not include

zero itself. More importantly, it implied that we could simplify our CB

models by removing the sampling cost variable (or by always setting CS�0),

with a negligible reduction in model fit. The BIC value for this simplified

model improved, as the model has two fewer parameters. Note that as the

SPRT has no strictly equivalent or separate cost parameter, removing or

fusing parameters to obtain a simpler model would be arbitrary.

TABLE 1
Best-fit parameters and BIC values for JTC tasks

Beads task version BIC

CB (k�4) tm ts CS
m CS

s

Healthy 5.09 3.63 �0.06 0.05 468.4

Remitted 5.75 4.06 �0.01 0.01 464.0

Paranoid 12.07 7.18 �0.05 0.03 423.9

CB (k�2) tm ts
Healthy 5.29 3.82 * * 459.3

Remitted 5.74 4.06 * * 457.3

Paranoid 12.09 7.09 * * 416.0

SPRT (k�4) tm ts um us
Healthy 0.76 0.60 1.34 0.18 492.6

Remitted 0.74 0.64 1.49 0.76 401.1

Paranoid 1.53 0.90 1.20 0.38 393.0

Words task version

CB (k�4) tm ts CS
m CS

s

Healthy 5.91 3.83 �0.04 0.03 461.2

Remitted 8.05 7.45 �0.11 0.16 418.1

Paranoid 9.83 5.36 �0.04 0.03 423.8

CB (k�2) tm ts
Healthy 5.92 3.83 * * 454.8

Remitted 8.25 7.51 * * 423.2

Paranoid 9.83 5.36 * * 416.6

SPRT (k�4) tm ts um us
Healthy 0.81 0.68 1.35 0.44 459.8

Remitted 0.87 0.53 1.41 0.81 375.2

Paranoid 1.39 0.62 1.4 0.73 410.9
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The second important finding was that the paranoid group had a higher

mean cognitive noise (parameter tm) than both the healthy and clinical

controls and for both versions of the task (Figure 2). This finding was

statistically robust (see later). In the SPRT model the noise parameter was

again larger for the paranoid than the healthy group (Table 1). The effect

of the higher noise parameter tm on decisions in the CB model is illustrated
in Figure 3. This shows how action values for the three possible actions

change through the experiment. Initially the ‘‘sample again’’ action is quite

advantageous for the healthy group, but less so for the paranoid group.

Two samples later only the healthy group, but not the paranoid one, still

perceives an advantage in sampling again.

We used three different approaches to judge the statistical significance of

the increased cognitive noise for paranoid group. First, we assumed that the

all five groups were sampled from populations with similar noise structures
(a null hypothesis, H0). Hence, we merged the data-sets for all groups and

fitted a merged-group set of CB parameters. We compared the ability of

these merged-group-parameters to describe the data, as compared to the

separate-group parameter fit shown in Table 1 (H1).

We therefore simulated the experiments using merged versus separate

parameters, thus creating large sets of simulated data. We compared three

key descriptive statistics for the beads task under H0 versus H1: the grand

mean difference in draws-to-decision between groups, averaged over the
three experimental sequences used; and the within-sequence variances in

draws-to-decisions in each group. We found that the merged-data model was

quite unlikely (pB.02 for words, pB.001 for beads, two-tailed) to give rise to

the experimentally observed difference in draws-to-decision. The latter was

near the modes of the simulated distribution under H1. Therefore H0 is

rejected in favour of H1. Similarly, if the remitted and paranoid groups are

merged and best-fit parameters derived, hypothesis H ?0 that the difference in

draws-to-decision between them arose by chance is again rejected for the
beads task (p�.0002) and the words task (p�.02). We repeated this last

analysis using the SPRT rather than the CB as generative model, and got

essentially identical results. The beads-task results remain significant for the

beads task under Bonferroni correction for multiple comparisons (pB.001),

but the words-task results are reduced to (just) trend significance (both

p�.06). If the same analysis is repeated for the difference between healthy

and remitted groups, the null hypothesis that they are sampled from the

same distribution cannot be rejected. The experimentally observed variance
in draws-to-decision of the healthy group was accounted for equally well

under H0 or H1. The variance of the paranoid group was also consistent

between the H1 model and experiment, if a single outlier result was excluded.

The decisions of this participant (2, 20 and 20 draws-to-decision), are indeed

extremely unlikely to be produced by a stable Bayesian or SPRT model.
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Figure 2. Group comparisons: (a) Best-fit noise parameters for the Bayesian model. The analogous

noise parameter plot for the SPRT is almost identical (not shown). The paranoid group has larger

mean noise, especially for the beads task. (b) Model fit according to the BIC. Positive values favour the

Bayesian model, negative the SPRT. A difference of 10 is conventionally considered ‘‘very strong’’

evidence in favour of a model (Raftery, 1995). In the beads task, never-psychotic groups are closer to

the Bayesian norm, whereas schizophrenia-spectrum-disorder groups are closer to the SPRT. The

words task brings out differences less clearly, probably due to the complex social thinking it invites.
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noise for the healthy and paranoid groups. A ‘‘representative participant’’ corresponding to the mean

for each group is shown, for reasons of clarity. The sequence presented is bgbbbbgb . . . (a) Action

values curves for ‘‘sample again’’ and ‘‘decide on blue’’ for the two groups. The ‘‘decide on blue’’ curve

is the same for both groups. (b) Resulting probabilities of deciding at specific stages. The peak is at 1

for the paranoid group but much later, at 4, for the controls.
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Exclusion of this individual resulted in similar parameter estimates for the

paranoid group but improved the model fit as might be expected. The other

analyses reported here were not materially affected by excluding this outlier.

Second, we used the BIC to compare a CB model of the paranoid and

healthy groups fitted separately, with one where these two groups were

merged. The BIC penalises extra parameters substantially, but still slightly
favoured fitting separate parameters to each group (BIC�898 vs. 902

when tm, ts, CS
m; and CS

s are fitted). Third, we applied EM to obtain

bootstrap-confidence-intervals (bCI) for the parameters. We found that the

noise parameter tm estimate for the healthy-beads group as well as the

corresponding estimate for the remitted group fell outside the 0.01 bCI for

the paranoid-beads group (correcting for multiple comparisons). The 0.01

bCI for tm for the beads-version of the task for each group, however, each

included the estimate for the words version for the paranoid group.
Compared with the beads-version, the words-version looks as if it makes

levels of cognitive noise more similar across groups, rendering differences

nonsignificant by the measure of bCI.

Finally, we sought to compare which model, CB versus SPRT, best fitted

the data of the healthy, paranoid, and remitted groups. Our hypothesis was

that paranoid participants deviated from the Bayesian model more than

healthy ones, and that this difference would be related to the paranoid state

itself. For the healthy controls, the BIC favoured the tm, ts CB model over
the tm, ts, um, us SPRT model for both (but especially the beads) versions of

the task. For the paranoid group the SPRT did better (beads) or somewhat

better (words) than the CB model (Table 1), in support of our hypothesis.

However, the remitted group was clearly nearer to the SPRT (Figure 2),

contrary to expectation.

DISCUSSION

We used a Bayesian approach to analyse the ‘‘beads in a jar’’ task, a popu-

lar tool used to assess probabilistic reasoning in patients with

psychiatric disorders (Fear & Healy, 1997; Garety et al., 1991). It is

important to elucidate the mechanisms that the task assesses, as the
‘‘jumping to conclusions’’ bias seen in this task has been postulated to

have aetiological importance in delusions (Freeman et al., 1998). Such is its

perceived importance that specific therapeutic procedures have been

designed to correct this bias (Moritz & Woodward, 2007). Our work is the

first to quantify subjective motivational factors (perceived cost) in this task,

and to test the common assumption that cost considerations account for

jumping to conclusions.
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High-noise processing versus the high-sampling-cost

hypothesis

Contrary to the ‘‘high sampling cost hypothesis’’, we found that increased

noise in decision-making accounts robustly for the JTC bias. We measured

noise relative to the subjective cost of making a wrong decision; an

alternative interpretation of this result might be that paranoid patients
utilise reduced effective costs of making wrong decisions. Distorted effective

salience (Kapur, 2003) might conceivably make it difficult for paranoid

patients to put cost estimates to good use. However, we consider this

interpretation unlikely as paranoid participants tend be highly avoidant

(Freeman, Garety, & Kuipers, 2001) and sensitive to failure experiences

(Bentall & Kaney, 2005). In addition, patients with marked ‘‘negative’’

symptoms were excluded from this study. While the possibility of ‘‘reduced

effective motivation’’ cannot be ruled out on the basis of this study, it can
be expected that paranoid patients would be highly motivated to avoid

failure experiences and thus would be unlikely to have a reduced cost of

making the wrong decision. Our interpretation implies that this task should

be compared with a control one where paranoid participants demonstrate

equal motivation not to ‘‘get it wrong’’ as controls, irrespective of ability.

Most importantly, experimentally manipulated (e.g., monetary) cost-of-

sampling and cost-of-wrong-decision should be examined. We predict that

increasing CS relative to CW would not, as might be expected from the high
sampling-cost hypothesis, make healthy control data delusion-like, but

inducing ‘‘noise’’ in selecting one of the three actions would. Modelling

could allow the influence of control tasks and externally manipulated costs

to be used to infer the relative value of the ‘‘personal’’ cost of error that we

used as a comparator here.

We found no evidence that paranoid participants perceive increased costs

in this task when given socially salient stimuli. This is consistent with other

work (Warman, Lysaker, Martin, Davis, & Haudenschield, 2007). It may
still be that the anticipation of high personal costs specifically contributes to

the fixity of the self-referent ideas that paranoid participants hold. Future

research should therefore examine probabilistic reasoning relevant to specific

delusional beliefs. It could test how such beliefs may (or may not) shift

in the face of different types of personally salient evidence. Applying a

Bayesian approach would allow estimation of (1) prior probabilities of

harm, (2) accuracy of derivation of posterior probabilities, (3) ‘‘internal/

social’’ costs such as ‘‘if this belief is false, I must be mad’’, and (4)
‘‘external’’ costs such as ‘‘if I get it wrong, my persecutors will get me’’.

A related direction for future research is the examination of asymmetric

costs. In the case of paranoia, deciding that someone is trustworthy when

they are not may incur a much greater immediate cost than the opposite
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error. Deciding that people are ill-disposed when they are not may be more

costly in the long run.

Paranoid decision making and noise

Decisions may be affected by noise in two key ways which our Bayesian

modelling helps to clarify. First, noise directly reduces the impact of a given

difference between the values of the actions on choice. ‘‘Noisy’’ participants

would declare more often even if faced with similar differences in action

values favouring sampling again (Appendix, Equation 7). Second, early

decisions in the beads task reflect smaller differences in action values

favouring different actions, as per Figure 3. This is because the calculation of

the action value for sampling relies on values of future states being taken
into account accurately (Equation 7 feeds into Equation 8; this feeds into

Equation 6 for the previous step). Note the assumption under the CB model

that paranoid participants still perform optimal Bayesian reasoning given

their view of future outcomes.

Of course, calculating the values of actions based on a search through

a forward model is challenging. Humans probably carry out such searches

to solve simpler tasks such the ‘‘Tower of London’’ (Marczewski, Linden,

& Laroi, 2001), while rats may engage in forward searching in the course
of goal-directed decision making (Daw, Niv, & Dayan, 2005; Dickinson

& Balleine, 2002). In both cases, there is a critical role for areas of prefrontal

cortex, and specific regions of the striatum (Balleine, Liljeholm, & Ostlund,

2009; Unterrainer & Owen, 2006). The schizophrenia-spectrum diagnoses

associated with our paranoid group are thought to involve a relative

hypofrontality, with a predisposing and/or consequent limbic hyperdopami-

nergia (Langdon, McKay, & Coltheart, 2008; Laruelle, 2008) and such

pathological processes may contribute to our findings. Emotional factors
could also contribute to the process substantially, if they involved a sense

of greater proximity of threat. There is evidence that the latter shifts

information processing away from frontal areas (Mobbs et al., 2007).

Here the research implication of the present study is that the psycholo-

gical mechanisms causing higher ‘‘noise’’, including perception of threat,

need to be elucidated. Furthermore, a beads-in-a-jar task could be used to

separate deluded patients with respect to their level of cognitive ‘‘noise’’.

This would require more trials-per-participant so as to enable accurate
determination of each participant’s individual noise level. Cognitive

mechanisms underlying delusions in the presence of low noise may differ

from those in the high-noise case. High noise in itself makes cognition

inefficient, or even biased, as cognitively more distant alternatives cannot be

taken into account well. Therefore, factors eventually found to increase this
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noise may be a target of therapeutic interventions. The high-noise explana-

tion of the JTC phenomenon also suggests that ‘‘high-noise’’ paranoid

subjects should be compared to nonparanoid participants with similar

cognitive impairments in probabilistic reasoning.

Bayesian versus threshold-driven decisions in paranoia

We found some support for the hypothesis that paranoid inference deviates

from the Bayesian ideal more than that of healthy subjects. People with

paranoia may employ more often non-Bayesian reasoning, where the
estimated likelihood of the cause of an event is simply compared to a

threshold. Overall, the costed-Bayesian model fits the healthy subjects better,

whereas the data from paranoid subjects (and remitted) were better

explained by the simpler sequential probability ratio test model, which

does not involve consideration of possible future outcomes. It could be that

SPRT-type reasoning is a lowest common denominator mechanism, on

which people improve by using a more Bayesian-like approximation. This

would be consistent with evidence that paranoid subjects tend to revert more
easily to simple heuristics (Glockner & Moritz, 2008). Bayesian reasoning,

however, requires considerable cognitive resources.

The structure of decision making for the two models can be compared by

using an ‘‘urgency plot’’. This shows an effective threshold for the Bayesian

model, allowing clear comparison with the fixed threshold of the SPRT

(Figure 4). The Bayesian and SPRT methods of estimation diverge most

markedly for the last five draws, when the Bayesian model decides with

greater urgency (fewer excess beads of one colour). We therefore suggest that
future studies seeking to differentiate the types of human reasoning may

employ shorter sequences, of only about 10 pieces of information, so as to

bring the last few draws within the range actually chosen by participants.

Methodological advances

Assessment procedures should ideally measure accurately those factors

which contribute substantially to pathological processes. Such assessment

procedures would highlight in each individual patient causal factors that

would make good targets for therapeutic intervention. Unfortunately

assessment of paranoid ideation has not yet reached this stage. The specific

model-based analysis that we have developed here is not as yet intended for
clinical practice but for research into the cognitive biases and deficits

contributing to paranoia.

Our study sits comfortably within the current trend in studies of decision

making. These studies utilise models that quantitatively capture observable
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behaviour by postulating hidden psychological variables such as subjective

beliefs and values that obey near-normative dynamics. Such variables are

frequently the target of functional neuroimaging studies (Doya, 2002;

O’Doherty et al., 2004) and offer accounts of neural activity in animals

(e.g., Morris, Nevet, Arkadir, Vaadia, & Bergman, 2006; Schultz, Dayan, &

Montague, 1997). These models are sufficiently precise to test and rule out

important hypotheses such as the standard view of the motivational factors
in JTC presented here. Similar approaches have been used in other

psychiatric and neurological patient populations (Batchelder & Riefer,

2007; Busemeyer & Stout, 2002; Dayan & Huys, 2008; Frank, 2005; Kumar

et al., 2008).

Building normative models allows for examination of different types of

null hypothesis pertaining to the underlying variables in silico. It also allows

checking that the ‘‘best-fit’’ model is likely, in absolute terms, to have

produced the experimental results. This process showed that our model clearly
separated the experimental groups. One further useful property of this form of

modelling is that it provides a signature that the groups under study may not

be well described by the unimodal distributions over model microparameters

that we assumed as a starting point. Once the best-fit parameters for a group

have been found, the posterior parameter distributions for each of the

participants can be calculated and accumulated to produce what we called the

‘‘experimental Bayesian’’ distribution. This is sometimes called the marginal
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Figure 4. Comparison of SPRT and Bayesian models using the mean parameters for the healthy

group doing the beads task. The SPRT model gives a decision when the estimated log-likelihood ratio

crosses one of the two constant, symmetric boundaries. The Bayesian model does not have such fixed

boundaries; an effective threshold, i.e., the log-likelihood ratio corresponding to a probability of

deciding of .5, is plotted for comparison. This curve is not defined for 4 or fewer draws, as the

probability of sampling again is always greater than .5 for these states. The Bayesian model estimates

backwards, starting from the last draw, whereas the SPRT does not take account of the approaching

end and this allows the greater ‘‘urgency’’ of the Bayesian model in the last few draws.
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posterior density (Gelman, 2002) (Appendix, Equation 14). The form of this

distribution provides hints as to extra structure in the data that is missed in the

current model. As an illustration, we found evidence (Figure 5) that there is a

subgroup of healthy subjects with very low error rates (and, on inspection, late

decisions) who may have applied different heuristics, or indeed interpreted the

rather vague instructions in a different way. It would be interesting to test task
variants that probe these characteristics.

Limitations of the present study

Explicit, sequential Bayesian calculations are a competence rather than a

performance model (Marr, 1982), and we have only been able to speculate

in rather coarse terms about the (prefrontal) processes involved. The same
is true for the many Bayesian models in modern computational cognitive

science (Chater, Tenenbaum, & Yuille, 2006; Xu & Tenenbaum, 2007). There

is a pressing need to study the approximations that biological systems may

use to estimate posterior probabilities and related variables (Yu & Dayan,

2005). Like other ideal observer accounts, the costed-Bayesian model thus

serves first and foremost as a point of reference.

It may be argued that the high-noise explanation is inconsistent with

the finding that paranoid subjects underestimate their own uncertainties
(Fine et al., 2007; Warman et al., 2007). Such a metacognitive deficit may,

however, be quite consistent with schizophrenia being characterised by a

poor perception of one’s own mental function (Fletcher & Frith, 2009).
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Figure 5. Best-fit gamma distributions (grey) and experimental Bayesian distributions (black) for the

Beads data, for the healthy and paranoid groups. Bringing the data to bear does not alter the curve for

the paranoid group much, but the control group appears to contain at least one subgroup

characterised by a very small noise parameter.
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Our study did not allow for explicit comparison with some systematic

deviations from the Bayesian norm, such as the primacy effect. Future

studies could include specific, psychologically motivated models of human

heuristics as comparators to our noisy-Bayesian model. Our ‘‘high-noise’’

model predicts that delusional participants would make choices discordant

with the most likely cause of sequences of information more often than
controls. This is consistent with the literature (e.g., Fear & Healy, 1997) but

the Corcoran et al. (2008) data did not allow a relevant analysis.

Methodologically, we note that the ‘‘bootstrap confidence intervals’’ that

we used are not true confidence intervals, i.e., intervals such that if the

true value of the parameter falls within the interval then the parameter

estimate actually obtained would not be too improbable. We also note that

the gamma distribution may not be optimal for describing cost parameters,

as it can be poorly behaved very near zero.
It will be important to replicate the current analysis with other datasets

and test our ‘‘high noise interpretation of JTC’’ with new data. Analyses

could also include other groups, such as older participants, participants

suffering from obsessive-compulsive disorder, etc.

SUMMARY AND CONCLUSIONS

We have introduced explicit models of how cost considerations and noise

may skew probabilistic judgements, and we compared two types of model,

the (optimal) costed-Bayesian and the sequential-probability-ratio test

models. We applied an expectation-maximisation algorithm and analysis of

synthetic data to estimate best-fit model parameters and choose the preferred
model. We compared healthy and paranoid people as to their probabilistic

reasoning. We found that the costed-Bayesian model gave a better account

overall of the performance of healthy participants, whereas the SPRT fitted

paranoid (and remitted) participants better. The commonly held hypothesis

that paranoid people make early decisions through assuming a higher cost of

gathering information was rejected. The most striking finding in both models

was the much higher noise parameter for the paranoid group. Therefore, the

‘‘beads task’’ may best be seen as assessing not ‘‘jumping to conclusions’’ but
executive functions subserving probabilistic reasoning. We suggest several

new directions for methodological, computational, and experimental re-

search. Based on modelling, we suggest that the ‘‘beads task’’ should be used

with shorter sequences (e.g., maximum of 10 draws), more trials-per-

participant, and experimentally manipulated rewarding and aversive returns.

Interpretation of task results in terms of underlying decision mechanisms

(costs, noise, and decision thresholds) has the potential to increase the
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construct validity of the task and eventually even to render it more relevant

to assessing decision making in clinical situations.
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APPENDIX

Let q �.5 be the proportion of blue beads in jar B. In other words, the

probability of drawing a blue ball given that the jar of origin is B is P (bjB)�
q . Similarly for the ‘‘Green’’ jar, P(gjG)�q . The prior probabilities that the

beads come from either jar before any beads are drawn are the same,

P(Bj0,0)�P(Gj0,0)�.5 (in the notation ‘‘j0,0’’ the first 0 means that nd�0

draws have taken place, the second 0 that ng�0 g[reen] balls have been
drawn’’).

Costed Bayesian model

By Bayes theorem, the posterior probability of jar G being the underlying

cause if nd beads have been drawn, of which ng were of type g, is:

P(G½nd; ng)�
P(nd; ng½G)P(G½0; 0)

P(nd; ng½G)P(G½0; 0) � P(nd; ng½B)P(B½0; 0)
(2)

Given the earlier notation and conventions, this becomes

P(G½nd; ng)�
1

1 �
�

q

1 � q

�(nd�2ng) (3)

The possible actions to take are DB, DG, and DS, which are respectively

Deciding on Blue, Green, or Sampling. At the last step, nd�20, decisions DG

and DG are the only options. In all other steps DS is also possible. We define

the action value Q(a ; s) as the average long-term return of taking action a in

state s, and m(a ; s) as the probability with which the participant will take
action a in state s. Note that the symbol ‘‘j’’ denotes conditional probability,

whereas expressions following ‘‘;’’ denote a known state. The set of all m(a ; s)

defines the current policy that the agent pursues. If we take the return of

choosing the correct decision to be zero and the cost of deciding erroneously

to be CW, we have:

Q(DB; nd; ng)�CW �P(G½nd; ng) (4)

Q(DG; nd; ng)�CW �(1�P(G½nd; ng)) (5)

The immediate cost of taking a sample is CS. However, since sampling

leads the participant to further choices at further states, the full cost is a

function of the values, V(s), of those states s, weighted by the probabilities of
getting to those states. The value here is defined as the average long-term

return to be expected if one found oneself in state s and followed the current

policy. The possible outcomes of sampling are that either b or g will turn up.

In case g turns up, the participant will find themselves in state (nd �1, ng �
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1). Otherwise the state will be (nd �1, ng). Let V(nd �1, ng �1) and V(nd �
1, ng) be the (as yet unknown) values of these states. If the true underlying

cause is G, the latter value will obtain with probability P(bjG)�1�q; the

former value, with probability P(gjG)�q. In addition, the underlying cause

is G with probability P(G j nd, ng). Adding all the contributions together,

Q(DS; nd; ng)�CS�CW �P(G½nd; ng)
P(G½nd; ng)�[V(nd�1; ng�1)P(g½G)�V(nd�1; ng)P(b½G)]�

P(B½nd; ng)�[V(nd�1; ng�1)P(g½B)�V(nd�1; ng)P(b½B)]

(6)

An idealised participant would always choose the decision with the lowest

cost in each state. However, people do not choose so deterministically. To

introduce behavioural uncertainty one can allow the model to choose
randomly amongst the actions, but weighted by their action values. The

Softmax choice function defines the probability of choosing action a at state

s�(nd, ng) as:

m(a ; s)�
eQ(a;s)=tX

b �fDG;DB;DSg
eQ(b;s)=t (7)

(except for nd�20, when a,b � {DB, DG}). This includes the temperature-

like parameter t. A large value of t means that given differences in action

values have less impact on choice probabilities (more noisy decisions). Then

the average value of each state is:

V(nd; ng)�m(DS; nd; ng)�Q(DS; nd; ng)
�m(DG; nd; ng)�Q(DG; nd; ng)
�m(DB; nd; ng)�Q(DB; nd; ng) (8)

At the last step, nd�nmax�20 the action ‘‘Sample again’’ is unavailable,

and Equation 8 has no term associated with DS. Once all the values V(nmax,
nmax � ng) can been calculated (with the help of Equations 5, 7, and 8), these

can be used in to obtain all action values for nd�19, and so on back to nd�
1. For each possible sequence of beads, therefore, a number of draws ndec can

be found where DS ceases to be the most rewarding action. If the same action

values were kept but behavioural noise was eliminated, this would become

the step where the model would ‘‘declare’’.

Sequential probability ratio test model

In the SPRT, the key computed quantity at time t is the log-likelihood ratio

of the sequence of data that have been produced given one possible cause,

over the equivalent expression given the other cause:
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l(t)� ln
P(d1; d2; :::½cause � G)

P(d1; d2; :::½cause � B)
(9)

Decisions are taken by comparing l(t) to two thresholds, uG and uB, as

described in the main text. We used uG��uB for consistency with using a

single cost of making the wrong decision (CW above). Since the draws are

independent (which amounts to assuming that the jars contain many more
beads than the participant is allowed to draw), l(t) accumulates additively.

Following the rationale described for the Bayesian model, we also used an

uncertainty or noise factor:

l(t)� l(t�1)�ln
P(dt½G)

P(dt½B)
�o (10)

We assumed that the noise factor is normally distributed with mean zero

and standard deviation t. In our simulations we also included a very small

amount of noise at the starting point t�0. In the deterministic case it would

be easy to increment l(t) by adding the penultimate term of Equation 10. In

the case involving noise we have to add to the random variable l(t � 1) the

last two terms of Equation 10, which also form a random variable. We thus

find the probability distribution of l by convolution:

pt(l)�g
�

��

pt�1(v)pt(l�v)dv (11)

Where pt�1 is the prior pdf of l and pt is the probability distribution of the

increment for the current step, t (i.e., the pdf of the last two terms in
Equation 10). At each step, the values of l that fall outside the thresholds

result in a decision, so that the probability distribution is truncated at the

thresholds. It is then renormalised to compute the distribution of l for which

the decision was ‘‘sample again’’. The latter distribution forms the starting

point for the next step (Figure 1). The case involving noise or error is more

demanding to implement efficiently on a computer than the noise-free case.

Model comparison and the Bayesian Information Criterion
(BIC)

No single way of selecting a preferred model is always best. One of our

comparisons asked which model gave a better account of the data of a

particular group for a particular condition. Another comparison involved

different groupings of the data. One therefore needed a basic measure that
would be applicable across models of different structure. Model likelihood is

such a measure: This is the probability that the experimental data would

arise if the model in question was the mechanism giving rise to them. As the

data for each participant arise independently within each group, the
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likelihood of model M for a specific group is:

L(M;D)�P(D;M)
Y
alli

P(diM) (12)

Where D is the matrix of all the data of the group in question and di is the

vector of data for subject i. However, a model with more free parameters, i.e.,
less parsimonious, should fit the data better. The BIC combines the model

likelihood L with a penalty for the number of parameters k used, taking

account also of the number of data points N that are to be explained

(Schwarz, 1978):

BIC��2lnL�klnN (13)

Given two models applied to the same data, the one with the lower value of

BIC is to be preferred.

Experimental Bayesian distribution

Once a particular model M is chosen, including macroparameters that

describe the experimental group j, the recognition distribution density p(gjdi;

M) describes how likely it that the participant i, who has furnished data di, is

characterised by microparameters g. We can now average this recognition

distribution over all participants i in group j to obtain an estimate of the

probability density pexp(gj) of microparameters for a random member of this
group. This is sometimes called a marginal posterior density (Gelman, 2002);

but, for clarity, we call it an experimental (Bayesian) distribution:

pexp(gj)�
1

Nj

XNj

i�1

P(di½gj; M)p(gj; M)

g
all g

P(di½g; M)p(g; M)dg
(14)
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