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Choice values
Yael Niv, Nathaniel D Daw & Peter Dayan

Dopaminergic neurons are thought to inform decisions by reporting errors in reward prediction. A new study reports 
dopaminergic responses as monkeys make choices, supporting one computational theory of appetitive learning.

A group of neurophysiologists, computer 
scientists, psychologists and economists 
has found common ground in trumpeting 
a detailed hypothesis about the involvement 
of the brain’s dopaminergic system in rein-
forcement learning1, which is the process of 
learning by trial and error to predict rewards 
(and punishments) and to make good deci-
sions. This hypothesis is grounded in an 
impressive body of experimental evidence, 
notably recordings showing that dopami-
nergic neurons in behaving primates seem 
to carry an error signal that could be useful 
for learning to predict rewards and also to 
choose rewarding actions2,3. This presumed 
central role in appetitive choice aligns well 
with dopamine’s involvement in synaptic 
plasticity, learned habits, drug addiction and 
various pathologies4.

Maddeningly, however, the detailed 
 neurophysiological evidence concerns pre-
diction learning alone, leaving the story 
about decision making bereft of empirical 
guidance. This is because dopaminergic 
neurons have rarely been recorded when 
animals are making nontrivial choices 
between multiple rewarded options (that 
is, but for a few exceptions5, doing much 
more than following instructions or pas-
sively receiving rewards). An experiment 
reported by Morris and colleagues in this 
issue6 fills this gap and provides surprising 
and detailed information about the compu-
tations underlying decision making.

In the experiment, four different images 
were associated with fixed probabilities 
(0.25, 0.5, 0.75 and 1) of obtaining juice (or 
water) reward. In ‘decision trials’, monkeys 
saw pairs of these images and, after a couple 
of seconds, had to choose between them. 
Reward was given, or not, according to the 
probability attached to the chosen image. 
The monkeys knew these probabilities well, 

as the decision trials were embedded sparsely 
among a set of ‘reference trials’, in which the 
monkeys were presented with single images 
and responded for the associated chance of 
receiving juice. As in most previous dopa-
mine recording studies, reference trials did 
not present the monkeys with a meaningful 
choice, and the particular prediction error 
reported by dopamine firing on presenta-
tion of an image simply corresponds to its 
associated reward probability7.

Faced with a decision trial, one might 
expect the monkeys to choose the richer 
option after pondering the pair for a while. 
Neither of these expectations was satisfied. 
Fortunately for science, but unfortunately 
for themselves, the monkeys adopted the 
(surprisingly common) suboptimal choice 
strategy of ‘probability matching’, pursuing 

richer and poorer options in rough propor-
tion to their relative worth. This behavior 
was fortuitous because it allowed Morris 
et al. to record the activity of dopamine 
 neurons on decision trials in which the mon-
key ultimately chose either the richer or the 
poorer option. The comparison of one with 
the other, and with the firing patterns from 
the single-image reference trials, provides a 
window onto the decision process.

The central finding is that a burst of 
dopaminergic responding at the outset of 
a decision trial nearly instantly reflects the 
average reward associated with the option 
that will ultimately be chosen, even though 
the monkey cannot actually submit its deci-
sion until some seconds later. Indeed, the 
neural response to the presentation of a pair 
of images is nearly the same in (average) 
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Figure 1  A monkey is presented with a choice between two options (decision trial). Each option is 
associated with a different probability of reward, so the overall worth of this choice can be evaluated in 
several different ways (thought balloons; see text). These different evaluations would lead to different 
prediction error signals associated with different reinforcement learning rules. The recordings of Morris et 
al. from dopamine neurons, putatively reporting these errors, show that the neural responses quickly reflect 
the distal future choice of the monkey (left and right traces; data from ref. 6). This supports the SARSA 
algorithm for prediction learning and action selection (bottom) against value learning and Q learning.
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time course and magnitude as the response 
on reference trials to the presentation of only 
the image the animal will choose. Within just 
200 ms, the monkey has evidently made a 
decision and communicated it to the dopa-
minergic cells.

The beauty of this result is that it lays 
waste to a crowded field of computational 
ideas about appetitive choice; under a 
friendly interpretation, it leaves just one 
survivor. An immediate casualty is the idea 
that the dopamine signal might be directly 
involved in selecting actions8—instead, the 
firing apparently reflects a choice already 
made. Most other accounts of reinforce-
ment learning assume that dopaminergic 
responses affect decisions only indirectly, by 
controlling learning. All the accounts agree 
that the dopaminergic prediction error at the 
start of a decision trial reports an evaluation 
of the overall value (predicted reward) of the 
trial. However, their substantially different 
approaches to learned choice are reflected in 
subtly different ways of assessing this value, 
which the results of Morris et al. exactly test. 
There are three main possibilities (Fig. 1) for 
what the value of a decision trial is, in terms 
of the values of the two images it comprises. 
It could be (i) the average of the values of the 
two options, weighted according to the prob-
ability that each would be chosen, (ii) the 
value of the better option, or (iii) the value 
of the image that is actually chosen on that 
trial. The data favor the last possibility.

The first option—that the values are aver-
aged over the choices (V in Fig. 1)—would 
have been expected under the so-called 
actor-critic algorithm, which posits that a 
‘critic’ with no knowledge of the actions can 
track the average value of situations (called 
‘states’); these values can, separately, be used 
as rewards to train an ‘actor’ that makes 
choices. This notion mirrors  venerable 
ideas from psychology about the interac-
tion between reward prediction (Pavlovian 
conditioning in the critic) and action choice 
(instrumental conditioning in the actor)9, 
and seems nicely to parallel the anatomi-
cal division of the dopamine system and its 
targets into ventral (evaluation) and dorsal 
(action) components10. The central trick of 
the actor-critic algorithm is how it learns 
to choose actions using reward predictions 
that ignore actions altogether, instead aver-
aging over them. However, the data of Morris 
et al. rule out this trick and show that the 
dopamine signal instead incorporates richer 
information, separately reporting the value 
of choosing either action at a state.

The value of taking a particular action at a 
state is called a Q value11, and the two remain-
ing ways to evaluate a decision trial can both 
be used to learn Q values. The more popular 
approach is Q learning11, in which the predic-
tion error associated with a decision (which is 
what the dopamine cells report) is determined 
by the Q value of the better option rather than 
the one actually chosen (Fig. 1, bottom). This 
is a very clever idea, as it decouples learning 
from the actual choice and allows optimal 
behavior to be acquired while exploring sub-
optimal alternatives. However, going by the 
data, this is evidently too clever for the dopa-
mine cells, whose activity follows the reference 
activity for the action actually chosen. The 
remaining option is the class of algorithms 
that acquire Q values using a prediction error 
that reflects the value of the chosen option. 
It is these so-called SARSA (state-action-
reward-state-action) algorithms12 (Fig. 1) 
that this study favors.

In sum, the most natural conclusion from 
the neural data is that dopamine signals 
report prediction errors based on Q values 
for SARSA learning. A choice can be made 
between actions by favoring (perhaps still 
subject to randomness) the one with a larger 
Q value. This would account for the animal’s 
fortuitous but flawed probability matching 
behavior. The behavior itself is both infor-
mative and surprising. Under methods such 
as the actor-critic, persistent performance of 
a suboptimal action is not possible. That it 
happens is additional evidence that choice 
is based on Q values. However, it is odd that 
the monkeys seemed never to adjust their 
behavior toward exclusive choice of the 
richer option. The common rationale for 
occasional suboptimal choices is to allow for 
exploration of unfamiliar alternatives, but no 
such exploration was necessary here because 
the images’ values were stable over weeks of 
recording and anyway sampled extensively 
during reference trials.

As with any illuminating result, many 
open issues and interesting implications 
remain. First, even though dopamine seems 
not to be involved directly in the choice 
between options, it may influence other 
aspects of the selected action, such as the 
vigor with which it is executed13. Second, 
dopaminergic responses during decision 
trials, though similar on average to those 
on reference trials, were nevertheless much 
more variable. Structure in the signal may 
still remain undiscovered, perhaps including 
evidence of the monkey changing its mind 
during the waiting period. Third, from a 

reinforcement learning perspective, it is not 
straightforward to expect that the monkey 
will represent the state of a pair of images 
as simply the conjunction of the two single-
image states. Fourth, it is now pressing to 
work out a SARSA-like algorithm that also 
respects the anatomical data on the dual 
dopamine and striatal systems that helped 
motivate the actor-critic model. A relative of 
the actor-critic algorithm called ‘advantage 
learning’, which has found some support in 
human functional magnetic resonance imag-
ing (fMRI) studies of learned choice10, seems 
not to do the trick, but a variant might.

Finally, the monkeys in this study were vastly 
overtrained, which allowed for careful study 
under uniform conditions, but at the cost of 
ensuring that no learning occurred during 
the experiment. The recorded  reinforcement 
learning error signals were therefore appar-
ently epiphenomenal. In studies of similar 
decision-making tasks, animals have been 
exposed to more complex and changing 
reward contingencies and continually updated 
their behavior in light of received rewards14,15. 
An obvious future direction is to understand 
how such behavioral changes relate, trial by 
trial, to recorded dopamine responses. The 
experiment of Morris et al. sets the stage for a 
new multidisciplinary enterprise of such stud-
ies of dopamine and decisions.
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