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Abstract

Substantial evidence suggests that the phasic activities of dopaminergic neurons in the primate midbrain
represent a temporal difference (TD) error in predictions of future reward, with increases above and decreases
below baseline consequent on positive and negative prediction errors, respectively. However, dopamine cells have
very low baseline activity, which implies that the representation of these two sorts of error is asymmetric. We
explore the implications of this seemingly innocuous asymmetry for the interpretation of dopaminergic firing
patterns in experiments with probabilistic rewards which bring about persistent prediction errors. In particular,
we show that when averaging the non-stationary prediction errors across trials, a ramping in the activity of the
dopamine neurons should be apparent, whose magnitude is dependent on the learning rate. This exact phenomenon
was observed in a recent experiment, though being interpreted there in antipodal terms as a within-trial encoding
of uncertainty.

Introduction

There is an impressively large body of physiological,
imaging, and psychopharmacological data regarding
the phasic activity of dopaminergic (DA) cells in the
midbrains of monkeys, rats and humans in classical
and instrumental conditioning tasks involving pre-
dictions of future rewards [1–5]. These data have
been taken to suggest [6, 7] that the activity of DA
neurons represents temporal difference (TD) errors
in the predictions of future reward [8, 9]. This TD
theory of dopamine provides a precise computational
foundation for understanding a host of behavioural
and neural data. Furthermore, it suggests that DA
provides a signal that is theoretically appropriate for
controlling learning of both predictions and reward-
optimising actions.

Some of the most compelling evidence in favour
of the TD theory comes from studies investigating
the phasic activation of dopamine cells in response
to arbitrary stimuli (such as fractal patterns on a
monitor) that predict the proximate availability of
rewards (such as drops of juice). In many variants,
these have shown that with training, phasic DA sig-
nals transfer from the time of the initially unpre-
dictable reward, to the time of the earliest cue pre-
dicting a reward. This is exactly the expected out-
come for a temporal-difference based prediction error
(cf. [1, 2, 10–13]). The basic finding [7] is that when
a reward is unexpected (which is inevitable in early
trials), dopamine cells respond strongly to it. When
a reward is predicted, however, the cells respond to
the predictor, and not to the now-expected reward.
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If a predicted reward is unexpectedly omitted, then
the cells are phasically inhibited at the normal time
of the reward, an inhibition which reveals the pre-
cise timing of the reward prediction [10], and whose
temporal metrics are currently under a forensic spot-
light [14]. The shift in activity from the time of re-
ward to the time of the predictor resembles the shift
of the animal’s appetitive behavioural reaction from
the time of the reward (the unconditioned stimulus)
to that of the conditioned stimulus in classical con-
ditioning experiments [7, 10].

In a most interesting recent study, Fiorillo et
al. [15] examined the case of partial reinforcement, in
which there is persistent, ineluctable, prediction er-
ror on every single trial. A straightforward interpre-
tation of the TD prediction error hypothesis would
suggest that in this case (a) dopamine activity at the
time of the predictive stimuli would scale with the
probability of reward, and (b) on average over trials,
the dopaminergic response after the stimulus and all
the way to the time of the reward, should be zero.
Although the first hypothesis was confirmed in the
experiments, the second was not. The between-trial
averaged responses showed a clear ramping of activ-
ity during the delay between stimulus onset and re-
ward that seemed inconsistent with the TD account.
Fiorillo et al. hypothesised that this activity repre-
sents the uncertainty in reward delivery, rather than
a prediction error.

In this paper, we visit the issue of persistent pre-
diction error. We show that a crucial asymmetry
in the coding of positive and negative prediction er-
rors leads one to expect the ramping in the between-
trial average dopamine signal, and also accounts well
for two further features of the DA signal – apparent
persistent activity at the time of the (potential) re-
ward, and disappearance (or at least weakening) of
the ramping signal, but not the signal at the time of
reward, in the face of trace rather than delay con-
ditioning. Both of these phenomena have also been
observed in the related instrumental conditioning ex-
periments of Morris et al. [16]. Finally, we interpret
the ramping signal as the best evidence available at
present for the nature of the learning mechanism by
which the shift in dopamine activity to the time of
the predictive stimuli occurs.

1 Uncertainty in reward occurrence: DA
Ramping

Fiorillo et al. [15] associated the presentation of five
different visual stimuli to macaques with the de-
layed, probabilistic (pr = 0, 0.25, 0.5, 0.75, 1) deliv-
ery of juice rewards. They used a delay condition-
ing paradigm, in which the stimulus persists for a
fixed interval of 2s, with reward being delivered when
the stimulus disappears. After training, the mon-
keys’ anticipatory licking behavior indicated that
they were aware of the different reward probabilities
associated with each stimulus.

Figure 1a shows population histograms of
extracellularly-recorded DA cell activity, for each pr.
TD theory predicts that the phasic activation of the
DA cells at the time of the visual stimuli should
correspond to the average expected reward, and so
should increase with pr. Figure 1a shows exactly
this – indeed, across the population, the increase is
quite linear. Morris et al. [16] report a similar result
in an instrumental (trace) conditioning task also in-
volving probabilistic reinforcement.

By contrast, at the time of potential reward de-
livery, TD theory predicts that on average there
should be no activity, as, on average, there is no
prediction error at that time. Of course, in the prob-
abilistic reinforcement design (at least for pr 6= 0, 1)
there is in fact a prediction error at the time of de-
livery or non-delivery of reward on every single trial.
On trials in which a reward is delivered, the pre-
diction error should be positive (as the reward ob-
tained is larger than the average reward expected).
Conversely, on trials with no reward it should be
negative (see Figure 1c). Crucially, under TD, the
average of these differences, weighted by their proba-
bilities of occurring, should be zero. If it is not zero,
then this prediction error should act as a plastic-
ity signal, changing the predictions until there is no
prediction error. At variance with this expectation,
the data in Figure 1a which is averaged over both
rewarded and unrewarded trials, show that there is
in fact positive mean activity at this time. This is
also evident in the data of Morris et al. [16]. The
positive DA responses show no signs of disappear-
ing even with substantial training (over the course
of months).

Worse than this for the TD model, and indeed
the focus of Fiorillo et al. [15], is the apparent ramp-
ing of DA activity towards the expected time of the
reward. As the magnitude of the ramp is greatest

2



for pr =0.5, Fiorillo et al. suggested that it reports
the uncertainty in reward delivery, rather than a pre-
diction error, and speculated that this signal could
explain the apparently appetitive properties of un-
certainty (as seen in gambling).

Both the ramping activity and the activity at the
expected time of reward pose critical challenges to
the TD theory. TD learning operates by arranging
for DA activity at one time in a trial to be predicted
away by cues available earlier in that trial. Thus, it
is not clear how any seemingly predictable activity,
be it that at the time of the reward or in the ramp
before, can persist without being predicted away by
the onset of the visual stimulus. After all, the pr-
dependent activity in response to the stimulus con-
firms its status as a valid predictor. Furthermore, a
key aspect of TD [17], is that it couples prediction
to action choice by using the value of a state as an
indication of the future rewards available from that
state, and therefore its attractiveness as a target for
action. From this perspective, since the ramping ac-
tivity is explicitly not predicted by the earlier cue, it
cannot influence early actions, such as the decision
to gamble. For instance, consider a competition be-
tween two actions: one eventually leading to a state
with a deterministic reward and therefore no ramp,
and the other leading to a state followed by a prob-
abilistic reward with the same mean, and a ramp.
Since the ramp does not affect the activity at the
time of the conditioned stimulus, it cannot be used
to evaluate or favour the second action (gambling)
over the first, despite the extra uncertainty.

We suggest the alternative hypothesis that both
these anomalous firing patterns result directly from
the constraints implied by the low baseline rate of
activity of DA neurons (2-4Hz) on the coding of
the signed prediction error. As noted by Fiorillo et
al. [15], positive prediction errors are represented by
firing rates of ∼ 270% above baseline, while negative
errors are represented by a decrease of only ∼ 55%
below baseline (see also [14, 18]). This asymmetry
is a straightforward consequence of the coding of
a signed quantity by firing which has a low base-
line, though, obviously, can only be positive. Firing
rates above baseline can encode positive prediction
errors by using a large dynamic range, however, be-
low baseline firing rates can only go down to zero,
imposing a restriction on coding of negative predic-
tion errors.

Consequently, one has to be careful interpret-
ing the sums (or averages) of peri-stimulus-time-

histograms (PSTHs) of activity over different trials,
as was done in Figure 1a. The asymmetrically coded
positive and negative error signals at the time of
the receipt or non-receipt of reward should indeed
not sum up to zero, even if they represent correct
TD prediction errors. When summed, the low firing
representing the negative errors in the unrewarded
trials will not “cancel out” the rapid firing encoding
positive errors in the rewarded trials, and, overall,
the average will show a positive response. In the
brain, of course, as responses are not averaged over
(rewarded and unrewarded) trials, but over neurons
within a trial, this need not pose a problem.

This explains the persistent positive activity (on
average) at the time of delivery or non-delivery of
the reward. But what about the ramp prior to this
time? At least in certain neural representations of
the time between stimulus and reward, when trials
are averaged, this same asymmetry leads TD to re-
sult exactly in a ramping of activity toward the time
of the reward. The TD learning mechanism has the
effect of propagating, on a trial-by-trial basis, pre-
diction errors that arise at one time in a trial (such
as at the time of the reward) towards potential pre-
dictors (such as the CS) that arise at earlier times
within each trial. Under the asymmetric representa-
tion of positive and negative prediction errors that
we have just discussed, averaging these propagating
errors over multiple trials (as in Figure 1a) will lead
to positive means for epochs within a trial before a
reward. The precise shape of the resulting ramp of
activity depends on the way stimuli are represented
over time, as well as on the speed of learning, as will
be discussed below.

Figure 2 illustrates this view of the provenance of
the ramping activity. Here, a tapped delay-line rep-
resentation of time since the stimulus is used. For
this, each unit (’neuron’) becomes active (i.e., as-
sumes the value 1) at a certain lag after the stim-
ulus has been presented, so that every timestep af-
ter the stimulus onset is consistently represented by
the firing of one unit. Learning is based on the
(dopaminergically-reported) TD error, formalized as
δ(t) = r(t)+V (t)−V (t−1), with V (t) the weighted
input from the active unit at time t, and r(t) the
reward obtained at time t. Updating the weights of
the units according to the standard TD update rule
with a fixed learning rate, allows V (t) to, on average,
represent the expected future rewards (see Figure 1
caption). As each subsequent timestep is separately
represented, TD prediction errors can arise at any
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time within the trial. Figure 2a shows these errors
in six consecutive simulated trials in which pr =0.5.
In every trial, a new positive or negative error arises
at the time of the reward, consequent on receipt or
non-receipt of the reward, and step-by-step the er-
rors from previous trials propagate back to the time
of the stimulus, through the constant updating of
the weights (cf. the error highlighted in red). When
averaging (or, as in PSTHs, summing) over trials,
these errors cancel each other on average, resulting
in an overall flat histogram in the interval after the
stimulus onset, and leading up to the time of the
reward (black line in Figure 2, summed over the 10
trials shown in thin blue). However, when summed
after asymmetric scaling of the negative errors by a
factor of d = 1/6 (which simulates the asymmetric
coding of positive and negative prediction errors by
DA neurons), a positive ramp of activity ensues, as
illustrated by the black line in Figure 2c. Note that
this rescaling is only a representational issue, result-
ing from the constraints of encoding a negative value
about a low baseline firing rate, and should not affect
the learning of the weights, so as not to learn wrong
values (see discussion). However, as PSTHs are di-
rectly sums of neuronal spikes, this representational
issue bears on the resulting histogram.

Figures 1b,d show the ramp arising from this
combination of asymmetric coding and inter-trial av-
eraging, for comparison with the experimental data.
Figure 1b shows the PSTH computed from our sim-
ulated data by averaging over the asymmetrically-
represented δ(t) signal in ∼ 50 trials for each stimu-
lus type. Figure 1d shows the results for the pr =0.5
case, divided into rewarded and unrewarded trials
for comparison with Figure 1c. The simulated re-
sults resemble the experimental data closely in that
they replicate the net positive response to the un-
certain rewards, as well as the ramping effect, which
is highest in the pr =0.5 case.

It is simple to derive the average response at the
time of the reward (t = N) in trial T , i.e., the av-
erage TD error 〈δT (N)〉, from the TD learning rule
with the simplified tapped delay-line time represen-
tation and a fixed learning rate α. The value at the
next to last timestep in a trial, as a function of trial
number (with initial values taken to be zero), is

VT (N − 1) = α

T−1∑
t=0

(1− α)tr(T − t), (1)

where r(t) is the reward at the end of trial t. The

error signal at the last timestep of trial T is sim-
ply the difference between the obtained reward r(T ),
and the value predicting that reward VT−1(N − 1).
This error is positive with probability pr, and neg-
ative with probability (1−pr). Scaling the negative
errors by a factor of d ∈ (0, 1], we thus get

〈δT (N)〉 = pr − (1− (1− α)T−1)(p2
r + dpr(1− pr))

−−−−→
T→∞

pr(1− pr)(1− d). (2)

For symmetric coding of positive and negative errors
(d = 1), the average response is 0. For asymmetric
coding (0 < d < 1), the average response is indeed
proportional to the variance of the rewards, and thus
maximal at pr = 0.5. However, δT is positive, and
concomitantly, the ramps are positive, and in this
particular setting, are related to uncertainty, because
of , rather than instead of , the coding of δ(t).

Indeed, there is a key difference between the un-
certainty and TD accounts of the ramping activity.
According to the former, the ramping is a within-
trial phenomena, coding uncertainty in reward; by
contrast, the latter suggests that ramps arise only
through averaging across multiple trials. Within a
trial, when averaging over simultaneously recorded
neurons rather than trials, the traces should not
show a smooth ramp, but intermittent positive and
negative activity corresponding to back-propagating
prediction errors from the immediately previous tri-
als (as in Figure 2a).

Trace conditioning: A test case
An important test case for our interpretation arises
in a variant of Fiorillo et al.’s [15] task, as well as in
the analogous instrumental task of Morris et al. [16],
both involving trace conditioning. In contrast to
delay conditioning (Figure 3a) in which the reward
coincides with the offset of the predictive stimulus,
here there is a substantial gap between the offset
of the predictive stimulus and the delivery of the
reward (Figure 3b). Clearly, in this case, uncer-
tainty about the reward could only get larger, ow-
ing to noise in timing the interval between stimulus
and reward [19], so under the uncertainty account,
there should be comparable or even larger ramps.
However, the experimental results show the ramp-
ing activity to be smaller, or even negligible (Fig-
ure 3c;d). Note, though, that the magnitude of the
trial-average activity at the expected time of reward
is maintained, pointing to a dissociation between the
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height of the ramp and the amount of positive ac-
tivity at the expected time of reward.

The TD model of DA readily explains these puz-
zling data. As shown in Figure 4, the shape of
the ramp, though not the height of its peak, is af-
fected by the learning rate. The size of the back-
propagating prediction errors is determined, in part,
by the learning rate, as these errors arise as part
of the online learning of new predictions. Indeed,
there is a continuous updating of predictions such
that after a rewarded trial, there is a higher expec-
tation of reward (and thus the next reward incurs a
smaller prediction error), and conversely after a non-
rewarded trial [18] (see Figure 2a). This updating of
predictions is directly related to the learning rate –
the higher the learning rate, the larger the update
of predictions according to the current prediction er-
ror, and the larger the fraction of the prediction error
which is propagated back. In this way, with higher
learning rates, the difference in expectations after a
rewarded versus an unrewarded trial will be larger,
and thus the prediction errors when the next reward
is or is not available will be larger – hence the larger
and more gradual ramp.

Indeed, compared to delay conditioning, trace
conditioning is notoriously slow, suggesting that the
learning rate is low, and thus that there should be a
lower ramp, in accord with the experimental results.
A direct examination of the learning rate in the data
of Morris et al. [16], whose task required excessive
training as it was not only a trace conditioning one
but also involved an instrumental action, confirmed
it indeed to be very low (Genela Morris - personal
communication, 2004).

Discussion
The differential coding of positive and negative val-
ues by DA neurons is evident in all the studies of
the phasic DA signal, and can be regarded as an
inevitable consequence of the low baseline activity
of these neurons. Indeed, the latter has directly in-
spired suggestions that an opponent neurotransmit-
ter, putatively serotonin, be involved in represent-
ing and therefore learning the negative prediction
errors [20], so that they also have full quarter. Here,
however, we have confined ourselves to consideration
of the effects of asymmetry on the trial-average anal-
ysis of the dopamine activity, and have shown that
ramping DA activity, as well as an average positive

response at the time of reward, result directly from
the asymmetric coding of prediction errors.

Apart from a clearer view of the error signal, the
most important consequence of the new interpreta-
tion is that the ramps can be seen as a signature of
a TD phenomenon that has hitherto been extremely
elusive. This is the progressive back-propagation of
the error signal represented by DA activity, from
the time of reward to the time of the predictor
(Figure 2a). Most previous studies of dopaminer-
gic activity have used pr = 1, so making this back-
propagation at best a transitory phenomenon ap-
parent only at the beginning of training (when, typ-
ically, recordings have not yet begun), and poten-
tially hard to discern in slow-firing DA neurons. Fur-
ther, as mentioned, the back-propagation depends
on the way that the time between the predictive
stimulus and the reward is represented – it is present
for a tapped delay-line representation as in [6], but
not for representations which span the entire delay,
such as in [21]. Note that the shape of the ramp also
depends on the use of eligibility traces and the so-
called TD(λ) learning rule (simulation not shown),
which provide an additional mechanism for bridging
time between events during learning. Unfortunately,
as the forms of the ramps in the data are rather vari-
able (figure 1) and noisy, they can not provide strong
constraints on the precise TD mechanism used by
the brain.

More recent studies involving persistent predic-
tion errors also show activity suggestive of back-
propagation, notably Figure 4 of [13]. In this study,
prediction errors resulted from periodic changes in
the task, and DA recordings were made from the
onset of training, thus back-propagation-like activ-
ity is directly apparent, although this activity was
not quantified.

We expect the ramps to persist throughout train-
ing only if the learning rate does not decrease to zero
as learning progresses. Pearce & Hall’s [22] theory
of the control of learning by uncertainty suggests
exactly this persistence of learning – and there is ev-
idence from partial reinforcement schedules that the
learning rate may be higher when there is more un-
certainty associated with the reward. Indeed, from
a ‘rational’ statistical point of view, learning should
persist when there is substantial uncertainty about
the relationship between predictors and outcomes,
as can arise from the ever-present possibility of a
change in the predictive relationships. This form
of persistent uncertainty, together with uncertainty
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due to initial ignorance regarding the task, have
been used to formalize Pearce & Hall’s theory of the
way that uncertainty drives learning [23]. Thus, our
claim that uncertainty may not be directly repre-
sented by the ramps, should certainly not be taken to
mean that its representation and manipulation is not
important. To the contrary, we have suggested that
uncertainty influences cortical inference and learning
through other neuromodulatory systems [24], and
that it also may determine aspects of the selection
of actions [25].

Various other features of the asymmetry should
be noted. Most critical is the effect of the asym-
metry on DA-dependent learning [26], if the below
baseline DA activity is responsible by itself for de-
creasing predictions which are too high. In order to
ensure that the learned predictions remain correct,
we would have to assume that the asymmetric repre-
sentation does not affect learning, i.e., that a mech-
anism such as different scaling for potentiation and
depression of the synaptic strengths compensates for
the asymmetric error signal. Of course, this would
be rendered moot if an opponent neurotransmitter
is involved in learning from negative prediction er-
rors. This issue is complicated by the suggestion of
Bayer [14] that DA firing rates are actually similar
for all prediction errors below some negative thresh-
old, perhaps due to the floor effect of the low firing
rate. Such lossy encoding does not affect the quali-
tative picture of the effects of inter-trial averaging on
the emergence of ramps, but does reinforce the need
for an opponent signal for the necessarily symmetric
learning.

Finally, the most direct test of our interpreta-
tion would be a comparison of intra- and inter-trial
averaging of the DA signal. It would be important
to do this in a temporally sophisticated manner, to
avoid problems of averaging non-stationary signals.
In order to overcome the noise in the neural firing,
and determine whether indeed there was a gradual
ramp within a trial, or, as we would predict – in-
termittent positive and negative prediction errors, it
would be necessary to average over many neurons
recorded simultaneously within one trial, and fur-
thermore neurons associated with similar learning
rates. Alternatively, single neuron traces could be
regressed against the backpropagation response pre-
dicted by their preceding trials and TD learning. A
comparison of the amount of variability explained by
such a model, compared to that from a regression
against a monotonic ramp of activity, could point

to the most fitting model. A less straightforward,
but more testable prediction is that the shape of the
ramp should depend on the learning rate. Learn-
ing rates can be assessed from the response to the
probabilistic rewards, independent of the shape of
the ramp (Nakahara et al. [18] showed in such a way,
that in their partial reinforcement trace conditioning
task, the learning rate was 0.3), and potentially ma-
nipulated by varying the amount of training or the
frequency with which task contingencies are changed
and relearned. Indeed, quantifying the existence and
shape of a ramp in Nakahara et al.’s recorded DA
activity, could well shed light on the current pro-
posal.
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Figures
Figure 1 - Averaged prediction errors in a probabilistic reward task
(a) DA response in trials with different reward probabilities. Population peri-stimulus time histograms
(PSTHs) show the summed spiking activity of several DA neurons over many trials, for each pr, pooled
over rewarded and unrewarded trials at intermediate probabilities. (b) TD prediction error with asymmetric
scaling. In the simulated task, in each trial one of five stimuli was randomly chosen and displayed at time
t = 5. The stimulus was turned off at t = 25, at which time a reward was given with a probability of pr
specified by the stimulus. We used a tapped delay-line representation of the stimuli (see text), with each
stimulus represented by a different set of units (’neurons’). The TD error was δ(t) = r(t) + w(t− 1) · x(t)−
w(t−1) ·x(t−1), with r(t) the reward at time t, and x(t) and w(t) the state and weight vectors for the unit.
A standard online TD learning rule was used with a fixed learning rate α, w(t) = w(t−1)+αδ(t)x(t−1), so
each weight represented an expected future reward value. Similar to Fiorillo et al., we depict the prediction
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error δ(t) averaged over many trials, after the task has been learned. The representational asymmetry arises
as negative values of δ(t) have been scaled by d = 1/6 prior to summation of the simulated PSTH, although
learning proceeds according to unscaled errors. Finally, to account for the small positive responses at the
time of the stimulus for pr =0 and at the time of the (predicted) reward for pr =1 seen in (a), we assumed
a small (8%) chance that a predictive stimulus is misidentified (c) DA response in pr =0.5 trials, separated
into rewarded (left) and unrewarded (right) trials. (d) TD Model of (c). (a,c) Reprinted with permission
from [15] c©2003 AAAS. Permission from AAAS is required for all other uses.

Figure 2 - Backpropagation of prediction errors explains ramping activity
(a) The TD prediction error across each of six consecutive trials (top to bottom) from the simulation in
Figure 1b, with pr = 0.5. Highlighted in red is the error at the time of the reward in the first of the trials,
and its gradual back-propagation towards the time of the stimulus in subsequent trials. Block letters indicate
the outcome of each specific trial (R=rewarded; N=not rewarded). The sequence of rewards preceding these
trials is given on the top right. (b) The TD error from these six trials, and four more following them,
superimposed. The red and green lines illustrate the envelope of the errors in these trials. Summing over
these trials results in no above-baseline activity on average (black line), as positive and negative errors
occur at random 50% of the time, and so cancel each other. (c) However, when the prediction errors are
asymmetrically represented above and below the baseline firing rate (here negative errors were asymmetrically
scaled by d = 1/6 to simulate the asymmetric encoding of prediction errors by DA neurons), an average
ramping of activity emerges when averaging over trials, as is illustrated by the black line. All simulation
parameters are the same as in Figure 1b,d.

Figure 3 - Trace conditioning with probabilistic rewards
(a) An illustration of one trial of the delay conditioning task of Fiorillo et al. [15]. A trial consists of a
2-second visual stimulus, the offset of which coincides with the delivery of the juice reward, if such a reward
is programmed according to the probability associated with the visual cue. In unrewarded trials the stimulus
terminated without a reward. In both cases an inter-trial interval of 9 seconds on average separates trials.
(b) An illustration of one trial of the trace conditioning task of Morris et al. [16]. The crucial difference is
that there is now a substantial temporal delay between the offset of the stimulus and the onset of the reward
(the “trace” period), and no external stimulus indicates the expected time of reward. This confers additional
uncertainty as precise timing of the predicted reward must be internally resolved, especially in unrewarded
trials. In this task, as in [15], one of several visual stimuli (not shown) was presented in each trial, and each
stimulus was associated with a probability of reward. Here, also, the monkey was requested to perform an
instrumental response (pressing the key corresponding to the side in which the stimulus was presented), the
failure of which terminated the trial without a reward. Trials were separated by variable inter-trial intervals.
(c,d) DA firing rate (smoothed) relative to baseline, around the expected time of the reward, in rewarded
trials (c) and in unrewarded trials (d). (c,d) Reprinted from [16] c©2004 with permission from Elsevier. The
traces imply an overall positive response at the expected time of the reward, but with a very small, or no
ramp preceding this. Similar results were obtained in a classical conditioning task briefly described in [15],
which employed a trace conditioning procedure, confirming that the trace period, and not the instrumental
nature of the task depicted in (b) was the crucial difference from (a).

Figure 4 - Dependence of the ramp on learning rate.
The shape of the ramp, but not the height of its peak, is dependent on the learning rate. The graph shows
simulated activity for the case of pr = 0.5 near the time of the expected reward, for different learning rates,
averaged over both rewarded and unrewarded trials. According to TD learning with persistent asymmetri-
cally coded prediction errors, averaging over activity in rewarded and unrewarded trials results in a ramp
up to the time of reward. The height of the peak of the ramp is determined by the ratio of rewarded and
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unrewarded trials, however, the breadth of the ramp is determined by the rate of back-propagation of these
error signals from the time of the (expected) reward to the time of the predictive stimulus. A higher learning
rate results in a larger fraction of the error propagating back, and thus a higher ramp. With lower learning
rates, the ramp becomes negligible, although the positive activity (on average) at the time of reward is still
maintained. Note that the although the learning rate used in the simulations depicted in Figure 1b,d was
0.8, this should not be taken as the literal synaptic learning rate of the neural substrate, given our schematic
representation of the stimulus. In a more realistic representation in which a population of neurons is active
at every timestep, a much lower learning rate would produce similar results.
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