
SUPPORTING ON-LINE MATERIAL 

MATERIALS AND METHODS 

Subjects 

12 right-handed healthy normal subjects participated in the experiment (Mean age 28.75, 

range: 21-49), of which 7 were female. The subjects were pre-assessed to exclude those 

with a prior history of neurological or psychiatric illness. All subjects gave informed 

consent and the study was approved by the Joint Ethics Committee of the National 

Hospital for Neurology and Neurosurgery. Subjects were asked to refrain from eating, or 

drinking sweet drinks for 6 hours prior to scanning. 

Stimulus Presentation  

The gustatory stimuli were contained in 6 50ml syringes (two for each fruit juice and the 

neutral taste) which were attached to an SP220I electronic syringe pump, positioned in 

the scanner control room and delivered to the subjects via three separate 6 metre long 

3mm wide polythene tubes. The syringes were also attached to a computer controlled 

valve system which enabled the different tastes to be delivered independently along the 

tubing. The apparatus was controlled by the stimulus presentation computer positioned 

in the control room, which also received volume trigger pulses from the scanner, and the 

visual stimuli were presented on a projector screen positioned ~10cm away from the 

subject’s face.  



Task description 

 Each trial in the instrumental task involved the simultaneous presentation of one of two 

pairs of fractal stimuli. Each pair signified the onset of one of two distinct trial types: 

Reward and Neutral, whose occurrence was fully randomised throughout the experiment. 

The order of presentation of the instrumental and Pavlovian tasks, and the specific 

assignment of fractal pairs to a given trial type were fully counterbalanced across 

subjects. The subjects’ task on each instrumental trial was to choose one of the two 

stimuli by selecting the fractal to the left or right of the fixation cross via a button box 

(using their right hand).  Once a fractal had been selected, it increased in brightness, and 

was followed 3 seconds later by 0.75ml of either a juice reward, the same quantity of an 

affectively neutral control solution, or else by nothing.  

In Reward trials, one of the stimuli was arbitrarily designated as a High Probability 

stimulus, such that if the subject chose that stimulus they would obtain juice reward with 

a probability of 0.6, otherwise they would obtain nothing. The other stimulus was 

designated as a Low Probability stimulus, as the juice reward was presented with 

probability of only 0.3.  The stimuli in the Neutral trials were similarly assigned High 

(0.6) and Low (0.3) outcome probabilities, but in this case the outcome was affectively 

neutral (control tasteless solution). We predicted that in the Reward trials over the course 

of the experiment subjects would learn to choose with greater frequency the High 

Probability stimulus, as this was associated with a greater probability of obtaining the 

juice reward. On the other hand in Neutral trials, we predicted that subjects would not 

choose the high probability stimulus more frequently than the low probability stimulus, 

as the outcome was affectively neutral and would thus not serve to bias action choice. 



The Pavlovian conditioning task was identical to the instrumental task in terms of 

presentation (though using four different fractal stimuli), except that in this case subjects 

had no choice about which stimulus they would select on a given trial. Instead, the 

computer selected one of the stimuli according to the selections made and feedback 

obtained by another subject while performing the instrumental task. Thus, each subject’s 

Pavlovian conditioning task was yoked to the instrumental choices of another subject. 

Timing was matched as best as possible to the instrumental task. Each trial began with 

the presentation of two arbitrary neutral stimuli either side of a fixation cross. Unlike the 

instrumental task, 500 msecs into the trial one of the two stimuli spontaneously increased 

in brightness, indicating that the computer had chosen that stimulus. Once a stimulus 

had been chosen, but before feedback, subjects were instructed to make a response 

indicating whether the selected stimulus was on the left or right of the screen. This 

ensured that subjects attended to the relevant stimulus, as well as controlling for motor 

confounds when comparing activity evoked by trials from the instrumental task. 

Furthermore, subjects’ reaction time was recorded to provide a behavioral index of 

learning.

Two different juices were used for each subject: peach and blackcurrant juice. One juice 

was used in the instrumental task and the other in the Pavlovian Conditioning task, 

counterbalanced across subjects. The rationale for alternating the juices between sessions 

was to control for the possibility that subjects’ habituated to a specific juice over the 

course of a conditioning episode, or that the pleasantness would decrease due to the 

phenomenon of selective satiation (S1). The use of two different juices ensured that the 

juice reward was judged as highly pleasant by subjects throughout both sessions. The 

specific juice assigned to each task was counterbalanced across subjects 



Imaging Procedure 

The functional imaging was conducted by using a 2 Tesla Siemens Vision MRI scanner 

to acquire gradient echo T2* weighted echo-planar images (EPI) images with BOLD 

(blood oxygenation level dependent) contrast. We employed a special sequence designed 

to optimise functional sensitivity in OFC and medial temporal lobes (S2). This consisted 

of tilted acquistion in an oblique orientation at 30* to the AC-PC line,  as well as 

application of a  preparation pulse with a duration of 1 msec  and amplitude of –2 mT/m 

in the slice selection direction. The sequence enabled 33 axial slices of 3 mm thickness 

and 3 mm in-plane resolution to be acquired with a TR of 2.31 seconds.  Subjects were 

placed in a light head restraint within the scanner to limit head movement during 

acquisition. A T1-weighted structural image was also acquired for each subject. 

Functional imaging data was acquired in two separate ~15 minute (390 volume) sessions 

in each subject during performance of the Pavlovian and instrumental conditioning tasks. 

To detect transient head movements due to swallowing we attached a 1.5 cm long copper 

coil with a radius of 0.5 cm to the neck of each subject. Small movements of the coil 

induced a current in the magnetic field that could be detected when amplified using one 

channel of an EEG system positioned in the scanner room (National Hospital for 

Neurology and Neurosurgery, London, UK). This produced a time-series over the whole 

experiment in which signal changes represented transient head movement. 



Temporal difference prediction error signal  

The temporal difference (TD) learning model used to generate a prediction error signal is 

as described by Schultz et al.(S3).  On each trial, the prediction ˆ( )V t  of the value ( )V t  at 

any time t within a trial is calculated as a linear product of the weights iw and the 

presence or absence of a conditioned stimulus (CS) stimulus at time t, coded in the 

stimulus representation vector ( )ix t :
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Learning occurs by up dating the predicted value of each time-point t in the trial by 

comparing the value at time t+1 to that at time t, leading to a prediction error (PE) or 

( )t :
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where )(tr is the reward at time t

The parameter  is a discount factor, that determines the extent to which rewards that 

arrive earlier are more important than rewards that arrive later on.  In the present study 

we set . The weights iw are then updated on a trial by trial basis according to 

the correlation between PE and the stimulus representation: 
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 where  is the  learning rate 



In the TD model, we assigned 6 time-points to each trial, and used each subject’s 

individual event-history as input. On each trial the CS was taken to be delivered at time-

point 1, and the reward was delivered at time-point 3. The stimuli ix  corresponding to 

the presence of the CS, were represented as vectors in which the ith component was = 1 

and 0 elsewhere (as used by Schultz et al.). We note that other stimulus representations 

are possible, and these could lead to a different output from the model.  

The existence of two stimuli between which either the subject or the computer chooses 

complicates the analysis of ˆ( )V t for both Pavlovian and instrumental conditioning. One  

might expect a rich temporal microstructure of the development of this value prediction 

as the subject assesses which stimulus to choose, or the probability with which the 

computer will choose one or other stimulus. The details of this microstructure may differ 

on a trial-by-trial basis, and it is in any case invisible in fMRI. We therefore considered 

various possibilities for ˆ( )V t , which lead to similar, though not quite identical, results. 

For the analysis of the Pavlovian conditioning data, reward prediction errors are 

calculated for the specific CS that was illuminated (i.e., ˆ(1)V was generated based on just 

one of the two stimuli shown), since there is no evident reason for subjects to generate a 

prediction before this point. To generate regressors corresponding to PE responses 

separately for CS and UCS (unconditioned stimulus) trial components for the SPM 

analysis (see below), tCS was sampled at time point 1 in the trial, and tUCS was sampled 

at time point 3.   



For the analysis of the instrumental conditioning data, we employed advantage learning 

(S4-S6). In this, subjects are assumed to use a prediction error like ( )t to learn an 

estimate ),(ˆ atA  of the advantage, ( , )A t a , specific to action a . The advantage is 

defined as the difference between the future reward ( , )Q t a expected if action a  is 

chosen (called the Q  value, (S7)), and the average value of the state ( )V t . The advantage 

error signal is 

),(ˆ)1(ˆ)()( atQtVtrtA  (0.2) 

based on estimated values of the various quantities. In the case of just two actions (a

and b , one for each stimulus), the advantages can be used to determine the probability 

with which an action is chosen according to  

)),(ˆ),(ˆ((),( btAatAatp

where ( ) 1/(1 exp( ))z z  is the Luce choice rule (S8) or logistic sigmoid, and  is an 

inverse temperature that determines the ferocity of the competition. This probability can 

be used to define the value of the initial state at 1t as  

(1) (1, ) (1, ) (1, ) (1, )V p a Q a p b Q b .

For the instrumental conditioning analyses, we used ( )A t  as the advantage learning 

prediction error signal, and )t  from equation 1.1 (using (1)V as above) as the critic 

prediction error signal.

To ensure that our results do not depend on the different interpretations of the 

predictions made by the subjects at time 1t  in instrumental and Pavlovian 

conditioning, we confirmed that the significant difference in activity reported in dorsal 



striatum between the instrumental and Pavlovian tasks remains present if the Pavlovian 

data is modeled using exactly the same signal at this time as the instrumental data (at 

p<0.001). 

Various other forms of prediction error signal are also possible. For instance, the original 

actor-critic model would suggest that the actor learns stimulus-response quantities that 

are not directly related to the estimated values of executing actions at states (unlike the 

( , )Q t a  or ),(ˆ atA  values) together with a critic whose predictions do not depend 

directly on the probabilities of taking particular actions (S9-S11).   

There is active debate about the nature of the actor-critic learning models that subjects 

employ in tasks like this (S12-S14). We therefore calculated (Fig. S1) the log likelihood fit 

of the actual choices made by subjects according to advantage learning and the original 

actor-critic, for a variety of learning rates and exploration/exploitation tradeoff 

parameters ( ). Our results favour advantage learning, justifying its use to generate 

regressors for the fMRI data.  Furthermore, for advantage learning, a range of learning 

rates between 0.1 and 0.6 provide the best fit to the behavioral data, provided the 

exploration/exploitation constant ( ) is chosen appropriately. We report the results of 

using a learning rate within this range of 0.2, with = 0.5. We also used a learning rate 

of 0.2 in the Pavlovian task, consistent with that used in a previous study of Pavlovian 

conditioning (S15).  



Image Analysis 

Image analysis was performed using SPM99 (Wellcome Department of Imaging 

Neuroscience, Institute of Neurology, London, U.K.). To correct for subject motion, the 

images were realigned to the first volume, spatially normalized to a standard T2* 

template with a resampled vowel size of 3mm3, and spatial smoothing was applied using 

a Gaussian kernel with a full width at half maximum (FWHM) of 8mm. Intensity 

normalisation and high pass temporal filtering (using a filter width of 128 secs) were also 

applied to the data (S16).  

In the TD analysis, the subject specific tCS and tUCS components were convolved with a 

haemodynamic response function and fitted to the data for each single subject. The tCS

and tUCS components were modeled separately in order to accommodate the possibility 

of a variation in magnitude between the responses elicited by the CS and UCS (arising, 

for instance, from the sorts of differences in the time courses of CS and UCS activation 

seen in the activity of dopamine cells (S3). In addition, the 6 scan to scan motion 

parameters produced during realignment were included to account for residual effects of 

movement. To account for transient head motion, produced by e.g. swallowing, we also 

included an additional motion regressor which comprised the output of the motion-

detector coil, band-pass filtered appropriately and sub-sampled to the number of scans in 

the experiment. Linear contrasts of regressor coefficients were computed at the 

individual subject level to enable comparison of PE responses between the Reward and 

Neutral trials. The specific contrasts were: tCS [Reward] - tCS [Neutral] and tUCS

[Reward] - tUCS [Neutral]. These were computed separately for the instrumental and 

Pavlovian conditioning tasks. The results from each subject were taken to a random 

effects level by including the contrast images for the CS and UCS comparisons, 



separately for the Instrumental and Pavlovian conditioning sessions from each single 

subject into a one way analysis of variance with no mean term. Sphericity correction was 

applied to correct for possible violation of the independence assumption between the 

contrasts.  Conjunctions were performed at the second level to identify areas showing 

significant prediction error related activity at both the time of presentation of the CS and 

UCS.   

The structural T1 images were co-registered to the mean functional EPI images for each 

subject and normalised using the parameters derived from the EPI images. Anatomical 

localisation was carried out by overlaying the t-maps on a normalised structural image 

averaged across subjects, and with reference to an anatomical atlas (S17). 



Behavioral measures

Pleasantness ratings 

Subjects provided ratings of the pleasantness of the fruit juice and control tasteless 

solutions before and after the Instrumental and Pavlovian conditioning sessions, using a 

scale ranging from -10 to +10 were -10 = very unpleasant, +10 = very pleasant and 0 = 

neutral. A two-way repeated measures Anova with one factor Stimulus Type: Juice or 

Neutral, and the other factor Time: Before and After, revealed a significant main effect 

of Stimulus Type for both tasks (Instrumental: F=35.2; df=1,11; p<0.001; Pavlovian: 

F=32.4, df=1,11;p<0.001), indicating a significant difference between the pleasantness 

ratings for the two stimuli. Post-hoc paired t-tests confirmed that subjects rated the juice 

reward as significantly more pleasant than the neutral stimulus (Pavlovian: t=5.7, df=11; 

p<0.001; Instrumental: t=5.9, df=11;p<0.001). As rating scale data can violate the 

normal distribution we also confirmed our analysis using Wilcoxon non-parametric 

paired sample tests, which also revealed significant differences in pleasantness ratings 

between the stimuli (at p<0.01). 

Instrumental choices 

To determine whether subjects showed a preference for the High probability over the 

Low probability action during the Instrumental task, a repeated measures two-way 

Anova was performed on the instrumental choice data with one factor Valence (Reward 

vs Neutral) and the other Action Outcome Probability (High vs Low) revealed a 

significant Valence x Outcome Probability interaction across subjects 

(F=4.82;df=1,11;p<0.05). Paired t-tests indicated a significant difference between the 



number of responses made to the High Probability stimulus and the Low Probability 

stimulus in Reward trials (t=2.536,df=11,p<0.05.  There was no significant difference 

between the number of responses made to the High and Low Probability actions in 

Neutral trials (t=-1.243,df=11;p=.240), indicating that the affectively neutral control 

solution did not bias action choice in either direction.

Pavlovian reaction times 

To provide behavioral evidence of learning in the Pavlovian task we tested whether 

subjects were faster to respond (to indicate which stimulus had been chosen by the 

computer) during Reward trials than Neutral trials. The session was subdivided into two 

phases (early and late) to test for differences in response times across learning.  A two-

way repeated measures Anova revealed a time x condition interaction just approaching 

significance (f=4.769,df=1,10; p=0.054) . Subsequent paired t-tests revealed a significant 

difference between reaction times during Reward and Neutral trials in the second phase 

of the experiment (t=-2.768,df=10,p<0.05 two-tailed), such that subjects were faster to 

respond to Rewarding than Neutral conditioned stimuli, whereas there was no significant 

difference between the two stimulus types in the early part of the experiment. Due to a 

technical problem, reaction time data was not obtained for one subject during the 

Pavlovian conditioning task. 



Assessment of model fitness across early and late trials 

Since we are explicitly interested in modeling the changes happening through the course 

of learning, it is important to confirm that the fit of the model to the imaging and 

behavioral data is not significantly different at different times during learning. To assess 

this for the imaging data, we plot the predicted (according to the model) against the 

adjusted fMRI data (which is the real fMRI signal adjusted for all other effects in the 

statistical model) derived from the peak voxel in this region at the individual subject level 

and then subsequently averaged across subjects in Fig. S2(A) separately for the first and 

second half of the experiment. This figure shows that the model provides a reasonable fit 

to the data in both the early and late trials. Furthermore, there are no significant 

differences in the regression slopes between the predictions and the data across the two 

time periods for either the CS or UCS regressors. We also show plots of residuals for 

two typical single subjects in Fig. S2(B). There is no clear structure in the residual plots, a 

further indication that the model provides a good fit to the data in both early and late 

phases of the experiment even at the single subject level. 

Calibration analysis of model fit with fMRI data and behavior 

Figures S3 and S4 show finer scale analyses over the course of learning for individual 

subjects of the degree to which the model’s prediction are appropriately calibrated (S18) 

to imaging data (Fig. S3) and behavioral choices (Fig. S4).  

Fig. S3 shows calibration points, relating the predicted values of the BOLD signal in the 

ventral striatum to the actual (adjusted) values as a function of time (left; out of 385 

scans per subject) and by subject (right). The predicted values of the BOLD signal 



produced by the TD model were separated into bins, and the mean values of the adjusted 

BOLD signals for those scans for which the predicted signal lives within each bin were 

calculated. If the model and data were perfectly calibrated and there was no noise, then 

the mean BOLD signal would have the same value as the predicted BOLD signal, and so 

the points would all lie exactly on the solid straight line. In the left plot, we have made 

the further manipulation of separating the plotted points into segments of scans, from 

early (scans 1-77), later (78-134),  etc in the trial shown by color (see legend). The sizes of 

the points relates to the number of data points in each joint bin. The main conclusion to 

be drawn from the left plot is that since the points with different colors lie on top of 

each other, there are no privileged time bins – the model is generally as well calibrated 

for the early parts of learning (blue) as the late parts (red). The black line with circles 

shows the overall calibration (for values of predicted signal with more than 0.5% of the 

maximum number) across subjects and scans. The plot is very close to the identity, 

showing good overall calibration. The right hand of Fig. S3 shows the same data, but 

now focusing on the question of whether some subjects carry the weight of the statistical 

relationships shown in the text. Only half the subjects are shown for clarity (the numbers 

are shown by colour). In this plot, the whole session is split into two intervals (solid lines 

for the first 192 scans; dashed lines for the remaining scans). The line color indicates 

subject identity; only points with more than 2 samples are shown. That the lines for the 

individual subjects are very similar suggests that there are no particular subjects that bear 

the weight of the correlation. These two plots together suggest that the relationship 

between the predicted and actual BOLD data is relatively uniformly spread across time 

and subjects. 



Figure S4 shows similar calibration plots, but now for the behavior of the subjects rather 

than the BOLD signal. The actor-critic model was used to generate predictions about the 

probability of choosing the better stimulus as the next action, given the (subject-specific) 

history of choices and outcomes experienced. These are divided into ranges, and the 

mean values of the actual predictions within these ranges are plotted against the actual 

probabilities of choice.

The left figure shows these values for early (1-15), later (16-30), etc, trials (by color). 

Again, that the colors substantially overly suggests that there are no privileged epochs of 

learning at which the model is specially good. The right figure joins up the dots, now by 

subject (see color legend) rather than trial. Again, the whole period of learning is 

separated into early (solid) and late (dashed) trials. This suggests that there are no 

significant systematic biases in the data.  
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Assessment of model fitness 

A. Plot of  predicted (according to the advantage learning model) vs observed (adjusted) fMRI data in the ventral 
striatum during the instrumental task shown for CS and UCS  regressors separately for early (scans 1 - 192) and 
late (scans 193 - 385) phases of the experiment. The solid blue line depicts y=x. The predicted data for each subject 
was rank ordered, and the same rank order was applied to the observed data. This is then averaged across subjects 
(for 9 out of 12 subjects who showed significant effects at p<0.01). There are no significant differences in the 
regressions slopes between early and late phases.

B. Residual plots of data from the ventral striatum for early and late phases of the experiment are shown for two 
typical single subjects. There is no obvious structure in the residuals, indicating that the model provides a good fit to 
the data at the single subject level.
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Figure S3

Calibration plot of advantage model predictions vs BOLD signal

Plot shows the relationship between the BOLD signal predicted by the advantage learning model 
and the observed BOLD signal in the ventral striatum (for the instrumental conditioning task). The 
left hand plot shows individual subject data from the peak voxels of 9/12 subjects with significant 
activations in this area (at p<0.01 or above) for five sets of scans (1-77; 78-154, etc., shown by 
color), together with the overall group averages (black line with circles) and the perfect calibration 
line (thin straight line). The right hand plot shows data for a few subjects (for clarity), shown by 
color, and for a division of the 385 scans into 1-192 (solid) and 193-385 (dashed).

scan



Figure S4

Calibration plots of advantage model predictions vs behavior

Plot shows the calibration relationship between the advantage learning model predictions of 
choice probabilities across trials and subjects, and the actual choices they made. The left hand 
plot shows individual subject data for five sequential sets of trials (1-15;  etc., shown by color), 
together with the overall group averages (black line with circles) and the perfect calibration line 
(thin straight line). The right hand plot shows data for a few subjects (for clarity), shown by color, 
and for a division of the trials into 1-35 (solid) and 36-end (dashed).


