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A recent article (Stanton and Sejnowski 1989) on long-term synaptic 
depression in the hippocampus has reopened the issue of the com- 
putational efficiency of particular synaptic learning rules (Hebb 1949; 
Palm 1988a; Morris and Willshaw 1989) - homosynaptic versus het- 
erosynaptic and monotonic versus nonmonotonic changes in synaptic 
efficacy. We have addressed these questions by calculating and maxi- 
mizing the signal-to-noise ratio, a measure of the potential fidelity of 
recall, in a class of associative matrix memories. Up to a multiplicative 
constant, there are three optimal rules, each providing for synaptic de- 
pression such that positive and negative changes in synaptic efficacy 
balance out. For one rule, which is found to be the Stent-Singer rule 
(Stent 1973; Rauschecker and Singer 1979), the depression is purely het- 
erosynaptic; for another (Stanton and Sejnowski 19891, the depression 
is purely homosynaptic; for the third, which is a generalization of the 
first two, and has a higher signal-to-noise ratio, it is both heterosynaptic 
and homosynaptic. The third rule takes the form of a covariance rule 
(Sejnowski 1977a,b) and includes, as a special case, the prescription 
due to Hopfield (1982) and others (Willshaw 1971; Kohonen 1972). 

In principle, the association between the synchronous activities in 
two neurons could be registered by a mechanism that increases the ef- 
ficacy of the synapses between them, in the manner first proposed by 
Hebb (1949); the generalization of this idea to the storage of the asso- 
ciations between activity in two sets of neurons is in terms of a matrix 
of modifiable synapses (Anderson 1968; Willshaw et al. 1969; Koho- 
nen 1972). This type of architecture is seen in the cerebellum (Eccles ef 
al. 1968) and in the hippocampus (Marr 1971) where associative stor- 
age of the Hebbian type (Bliss and L0mo 1973) has been ascribed to the 
NMDA receptor (Collingridge et al. 1983; Morris et al. 1986). A num- 
ber of questions concerning the computational power of certain synaptic 
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modification rules in matrix memories have direct biological relevance. 
For example, is it necessary, or merely desirable, to have a rule for de- 
creasing synaptic efficacy under conditions of asynchronous firing, to 
complement the increases prescribed by the pure Hebbian rule (Hebb 
1949)? The need for a mechanism for decreasing efficacy is pointed to by 
general considerations, such as those concerned with keeping individual 
synaptic efficacies within bounds (Sejnowski 197%); and more specific 
considerations, such as providing an explanation for ocular dominance 
reversal and other phenomena of plasticity in the visual cortex (Bienen- 
stock et al. 1982; Singer 1985). There are two types of asynchrony be- 
tween the presynaptic and the postsynaptic neurons that could be used 
to signal a decrease in synaptic efficacy (Sejnowski 197%; Sejnowski et al. 
1988): the presynaptic neuron might be active while the postsynaptic neu- 
ron is inactive (homosynaptic depression), or vice versa (heterosynaptic 
depression). 

We have explored the theoretical consequences of such issues. We 
consider the storage of a number R of pattern pairs [represented as the 
binary vectors A(w) and B(w) of length rn and n, respectively] in a matrix 
associative memory. The matrix memory has m input lines and n output 
lines, carrying information about the A-patterns and the B-patterns, re- 
spectively, each output line being driven by a linear threshold unit (LTU) 
with m variable weights (Fig. 1). Pattern components are generated in- 
dependently and at random. Each component of an A-pattern takes the 
value 1 (representing the active state) with probability p and the value c 
(inactive state) with probability 1 - p.  Likewise, the probabilities for the 
two possible states 1 and c for a component of a B-pattern are T ,  1 - T.  In 
the storage of the association of the wth pair, the amount A, by which 
the weight W,, is changed depends on the values of the pair of numbers 
[AAw), B,(w)l. 

Once the entire set of patterns has been learned, retrieval of a previ- 
ously stored B-pattern is effected by the presentation of the correspond- 
ing A-pattern. The 3th LTU calculates the weighted sum of its inputs, 
d, [A(w)l, 

The state of output line j is then set to c or 1, according to whether 
d,[A(w)] is less than or greater than the threshold 8,. 

The signal-to-noise ratio p is a measure of the ability of an LTU to act 
as a discriminator between those A(w) that are to elicit the output c and 
those that are to elicit the output 1. It is a function of the parameters 
of the system, and is calculated by regarding dj[A(w)] as the sum of 
two components: the signal, sj(w), whch stems from that portion of the 
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Figure 1: 
Each weight W,j is a linear combination over the patterns: 

The matrix memory, which associates A-patterns with B-patterns. 

fl 

where A is given in the table below. 

The matrix shows the steps taken in the retrieval of the pattern B(w) that was 
previously stored in association with A(w). For good recall, the calculated out- 
put B' must resemble the desired output B(w). 
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weights arising from the storage of pattern w, and the noise, n,(w), which 
is due to the contribution from all the other patterns to the weights. 

i=l 

In most applications of signal-to-noise (S/N) analysis, the noise terms 
have the same mean and are uncorrelated between different patterns. 
When these assumptions are applied to the current model, maximizing 
the signal-to-noise ratio with respect to the learning rule parameters a, 
p, y, and 6, leaves them dependent on the parameter c (Palm 1988b). 
However, the mean of the noise n,(w) in equation 1 is biased by the 
exclusion of the contribution Aij(w), whose value depends on the target 
output for pattern w; and the noise terms for two different patterns w1 
and w2 are in general correlated through the R - 2 contributions to the 
value of Ai l (w) ,  which occur in both terms. Our analysis (Fig. 2) takes 
account of these factors, and its validity is confirmed by the results of 
computer simulation (Table 1). Maximizing the expression we obtain for 
the signal-to-noise ratio in terms of the learning parameters leads to the 
three c-independent rules, R1, R2, and R3. To within a multiplicative 
constant they are 

Rule R1 is a generalization of the Hebb rule, called the covariance rule 
(Sejnowski 1977a; Sejnowski et al. 1988; Linsker 1986). In this formula- 
tion, the synaptic efficacy between any two cells is changed according to 
the product of the deviation of each cell’s activity from the mean. When 
pattern components are equally likely to be in the active and the inactive 
states ( p  = T = 1/2), R1 takes the form of the ”Hopfield” rule (Hopfield 
1982), and has the lowest signal-to-noise ratio of all such rules. Rule R1 
prescribes changes in efficacy for all of the four possible states of activity 
seen at an individual synapse, and thus utilizes both heterosynaptic and 
homosynaptic asynchrony. It also has the biologically undesirable prop- 
erty that changes can occur when neither pre- nor postsynaptic neuron is 
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Low Mean High Mean 

Figure 2: Signal-to-noise ratios. The frequency graph of its linear combinations d(w) for a given 
LTU. The two classes to be distinguished appear as approximately Gaussian distributions, with high mean 
p h ,  low mean pl, and variances ui ,  u:, where ui E u:. For good discrimination the two distributions should 
be narrow and widely separated. 

In our calculation of the signal-to-noise ratio, the mean of the noise n(w)  (equation 1) differs for high and 
low patterns, and so the expressions for the expected values of p h  and were calculated separately. Second, 
the correlations between the noise terms obscuring different patterns add an extra quantity to the variance 
of the total noise. The entire graph of the frequency distributions for lugh and low patterns is displaced 
from the expected location, by a different amount for each unit. This overall displacement does not affect 
the power of the unit to discriminate between patterns. In calculating the signal-to-noise ratio, it is therefore 
appropriate to calculate the expected dispersion of the noise about the mean for each unit, rather than using 
the variance, which would imply measuring deviations from the expected mean. The expected dispersion 
for high patterns is defined as 

H being the number of w for which B ( w )  = 1, and sf is defined similarly as the expected dispersion for low 
patterns. 

The signal-to-nolse ratio for a discriminator is therefore defined as 

(E[Ph - P11)' p =  ~ 

;b; + s;, 

It depends on all the parameters of the system, and may be maximized with respect to those that define the 
learning rule, a, P, 7, and b .  The maxima are found at the rules R1, R2, and R3 described in the text. 

The effect of changing c is to shift and compress or expand the distributions. For a given LTU, it 
is always possible to move the threshold with c in such a way that exactly the same errors are made 
(Table la). The choice of c partly determines the variability of Ilh and p, across the set of units, and 
this variability is minimized at c = -p/(l - p). With this value of c,  and in the limit of large n ~ ,  
n, and a, its effect becomes negligible, and hence the thresholds for all the units may be set equal. 

active (a  # 0). However, the change to be applied in the absence of any 
activity can be regarded as a constant background term of magnitude pr. 
In rule R2, the so-called Stent-Singer rule (Stent 1973; Rauschecker and 
Singer 1979), depression is purely heterosynaptic. For a given number of 
stored associations, the signal-to-noise ratio for R2 is less than that for R1 
by a factor of 1/(1 - r ) .  In rule R3, which Stanton and Sejnowski (1989) 
proposed for the mossy fibers in the hippocampal CA3 region, and which 
is also used in theoretical schemes (Kanerva 1988), depression is purely 
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homosynaptic. R3 has a signal-to-noise ratio less than R1 by a factor of 
1/(1 - p ) .  If p = T ,  R2 and R3 have the same signal-to-noise ratio. 

All the rules have the automatic property that the expected value 
of each weight is 0; that is, what goes up does indeed come down. 
One way of implementing this property that avoids the necessity of 
synapses switching between excitatory and inhibitory states is to as- 
sign each synapse a constant positive amount of synaptic efficacy ini- 
tially. Our results do not apply exactly to this case, but an informal 
argument suggests that initial synaptic values should be chosen so as 
to keep the total synaptic efficacy as small as possible, without any 
value going negative. Given that it is likely that the level of activity 
in the nervous system is relatively low (< lo%), it is predicted that 
the amount of (homosynaptic) long-term potentiation (Bliss and L0mo 
1973) per nerve cell will be an order of magnitude greater than the 
amount of either homosynaptic or heterosynaptic depression. Further, 
under R1, any experimental technique for investigating long-term de- 
pression that relies on the aggregate effect on one postsynaptic cell of 
such sparse activity will find a larger heterosynaptic than homosynaptic 
effect. 

As for the Hopfield case (Willshaw 1971; Kohonen 1972; Hopfield 
1982), for a given criterion of error (as specified by the signal-to-noise 
ratio) the number of associations that may be stored is proportional to 
the size, m, of the network. It is often noted (Willshaw et aZ. 1969; Amit 
et at. 1987; Gardner 1987; Tsodyks and Feigel'man 1988) that the sparser 
the coding of information (i.e., the lower the probability of a unit being 
active) the more efficient is the storage and retrieval of information. This 
is also true for rules R1, R2, and R3, but the information efficiency of 
the matrix memory, measured as the ratio of the number of bits stored 
as associations to the number of bits required to represent the weights, 
is always less than in similar memories incorporating clipped synapses 
(Willshaw et aZ. 19691, that is, ones having limited dynamic range. 

The signal-to-noise ratio measures only the potential of an LTU to 
recall correctly the associations it has learned. By contrast, the threshold 
6, determines the actual frequency of occurrence of the two possible types 
of misclassification. The threshold may be set according to some further 
optimality criterion, such as minimizing the expected number of recall 
errors for a pattern. For a given LTU, the optimal value of 6 will depend 
directly on the actual associations it has learned rather than just on the 
parameters generating the patterns, which means that each LTU should 
have a different threshold. It can be shown that, as m, n, and R grow 
large, setting c at the value - p / U  - p )  enables the thresholds of all the 
LTUs to be set equal (and dependent only on the parameters, not the 
actual patterns) without introducing additional error. 

Although natural processing is by no means constrained to follow 
an optimal path, it is important to understand the computational con- 
sequences of suggested synaptic mechanisms. The signal-to-noise ratio 
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Expect Actual Previous Expect Actual 
p,r c S/N S / N f o  S/N errors errors 
0.5 -1 10 11 H . 3  10 1.1 1.1 
0.4 -1 7.5 8 .3 f1 .5  10 1.7 1.6 
0.3 -1 1.4 1.3 f 0.40 11 4.6 4.5 
0.2 -1 0.25 0.32 f0 .22  12 4.0 4.2 
0.5 -1 10 11 f 1.3 1.1 1.1 
0.5 -0.5 10 11 f 1.3 1.1 1.1 
0.5 0 10 11 f 1.3 1.1 1.1 
0.5 0.5 10 11 =t 1.3 1.1 1.1 

la  

Expect Actual Previous Expect Actual 
p,r c S/N S / N h  S/N errors errors 

l b  0.5 0 0.05 O . l O f O . 1 1  6.8 9.1 8.7 
0.4 0 0.11 0.11 i0 .09  7.6 7.8 7.6 
0.3 0 0.31 0.34 f 0.15 9.4 5.8 5.9 
0.2 0 1.1 1.2 f 0.47 13 3.6 3.4 
0.1 0 5.9 5.3 f 1.8 26 0.92 1.2 
0.05 0 16 2 8 f 1 8  51 0.16 0.15 

p , r  R1 R2, R3 Hebb Hopfield 
0.5 10 5.1 0.050 10 
0.4 11 6.4 0.11 7.5 
0.3 12 8.5 0.31 1.4 
0.2 16 13 1.1 0.25 
0.1 28 26 5.9 0.045 
0.05 54 51 16 0.015 

l c  

Table 1: Simulations. The object of the simulations was to check the formulae 
developed in our analysis and compare them with a previous derivation (Palm 
1988b). The matrix memory has m = 512 input lines and TZ = 20 output lines. 
To ensure noticeable error rates, the number of pattern pairs was set at 0 = 200. 
In all cases p = r. 

la: The Hopfield (1982) rule (a, 8,-,, 6) = (1, -1, -1,l). Columns 3 and 4 compare the S/N ratio expected 
from our analysis and that measured in the simulation, the latter also showing the standard error measured 
over the output units; column 5 gives the S/N ratio calculated on the basis of previous analysis (Palm 1988b). 
Columns b and 7 compare the expected and measured numbers of errors per pattern, the threshold being set 
so that the two possible types of error occurred with equal frequency. For good recall (< 0.03 errors per unit) 
the S /N ratio must be at least 16. The lack of dependence on the value of c is demonstrated in rows 5-8. 
The same patterns were used in each case. 

lb: Similar results for the nonoptimal Hebb (1949) rule (a, ps y. 6 )  = (0,fl. fl,I). 
lc: Values of the signal-to-noise ratio for the rules R1, R2, and R3 and the Hebb and the Hopfield rules. 

R1 has higher signal-to-noise ratio than R2 and R3, but for the latter two it is the same since p = T here. 
The Hebb rule approaches optimality in the limit of sparse coding; conversely, the Hopfield rule is optimal 
at p = T = 112. 
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indicates how good a linear threshold unit may be at its discrimination 
task, and consequently how much information can be stored by a net- 
work of a number of such units. Synaptic depression is important for 
computational reasons, independent of any role it might play in pre- 
venting saturation of synaptic strengths. Up to a multiplicative constant, 
only three learning rules maximize the signal-to-noise ratio. Each rule 
involves both decreases and increases in the values of the weights. One 
rule involves heterosynaptic depression, another involves homosynaptic 
depression, and in the third rule there is both homosynaptic and heterosy- 
naptic depression. All rules work most efficiently when the patterns of 
neural activity are sparsely coded. 
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