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Abstract

We present a connectionist method for representing images that ex-

plicitly addresses their hierarchical nature. It blends data from neu-

roscience about whole-object viewpoint sensitive cells in inferotem-

poral cortex8 and attentional basis-�eld modulation in V43 with

ideas about hierarchical descriptions based on microfeatures.5,11

The resulting model makes critical use of bottom-up and top-down

pathways for analysis and synthesis.6 We illustrate the model with

a simple example of representing information about faces.

1 Hierarchical Models

Images of objects constitute an important paradigm case of a representational hi-

erarchy, in which `wholes', such as faces, consist of `parts', such as eyes, noses and

mouths. The representation and manipulation of part-whole hierarchical informa-

tion in �xed hardware is a heavy millstone around connectionist necks, and has

consequently been the inspiration for many interesting proposals, such as Pollack's

RAAM.11

We turned to the primate visual system for clues. Anterior inferotemporal cortex

(IT) appears to construct representations of visually presented objects. Mouths and

faces are both objects, and so require fully elaborated representations, presumably

at the level of anterior IT, probably using di�erent (or possibly partially overlap-

ping) sets of cells. The natural way to represent the part-whole relationship between

mouths and faces is to have a neuronal hierarchy, with connections bottom-up from

the mouth units to the face units so that information about the mouth can be used

to help recognize or analyze the image of a face, and connections top-down from

the face units to the mouth units expressing the generative or synthetic knowledge

that if there is a face in a scene, then there is (usually) a mouth, too. There is little
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empirical support for or against such a neuronal hierarchy, but it seems extremely

unlikely on the grounds that arranging for one with the correct set of levels for all

classes of objects seems to be impossible.

There is recent evidence that activities of cells in intermediate areas in the visual

processing hierarchy (such as V4) are inuenced by the locus of visual attention.3

This suggests an alternative strategy for representing part-whole information, in

which there is an interaction, subject to attentional control, between top-down

generative and bottom-up recognition processing. In one version of our example,

activating units in IT that represent a particular face leads, through the top-down

generative model, to a pattern of activity in lower areas that is closely related to

the pattern of activity that would be seen when the entire face is viewed. This

activation in the lower areas in turn provides bottom-up input to the recognition

system. In the bottom-up direction, the attentional signal controls which aspects of

that activation are actually processed, for example, specifying that only the activity

reecting the lower part of the face should be recognized. In this case, the mouth

units in IT can then recognize this restricted pattern of activity as being a particular

sort of mouth. Therefore, we have provided a way by which the visual system can

represent the part-whole relationship between faces and mouths.

This describes just one of many possibilities. For instance, attentional control could

be mainly active during the top-down phase instead. Then it would create in V1 (or

indeed in intermediate areas) just the activity corresponding to the lower portion

of the face in the �rst place. Also the focus of attention need not be so ineluctably

spatial.

The overall scheme is based on an hierarchical top-down synthesis and bottom-up

analysis model for visual processing, as in the Helmholtz machine6 (note that \hi-

erarchy" here refers to a processing hierarchy rather than the part-whole hierarchy

discussed above) with a synthetic model forming the e�ective map:

`object'
 `attentional eye-position' ! `image' (1)

(shown in cartoon form in �gure 1) where `image' stands in for the (probabilities

over the) activities of units at various levels in the system that would be caused by

seeing the aspect of the `object' selected by placing the focus and scale of attention

appropriately. We use this generative model during synthesis in the way described

above to traverse the hierarchical description of any particular image. We use the

statistical inverse of the synthetic model as the way of analyzing images to determine

what objects they depict. This inversion process is clearly also sensitive to the

attentional eye-position { it actually determines not only the nature of the object

in the scene, but also the way that it is depicted (i.e., its instantiation parameters)

as reected in the attentional eye position.

In particular, the bottom-up analysis model exists in the connections leading to

the 2D viewpoint-selective image cells in IT reported by Logothetis et al.
8 which

form population codes for all the represented images (mouths, noses, etc.). The

top-down synthesis model exists in the connections leading in the reverse direction.

In generalizations of our scheme, it may, of course, not be necessary to generate an

image all the way down in V1.

The map (1) speci�es a top-down computational task very like the bottom-up one

addressed using a multiplicatively controlled synaptic matrix in the shifter model
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Figure 1: Cartoon of the model. In the top-down, generative, direction, the model generates

images of faces, eyes, mouths or noses based on an attentional eye position and a selection of a

single top-layer unit; the bottom-up, recognition, direction is the inverse of this map. The response

of the neurons in the middle layer is modulated sigmoidally (as illustrated by the graphs shown

inside the circles representing the neurons in the middle layer) by the attentional eye position. See

section 2 for more details.

of Olshausen et al .9 Our solution emerges from the control the attentional eye

position exerts at various levels of processing, most relevantly modulating activity

in V4.3 Equivalent modulation in the parietal cortex based on actual (rather than

attentional) eye position1 has been characterized by Pouget & Sejnowski13 and

Salinas & Abbott15 in terms of basis �elds. They showed that these basis �elds

can be used to solve the same tasks as the shifter model but with neuronal rather

than synaptic multiplicative modulation. In fact, eye-position modulation almost

certainly occurs at many levels in the system, possibly including V1.12 Our scheme

clearly requires that the modulating attentional eye-position must be able to become

detached from the spatial eye-position { Connor et al.3 collected evidence for part of

this hypothesis; although the coordinate system(s) of the modulation is not entirely

clear from their data.

Bottom-up and top-down mappings are learned taking the eye-position modula-

tion into account. In the experiments below, we used a version of the wake-sleep

algorithm,6 for its conceptual and computational simplicity. This requires learning

the bottom-up model from generated imagery (during sleep) and learning the top-

down model from assigned explanations (during observation of real input during

wake). In the current version, for simplicity, the eye position is set correctly during

recognition, but we are also interested in exploring automatic ways of doing this.

2 Results

We have developed a simple model that illustrates the feasibility of the scheme

presented above in the context of recognizing and generating cartoon drawings of

a face and its parts. Recognition involves taking an image of a face or a part

thereof (the mouth, nose or one of the eyes) at an arbitrary position on the retina,
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Figure 2: a) Recognition: the left column of each pair shows the stimuli; the right shows the

resulting activations in the top layer (ordered as face, mouth, nose and eye). The stimuli are faces

at random positions in the retina. Recognition is performed by setting the attentional eye position

in the image and setting the attentional scale, which creates a window of attention around the

attended to position, shown by a circle of corresponding size and position. b) Generation: each

panel shows the output of the generative pathway for a randomly chosen attentional eye position

on activating each of the top layer units in turn. The focus of attention is marked by a circle

whose size reects the attentional scale. The name of the object whose neuronal representation in

the top layer was activated is shown above each panel.

and setting the appropriate top level unit to 1 (and the remaining units to zero).

Generation involves imaging either a whole face or of one of its parts (selected by

the active unit in the top layer) at an arbitrary position on the retina.

The model (�gure 1) consists of three layers. The lowest layer is a 32� 32 `retina'.

In the recognition direction, the retina feeds into a layer of 500 hidden units. These

project to the top layer, which has four neurons. In the generative direction, the

connectivity is reversed. The network is fully connected in both directions. The

activity of each neuron based on input from the preceding (for recognition) or the

following layer (for generation) is a linear function (weight matrices Wr
;Vr in the

recognition and Vg
;Wg in the generative direction). The attentional eye position

inuences activity through multiplicative modulation of the neuronal responses in

the hidden layer. The linear response ri = (Wrp)i or ri = (Vgo)i of each neuron i

in the middle layer based on the bottom-up or top-down connections is multiplied

by �i = �
x

i
(ex)�

y

i
(ey)�

s

i
(es), where �

fx;y;sg
i

are the tuning curves in each dimension

of the attentional eye position e = (ex; ey; es), coding the x- and y- coordinates and

the scale of the focus of attention, respectively. Thus, for the activity mi of hidden

neuron i we havemi = (Wrp)i ��i in the recognition pathway and mi = (Vgo)i ��i in
the generative pathway. The tuning curves of the �i are chosen to be sigmoid with

random centers ci and random directions di 2 f�1; 1g, e.g., �
s

i
= �(4�ds

i
�(es�cs

i
)).

In other implementations, we have also used Gaussian tuning functions. In fact,

the only requirement regarding the shape of the tuning functions is that through a

superposition of them one can construct functions that show a peaked dependence

on the attentional eye position. In the recognition direction, the attentional eye

position also has an inuence on the activity in the input layer by de�ning a `window

of attention',7 which we implemented using a Gaussian window centered at the

attentional eye position with its size given by the attentional scale. This is to allow

the system to learn models of parts based on experience with images of whole faces.

To train the model, we employ a variant of the unsupervised wake-sleep algorithm.6

In this algorithm, the generative pathway is trained during a wake-phase, in which



stimuli in the input layer (the retina, in our case) cause activation of the neurons

in the network through the recognition pathway, providing an error signal to train

the generative pathway using the delta rule. Conversely, in the sleep-phase, random

activation of a top layer unit (in conjunction with a randomly chosen attentional

eye-position) leads, via the generative connections, to the generation of activation

in the middle layer and consequently an image in the input layer that is then used to

adapt the recognition weights, again using the delta rule. Although the delta rule in

wake-sleep is �ne for the recognition direction, it leads to a poor generative model

{ in our simple case, generation is much more di�cult than recognition. As an

interim solution, we therefore train the generative weights using back-propagation,

which uses the activity in the top layer created by the recognition pathway as the

input and the retinal activation pattern as the target signal. Hence, learning is

still unsupervised (except that appropriate attentional eye-positions are always set

during recognition). We have also experimented with a system in which the weights

Wr and Wg are preset and only the weights between layers 2 and 3 are trained.

For this model, training could be done with the standard wake-sleep algorithm, i.e.,

using the local delta-rule for both sets of weights.

Figure 2a shows several examples of the performance of the recognition pathway for

the di�erent stimuli after 300,000 iterations. The network is able to recognize the

stimuli accurately at di�erent positions in the visual �eld. Figure 2b shows several

examples of the output of the generative model, illustrating its capacity to produce

images of faces or their parts at arbitrary locations. By imaging a whole face and

then focusing the attention on e.g., an area around its center, which activates the

`nose' unit through the recognition pathway, the relationship that, e.g., a nose is

part of a face can be established in a straightforward way.

3 Discussion

Representing hierarchical structure is a key problem for connectionism. Visual

images o�er a canonical example for which it seems possible to elucidate some of

the underlying neural mechanisms. The theory is based on 2D view object selective

cells in anterior IT, and attentional eye-position modulation of the �ring of cells in

V4. These work in the context of analysis by synthesis or recognition and generative

models such that the part-whole hierarchy of an object such as a face (which contains

eyes, which contain pupils, etc.) can be traversed in the generative direction by

choosing to view the object through a di�erent e�ective eye-position, and in the

recognition direction by allowing the real and the attentional eye-positions to be

decoupled to activate the requisite 2D view selective cells.

The scheme is related to Pollack's Recursive Auto-Associative Memory (RAAM)

system.11 RAAM provides a way of representing tree-structured information { for

instance to learn an object whose structure is ffA;Bg; fC;Dgg, a standard three-

layer auto-associative net would be taught AB, leading to a pattern of hidden unit

activations �; then it would learn CD leading to �; and �nally �� leading to ,

which would itself be the representation of the whole object. The compression

operation (AB ! �) and its expansion inverse are required as explicit methods for

manipulating tree structure.

Our scheme for representing hierarchical information is similar to RAAM, using

the notion of an attentional eye-position to perform its compression and expansion



operations. However, whereas RAAM normally constructs its own codes for inter-

mediate levels of the trees that it is fed, here, images of faces are as real and as

available as those, for instance, of their associated mouths. This not only changes

the learning task, but also renders sensible a notion of direct recognition without

repeated RAAMi�cation of the parts.

Various aspects of our scheme require comment: the way that eye position a�ects

recognition; the coding of di�erent instances of objects; the use of top-down infor-

mation during bottom-up recognition; variants of the scheme for objects that are

too big or too geometrically challenging to `�t' in one go into a single image; and

hierarchical objects other than images. We are also working on a more probabilisti-

cally correct version, taking advantage of the statistical soundness of the Helmholtz

machine.

Eye position information is ubiquitous in visual processing areas,12 including the

LGN and V1,17 as well as the parietal cortex1 and V4.3 Further, it can be revealed

as having a dramatic e�ect on perception, as in Ramachandran et al.'s14 study on

intermittent exotropes. This is a form of squint in which the two eyes are normally

aligned, but in which the exotropic eye can deviate (voluntarily or involuntarily) by

as much as 60�. The study showed that even if an image is `burnt' on the retina in

this eye as an afterimage, and so is �xed in retinal coordinates, at least one compo-

nent of the percept moves as the eye moves. This argues that information about eye

position dramatically e�ects visual processing in a manner that is consistent with

the model presented here of shifts based on modulation. This is also required by

Bridgeman et al 's2 theory of perceptual stability across �xations, that essentially

builds up an impression of a scene in exactly the form of mapping (1).

In general, there will be many instances for an object, e.g., many di�erent faces. In

this general case, the top level would implement a distributed code for the identity

and instantiation parameters of the objects. We are currently investigating methods

of implementing this form of representation into the model.

A key feature of the model is the interaction of the synthesis and analysis path-

ways when traversing the part-whole hierarchies. This interaction between the two

pathways can also aid the system when performing image analysis by integrating

information across the hierarchy. Just as in RAAM, the extra feature required

when traversing a hierarchy is short term memory. For RAAM, the memory stores

information about the various separate sub-trees that have already been decoded

(or encoded). For our system, the memory is required during generative traversal

to force `whole' activity on lower layers to persist even after the activity on upper

layers has ceased, to free these upper units to recognize a `part'. Memory during

recognition traversal is necessary in marginal cases to accumulate information across

separate `parts' as well as the `whole'. This solution to hierarchical representation

inevitably gives up the computational simplicity of the naive neuronal hierarchical

scheme described in the introduction which does not require any such accumulation.

Knowledge of images that are too large to �t naturally in a single view4 at a canoni-

cal location and scale, or that theoretically cannot �t in a view (like 360� information

about a room) can be handled in a straightforward extension of the scheme. All this

requires is generalizing further the notion of eye-position. One can explore one's

generative model of a room in the same way that one can explore one's generative

model of a face.



We have described our scheme from the perspective of images. This is convenient

because of the substantial information available about visual processing. However,

images are not the only examples of hierarchical structure { this is also very relevant

to words, music and also inferential mechanisms. We believe that our mechanisms

are also more general { proving this will require the equivalent of the attentional

eye-position that lies at the heart of the method.
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