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Many recent analysis-by-synthesis density estimation models of cortical
learning and processing have made the crucial simplifying assumption
that units within a single layer are mutually independent given the states
of units in the layer below or the layer above. In this article, we suggest
using either a Markov random field or an alternative stochastic sampling
architecture to capture explicitly particular forms of dependence within
each layer. We develop the architectures in the context of real and binary
Helmholtz machines. Recurrent sampling can be used to capture correla-
tions within layers in the generative or the recognition models, and we
also show how these can be combined.

1 Introduction

Hierarchical probabilistic generative models have recently become popu-
lar for density estimation (Mumford, 1994; Hinton & Zemel, 1994; Zemel,
1994; Hinton, Dayan, Frey, & Neal, 1995; Dayan, Hinton, Neal, & Zemel,
1995; Saul, Jaakola, & Jordan, 1996; Olshausen & Field, 1996; Rao & Ballard,
1997; Hinton & Ghahramani, 1997). They are statistically sound versions of
a variety of popular unsupervised learning techniques (Hinton & Zemel,
1994), and they are also natural targets for much of the sophisticated theory
that has recently been developed for tractable approximations to learning
and inference in belief networks (Saul et al., 1996; Jaakkola, 1997; Saul &
Jordan, 1998). Hierarchical models are also attractive for capturing cortical
processing, giving some computational purpose to the top-down weights
between processing areas that ubiquitously follow the rather better-studied
bottom-up weights.

To fix the notation, Figure 1 shows an example of a two-layer belief
network that parameterizes a probability distribution P[x] over a set of
activities of input units x as the marginal of the generative modelP[x,y;G]:

P[x;G] =∑yP[x,y;G],

where y are the activities of the coding or interpretative units and G consists
of all the generative parameters in the network. If y are real valued, then
the sum is replaced by an integral.
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Figure 1: One-layer, top-down, generative model that specifies P[y;G] and
P[x|y;G] with generative weights G. The recognition model specifies P[y|x].
The figure shows the Helmholtz machine version of this in which this distribu-
tion has parametersR.

One facet of most of these generative models is that the units are orga-
nized into layers, and there are no connections between units within a layer,
so that:

P[y;G] =
∏

j

P[yj;G] (1.1)

P[x|y;G] =
∏

i
P[xi|y;G]. (1.2)

This makes the xi conditionally factorial, that is independent of each other
given y. The consequences of equations 1.1 and 1.2 are that the generative
probabilityP[x,y;G], given a complete assignment of x and y, is extremely
easy to evaluate, and it is also easy to produce a sample from the genera-
tive model. The Helmholtz machine (Hinton et al., 1995; Dayan et al., 1995)
uses bottom-up weights to parameterize a recognition model, which is in-
tended to be the statistical inverse to the generative model. That is, it uses
parametersR to approximate P[y|x;G] with a distributionQ[y; x,R]. One
typical approximation in Q is that the units in y are also treated as being
conditionally factorial, that is, independent given x.

Although these factorial assumptions are computationally convenient,
there are various reasons to think that they are too restrictive. Saul and Jor-
dan (1998) describe one example from a generative standpoint. They built
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a hierarchical generative model that learns to generate 10 × 10 binary im-
ages of handwritten digits. However, the patterns that even a well-trained
network tends to generate are too noisy. Saul and Jordan (1998) cite their net-
work for lacking the means to perform cleanup at the output layer. Cleanup
is a characteristic role for Markov random fields in computer vision (e.g.,
Geman & Geman, 1984; Poggio, Gamble, & Little, 1988), and is a natural
task for lateral interactions. Equally, such lateral interactions can be used to
create topographic maps by encouraging neighboring units to be correlated
(Zemel & Hinton, 1995; Ghahramani & Hinton, 1998).

Even for a generative model such as that in equations 1.1 and 1.2 in which
the units y are marginally independent, once the values of x are observed,
the y become dependent. This fact lies at the heart of the belief network
phenomenon called explaining away (Pearl, 1988). In the simplest case of
explaining away, two binary stochastic units, ya and yb, are marginally in-
dependent and are individually unlikely to turn on. However, if one (or
indeed both) of them does actually turn on, then binary x is sure to come on
too. Otherwise, x is almost sure to be off, x = 0. This means that given the
occurrence of x = 1, the recognition probability distribution over {ya, yb}
should put its weight on {1, 0} and {0, 1}, and not on {0, 0} (since some y
has to explain x = 1) or {1, 1} (since ya and yb are individually unlikely).
Therefore, the presence of ya = 1 explains away the need for yb = 1 (and
vice versa). Modeling this conditional dependence requires something like
a large and negative lateral recognition influence between ya and yb. There-
fore, it is inadequate to model the recognition distribution Q[y; x,R] as
being factorial.

Finally, although all the statistical models are still much too simplistic, we
are interested in using them to capture aspects of cortical processing and
learning. As has long been known from work in Markov random fields,
statistical models whose units have lateral connections (that is, undirected
connections and loops) require substantially different treatment from sta-
tistical models without lateral connections. It is worthwhile exploring even
simple members of the latter class, even though they may not be accurate
models of the cortex, since lateral connections are so ubiquitous.

Even at a coarse level of descriptive detail, there are at least two different
classes of lateral connections, and we might expect these to have distinctive
roles. These have been most extensively studied in area V1. One set of con-
nections comprises the connections that form the intracolumnar canonical
microcircuit (see Douglas, Martin, & Whitteridge, 1989; Douglas & Martin,
1990; 1991), connecting cells in layer IV, which receive inputs from lower
layers in the hierarchy, with cells in other layers (these are sometimes called
vertical connections). The other set is intercolumnar, connecting cells in layers
II/III (see Gilbert, 1993; Levitt, Lund, & Yoshioka, 1996; Fitzpatrick, 1996).
The latter class (also called horizontal) are more conventionally thought of
as being the lateral connections. In fact, even these are likely to comprise two
classes: the local isotropic connections, which allow for interactions within
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hypercolumns, and the longer-range, patchy, and anisotropic connections,
which mediate interactions between hypercolumns.

Some hints come from the course of development as to the nature of
these connections. For instance, in humans, top-down connections from
area V2 to area V1 innervate V1 from birth. However, these fibers terminate
in the lowest layers of the cortex, making just a few synaptic contacts until
around three months. At this point they grow up through the cortical lay-
ers and form what are the majority of their synapses, onto cells in layers
II/III. At just this same juncture, axons from other layer II/III neurons in V1
are also growing and making contacts (Burkhalter, 1993). This suggests the
possibility that top-down and lateral connections might play similar roles,
putatively both being part of the generative model.

We therefore seek ways of using lateral interactions to represent depen-
dencies between units within a layer. The issues are how lateral weights
can parameterize statistically meaningful lateral interactions, how they can
be learned, and how it is possible to capture both generative and recogni-
tion dependencies in one network. The Boltzmann machine (BM) (Hinton
& Sejnowski, 1986) is a natural model for lateral connections, and sam-
pling and learning in such Markov random fields is quite well understood.
We consider the BM, and also a different recurrent sampling model that
obviates the need for the BM’s negative sampling phase (also called the
sleep phase). We will focus on two models. One is the simplest linear and
gaussian generative model, which performs the statistical technique of fac-
tor analysis (see Everitt, 1984), since this is a paradigmatic example of the
Helmholtz machine (Neal & Dayan, 1997), and since a mean-field version
of it has been extensively investigated (Rao & Ballard, 1997). However, lat-
eral models are more interesting in nongaussian cases, an extreme example
of which involves just binary activations of the units, and we discuss and
experimentally investigate this too.

2 Factor Analysis

Consider the special case of Figure 1 and equation 1.2 in which the units are
linear and the distributions are gaussian:

y ∼ N [0,8], (2.1)

x|y ∼ N
[
GTy, 9

]
, (2.2)

9 = diag
(
τ 2

1 , . . . , τ
2
n

)
, (2.3)

whereN [µ, 0] is a multivariate gaussian distribution with meanµ and co-
variance matrix 0.1 We have omitted the bias terms for convenience. This

1 Note the different symbols. G is the entire set of generative parameters, including
the weights G and the variances {τ 2

i }. For the moment, we treat the covariance matrix 8
as being fixed.
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is just the standard factor analysis model in statistics (Everitt, 1984). If 8 is
a multiple of the identity matrix, I, then the y are marginally independent
(and therefore satisfy equation 1.1); otherwise they are marginally depen-
dent. The task for maximum likelihood factor analysis is to take a set of
observed patterns {x•} and fit the parameters G of the model to maximize
their likelihood.

The recognition model is just the statistical inverse of the generative
model in equation 2.3. In this case, P[y|x;G] is also gaussian:

P[y|x;G] ∼ N [R∗Tx, 6∗], where (2.4)

R∗ = 9−1G
(
8−1 +G9−1GT

)−1
, (2.5)

6∗−1 = 8−1 +G9−1GT. (2.6)

Note that the mean of y|x depends just linearly on the input x, and the
covariance matrix 6∗ does not depend on x at all. The covariance matrix
captures the conditional dependence among the y during recognition.

One standard way of performing factor analysis is the expectation-
maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Rubin &
Thayer, 1982). During the E phase, an input x is presented, and the distri-
bution P[y|x] is determined. During the M phase, the generative weights
(G and9 here) are updated in the light of x and P[y|x;G]. Neal and Dayan
(1997) showed that the wake-sleep algorithm (Hinton et al., 1995) can be
used to learn the generative and recognition weights. Wake-sleep is an it-
erative approximate form of EM, which explicitly maintains parameters
R for a current recognition model Q[y; x,R], and requires for learning
nothing more than two phases of application of the delta rule. During the
wake phase, patterns x• are drawn from their distribution in the environ-
ment, and a sample y• is drawn using the current recognition distribution,
Q[y•; x•,R]. Then the delta rule is used to adapt G and {τ 2

i } to reduce(
x• −GTy•

)T
9−1 (x• −GTy•

)+∑i log τ 2
i . For instance, the delta rule spec-

ifies weight changes to Gia as

1Gia ∝
[
x• −GTy•

]
a

y•i ,

involving the estimation error x• − GTy• of x•. During the sleep phase,
samples y◦, x◦ are drawn top-down from the generative model, and the
parameters of the recognition model are changed using the delta rule again
to decrease− logQ[y◦|x◦;R]. The obvious parameterization to use forQ is
R = {R, 6}, where R is an approximation of R∗ and6 an approximation of
6∗.

An important property of the wake-sleep algorithm is that the activities of
the hidden units are specified by the recognition model while the generative
model is plastic, and vice versa. This implies that it is unnecessary to extract
samples from a model when its weights are actually being changed.
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Figure 2: The ladder of connections L and the individual covariance terms σ 2
i

that are required to capture a full recognition covariance matrix.

We have therefore specified both generative (8) and recognition (6) co-
variances. In this article, we focus on their representation and acquisition
in lateral connections. Neal and Dayan (1997) suggested two possibilities
for representing 6. One is to note that if the generative prior over y is rota-
tionally invariant, so 8 is a multiple of I (which itself is easy to represent),
then there is rotational redundancy in the definition of y and G. This means
that both can be multiplied appropriately by any unitary matrix without
affecting the underlying generative model. In particular, there will always
be one privileged rotation in which the recognition covariance matrix6will
be diagonal. The diagonal terms are straightforward to learn, again using
the delta rule. In tests, this model worked quite well but occasionally would
get stuck in a local minimum.

In the more interesting case in which 8 is not completely rotationally
invariant, it may not be possible to choose a rotation of the factors consistent
with 8 that makes a general 6 diagonal. The other suggestion in Neal and
Dayan (1997) was to connect the units in y with the ladder (Markov mesh)
structure shown in Figure 2 (see also Frey, Hinton, & Dayan, 1996; Frey,
1997). This has just enough representational capacity to model an arbitrary
full covariance matrix 6 and can also be learned using the standard delta
rule. However, the requirement that the connections be laddered is rather
inelegant. In nongaussian cases, arbitrary dependencies can be captured
by laddered models only if the unit activation functions are allowed to
be sufficiently complex. For a given activation function, it can be that some
dependence is overlooked and that omitting half the connections is harmful.
Further, if8 is not rotationally invariant, then these generative covariances
need to be represented too.

It is therefore natural to seek a model that can represent arbitrary8 and6
with fully bidirectional (but not necessarily symmetric-valued) connections
and can also learn appropriate values for these connections.
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3 Lateral Models

Consider the case of representing and learning the generative covariances8.
The task becomes: given samples y• (which are produced by the recognition
model), specify an architecture and learning scheme such that arbitrary new
samples can be drawn from the distribution P[y•] during the sleep phase.

3.1 The Gaussian Boltzmann Machine. An obvious choice for a lateral
model for the case of factor analysis is a gaussian-valued BM. In this, one
would have an energy function defined as:

E[y] = −1
2

yTWy,

with a symmetric, negative definite matrix W with Wii< 0 and Wij=Wji.2

This energy function is used to define a probability distribution according
to

P[y] = e−E[y]/Z[W], (3.1)

where Z[W] is the partition function (
∫

y e−E[y]dy = (2π)n/2/√|−W|, where
n is the dimensionality of y). Clearly, equation 3.1 is just a gaussian distri-
bution, with covariance matrix −W−1. We would therefore like W to come
to equal −8−1.

Given W, we can extract samples from the distribution using the Markov
chain Monte Carlo method called Gibbs sampling (see Neal, 1993, for an
excellent review of Markov chain methods). For this, we sample yi from the
distribution defined by all the other yj, j 6= i (which we will call yı̄). This is
the gaussian:

P[yi|yı̄] = N
−1

Wii

∑
j6=i

Wijyj,
−1
Wii

 . (3.2)

Provided that we choose the order of updates appropriately, Gibbs sampling
is a natural (albeit possibly slow) way by which to express the distribution.
The standard alternative method involves diagonalizing 8, which is less
practicable using local operations.

The next issue for the gaussian BM concerns learning, which, at least
traditionally, involves two phases (both of which happen during the wake

2 The choice of W rather than −W is somewhat arbitrary. There is a difference of
notation between the Hopfield net (and therefore the Boltzmann machine) and a standard
multivariate gaussian distribution. The Hopfield net uses a convention that the energy is
− 1

2 yTWy, whereas a gaussian distribution with covariance matrix 8 has as its negative
log probability (the equivalent of energy) yT8−1y.
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phase of Helmholtz machine). Of course, learning the matrix 8 is trivial,
since one needs only to observe the correlations 〈y•i y•j 〉where y• are samples
provided by the recognition model. However, sampling during the sleep
phase (and, as we shall see, the recognition model) depends on 8−1, and
learning this is more complicated.

Positive learning for the BM with fully specified samples is again easy:

1W+ij ∝ ∇Wij

〈−E
[
y•
]〉 ∝ 〈y•i y•j

〉
where y• are once more samples provided by the recognition model. The
negative phase of BM learning is not so easy. Since the partition function is
analytically calculable, we know that

1W−ij ∝ ∇Wij logZ[W]− ∝ ∇Wij log |−W| = −W−1
ij

(since W = WT). Here, and throughout the article, we write W−1
ij for the ij

element of W−1. Since, according to equation 3.1, y really has a multivariate
gaussian distribution with covariance matrix −W−1, one could estimate
−W−1

ij = 〈y†
i y†

j 〉, producing samples y† using Gibbs sampling. It is the closed
form for Z[W] that makes it unnecessary.

Combining the two contributions to the weight change, this would make:

1Wij = 1W+ij −1W−ij ∝
〈
y•i y•j

〉
+W−1

ij .

The last term discourages W from becoming positive definite since W−1,
like W itself, is negative definite. Just as in Amari (1998), the requirement
for inverting W can be averted through multiplying this learning rule by
WWT =WW, giving the (nonlocal) learning rule:

1W ∝WW
〈
y•y•T

〉
+W.

In this gaussian case, it is therefore possible to avoid the BM’s normal re-
quirement for a negative phase of learning, since the partition function is
analytically calculable. This simplification is not available for the case of
stochastic binary units.

3.2 The Direct Method. There is an alternative to using the gaussian BM.
Equation 3.2 specifies as a gaussian the conditional distribution of yi given
all the other yı̄. The mean of this gaussian depends linearly on these other
variables, and its variance is independent of them. Imagine just learning
the parameters of these conditional distributions—learning V and θ2

i = eβi

where

P[yi|yı̄;V] = N
∑

j6=i

Vijyj, θ
2
i

 , (3.3)
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using the delta rule:

1Vik ∝ 1
θ2

i

(
y•i −

∑
j6=i Vijy•j

)
y•k,

1βi ∝ 1
θ2

i

((
y•i −

∑
j6=i Vijy•j

)2 − θ2
i

)
,

based on samples y• drawn from the recognition model. The delta rule is
perfectly local and is exactly the learning rule used for all other parts of the
Helmholtz machine. In this linear case, when applied with a suitable sched-
ule for changing the learning rates, the delta rule is provably a convergent
way of determining P[yi|yı̄] (see, for example, Widrow & Stearns, 1985).
Therefore, the rule will ultimately find appropriate lateral weights. This
is again without requiring a negative phase of learning and also without
requiring an analytical form for the partition function.

However, this rule is quite different in form from the BM learning rule.
For instance, note that in general, Vij 6= Vji. Potentially more worrying,
for intermediate values of V and θ2

i before convergence, the sampler (a
stochastic cellular automaton, see, e.g., Marroquin & Ramirez, 1991) defined
by equation 3.3 is not nearly as well behaved as that defined by equation 3.2.
As an example, for equation 3.2, most details of the way that the order of
update of the {yi} are irrelevant, provided that all the states are updated
sufficiently often. This is not true for equation 3.3, since there can be the
stochastic equivalent of cycles. For instance, consider the case in which
there are just two factors, y1 and y2, whose states are updated sequentially
according to

u1) y′2 = by1 + ε2,

u2) y′1 = ay′2 + ε1,

where εi are gaussian random variables (distributed according to N [0, 1])
and a and b are weights. If these updates have well-defined terminal be-
havior (we will see later circumstances in which they may not), then we
can ask whether the distribution of {y1, y2} depends on whether we stop to
take samples before update u1 or before update u2. In fact, the distribution
does indeed depend on this. Solving for the fixed points, the asymptotic
covariance matrices of the samples would be

4u1 = 1
1− a2b2

(
1+ a2 a(1+ b2)

a(1+ b2) 1+ b2

)

4u2 = 1
1− a2b2

(
1+ a2 b(1+ a2)

b(1+ a2) 1+ b2

)
,

and so only if a=b (or the degenerate case of ab=1) are these the same. Of
course, at the point of convergence of learning, since equations 3.2 and 3.3
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are the same, the order ceases to matter. Also, one could artificially force
the connections to be symmetric by averaging the weight changes in both
directions.

Provided the update order is consistent (or consistently random) this
might not matter. Worse is the possibility that the iteration in equation 3.3 is
divergent. This arises from the fact that making the individual conditional
probabilities closer to being correct does not have a provable relationship to
making correct the stationary distribution defined by the full Markov chain
Monte Carlo method. For the simple example above, if ab > 1, then the
magnitudes of y1 and y2 will get ever larger and the iteration will not lead
to a well-defined terminal distribution. This never happened in empirical
investigations and is in any case avoided in nonlinear cases with saturation
such as stochastic binary units.

We have therefore defined two ways of allowing for a full generative
covariance matrix for gaussian factor analysis, at the expense of having to
use a Markov chain Monte Carlo technique to generate samples. One of
the methods is based on the gaussian BM. The positive phase of the BM is
in any case easy, since there are no hidden units. The negative phase was
made redundant by virtue of the exact partition function and the natural
gradient trick of Amari (1998). The other method, which we call the Direct
method, abandoned the energy function of the BM and instead set out to
learn a sampler directly. This has some attractive features, although one
cannot rule out a priori the possibility that at some intermediate point of
learning, the resulting sampler may not work.

3.3 The Recognition Model. Exactly the same architecture and learning
as the Direct method can be used to learn the recognition model instead of
the generative model. In this case, samples x◦ and y◦ are drawn from the
generative model during the sleep phase of the HM. There are feedforward
recognition weights R from x to y, lateral weights V and variances θ2

i = eβi

within the y layer, and a gaussian sampling distribution:

P[yi|yı̄, x] ∼ N
[RTx

]
i
+
∑
j6=i

Vijyj, θ
2
i

 . (3.4)

The weights can be learned using exactly the delta rule that is used for
wake-sleep:

1Rki ∝ 1
θ2

i

(
y◦i −

[
RTx◦

]
i
−∑j6=i Vijy◦j

)
x◦k, (3.5)

1Vik ∝ 1
θ2

i

(
y◦i −

[
RTx◦

]
i
−∑j6=i Vijy◦j

)
y◦k, (3.6)

1βi ∝ 1
θ2

i

((
y◦i −

[
RTx◦

]
i
−∑j6=i Vijy◦j

)2 − θ2
i

)
. (3.7)
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This again involves no sampling during learning and nothing like the neg-
ative phase of the BM.

However, there is an alternative way of implementing the recognition
model that fits better with a putative mapping onto cortex in a hierarchi-
cal case. This uses the lateral weights that define the generative model to
help implement the recognition model too, making recognition statistically
correct and obviating the use of two sets of lateral weights—one for the
generative model, one for the recognition model. We derive this scheme in
the factor analysis case in equations 2.1, 2.2, and 2.3. The distribution of yi
given x and yı̄ is

P[yi|x,yı̄] ∼ 1
Zi

e−
1
2 ((x−GTy)T9−1(x−GTy)+yT8−1y),

where Zi is a normalization constant. The term inside the exponential is a
quadratic form in yi (as it must be, since yi has a gaussian distribution), and,
writing λy

i =
[
G9−1G

]
ii , µ

y
i = 8−1

ii , we can complete the square to give:

P[yi|x,yı̄] ∼ N
[

1

µ
y
i + λy

i−∑
j6=i

8−1
ij yj+

[
G9−1(x−GTy)

]
i
+λy

i yi

 , 1

µ
y
i +λy

i

, (3.8)

where the extra λy
i yi in the conditional mean compensates for counting the

y2
i term in

[
G9−1(x−GTy)

]
i. In the context of the Direct method, we have

Vy
ij = −8−1

ij /µ
y
i , and so we can write the mean as

1

µ
y
i + λy

i

µy
i

∑
j6=i

Vy
ijyj +

[
G9−1(x−GTy)

]
i
+ λy

i yi

 . (3.9)

The reason to write equations 3.8 and 3.9 is that they allow us to understand
how a sampled recognition model emerges correctly from the generative
model. What remains is to determine how the terms in this expression might
be calculated by simple cortical architectures.

There are two ways to treat the expression in equations 3.8 and 3.9. The
first is to define dynamics within the x layer such that the difference be-
tween the actual activities and the top-down predictions of those activities
(ie 9−1(x−GTy)) is propagated bottom up. Rao and Ballard (1997) use this
effect to model various properties of cortical representations and suggest
how the required bottom-up weights GT could be learned. It is then nec-
essary to learn λy

i , which is used as a weighting factor that determines the
relative influence of top-down and bottom-up connections during the phase
of recognition sampling.
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The second way to treat equations 3.8 and 3.9 is exactly as in equations 3.5,
3.6, and 3.7. Here, one would learn a set of weights

[
G9−1GT

]
ij between

units i and j in the y layer, which are in addition to the weights Vy that
define the generative model. One would also use as bottom-up weights from
the x layer essentially the transpose of the generative weights. Hinton and
Ghahramani (1997) suggest a close analog of this for their rectified gaussian
belief nets and suggest exactly how these bottom-up and lateral weights
could be learned. Unless symmetry in the weights is explicitly enforced, the
resulting architecture at any intermediate state of learning must be analyzed
as an example of the Direct method rather than a BM.

The final twist in the model comes if the generative model is truly hier-
archical. If there is a z layer with

P[y|z] ∼ N
[
HTz,8

]
,

then sampling in the generative model uses

P[yi|yı̄, z] ∼ N
[
γ

y
i +

[
HTz

]
i
,

1

µ
y
i

]
,

where

γ
y
i =

∑
j6=i

Vy
ij

[
y−HTz

]
j

is the effective net input to yi from all the other units in the y layer. In the
recognition model, the variance of yi given x,yı̄, z is still 1

µ
y
i +λy

i
, but the mean

is given by

1

µ
y
i + λy

i

µy
i

∑
j6=i

Vy
ij

[
y−HTz

]
j
+
[
G9−1(x−GTy)

]
i
+ λy

i yi

 .
The first term of the mean is essentially the net input γ y

i . The twist is that,
by direct comparison with the mean in equation 3.9, the information sent
from the y-layer to the z-layer is H8−1(y−HTz). If the bottom-up weights
are the transpose of the top-down weights, then once learning is complete,
note that[

8−1(y−HTz)
]

i
= µy

i

(
yi −

[
HTz

]
i
− γ y

i

)
,

which can be calculated naturally from the current state of yi, the top-down
input to yi from the z-layer, and the net input to yi from all the other units
in the y-layer. Of course, in the linear gaussian case, the hierarchical model
does not have greater representational power than a model with a single
hidden layer. This is not true in nongaussian or nonlinear cases.

Although equations 3.8 and 3.9 suggest how to perform stochastic sam-
pling, both of these ways of handling explaining away have emerged in
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various deterministic mean-field algorithms (Jaakkola, Saul, & Jordan, 1996;
Rao & Ballard, 1997; Olshausen & Field, 1996; Dayan, 1997). In the terms of
this article, Rao and Ballard (1997) suggest finding the representation y for
a particular x by minimizing an expression,

E[y] = 1
2

((
x−GTy

)T
9−1

(
x−GTy

)
+ yT8−1y

)
,

which, up to some constant factors, is exactly the negative log-likelihood
under the factor analysis model. Olshausen and Field (1996) pointed out
that there are two obvious iterative gradient-descent algorithms for doing
this:

ẏ = −8−1y+G9−1x−
(

G9−1GT
)

y, (3.10)

ẏ = −8−1y+G9−1
(

x−GTy
)
. (3.11)

Both iterations use the transpose of the top-down weights as bottom-
up weights. Equation 3.10 uses additional lateral connections− (G9−1GT

)
between the y units; equation 3.11 uses the dynamics in the x layer. Of course,
in this simple gaussian case, it is not necessary to perform either iteration to
find the true mean y. Rather, this can be accomplished in a single bottom-up
step using the weights given in equation 2.5, although integrating bottom-
up and top-down information correctly will require iteration.

These mean-field methods just find the mode of the distribution (which,
because of its gaussian form, is also the mean). However, having the capac-
ity to sample from the correct full distribution, including the covariance,
requires the same information. The only difference is that the influence of yi
itself has to be subtracted out according to a constant factor λi that, crucially,
does not depend on the value of the inputs x. For the gaussian model, the
deterministic and the stochastic models are extremely close. By reducing
the variance of the added noise in equation 3.8 away from its normative
value, one could move smoothly between slower, sampled, but statistically
correct recognition and faster, deterministic, but mean-field recognition.

Note that there is a difference between the correct bottom-up weights in
equation 2.5 which are intended for bottom-up inference in the absence of
information about the activities of the other yı̄, and the bottom-up weights
(G9−1) in the iterative sampling scheme in equation 3.8. The difference
is the shrinkage factor 8−1 + G9−1GT. This arises since, if there is to be
no repeated sampling, the bottom-up weights have to take account of the
prior over y; whereas if there is repeated sampling, then this prior is taken
account of directly. For instance, if 8 = εI for some very small ε, then the
mean value of y given x will also be quite small. If bottom-up weights from
x are used as in equation 2.5, then they will have small magnitudes. If an
iterative scheme is used instead, then this is captured in the multiplication
factor 1/(8−1

ii + λi) for the mean.
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4 The Binary Case

We can also consider the Direct method in the case of the binary stochas-
tic belief net that was the original target of the wake-sleep algorithm and
the Helmholtz machine. In the simple case of Figure 1, this has for equa-
tions 1.1 and 1.2:

P[y;G] =
∏

j

ρ(bj)
yjρ(−bj)

1−yj , (4.1)

P[x|y;G] =
∏

i
ρ
([

GTy
]

i

)xi
ρ
(
−
[
GTy

]
i

)1−xi
, (4.2)

where ρ(a) = 1/(1 + e−a) is the standard sigmoid function, and b are the
biases for the activities of y.

We will consider using lateral connections in the recognition model. In
this case, there is no such convenient representation for the true recognition
distribution as equation 2.4. In the Helmholtz machine, we attempted to
learn a factorial model,

Q[y; x,R] =
∏

j

ρ

([
RTx

]
j

)yj

ρ

(
−
[
RTx

]
j

)1−yj

, (4.3)

even though, in cases such as explaining away, the true distribution of y
given x is not factorial. The effect of this lack of expressive power is made
more severe in the wake-sleep algorithm by the fact that the learning rule
during sleep is based on the “wrong” Kullback-Leibler divergence. Rather
than choosingR to minimize an expression equivalent to

KL[Q[y; x,R],P[y|x;G]] =
∑

y
Q[y; x,R] logQ[y; x,R]/P[y|x;G],

sleep learning minimizes

KL[P[y|x;G],Q[y; x,R]],

and, in the case that it is impossible to get to P[y|x;G] = Q[y; x;R] (the
optimum point for both), minimizing the two different Kullback-Leibler
divergences can lead to two different answers.

In this case, it is again natural to express the dependence between ya and
yb using a binary stochastic BM. Including the biases and the effect of the
input x, the energy function and associated probabilities are:

E[y|x] = −1
2
∑

ij yiWijyj −
∑

i yi
(
bi +

[
RTx

]
i

)
,

P[y|x] = e−E[y|x]/Z[W, x],
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where Wij = Wji and Wii = 0, and Z[W, x] is the partition function, which
is a sum over the 2n possible discrete binary states. In this case,Z[W, x] can
depend on x. For the binary BM, the conditional distributions of yi given yı̄
and x that can be used for Gibbs sampling are:

P
[
yi = 1|yı̄

] = ρ
bi +

[
RTx

]
i
+
∑
j6=i

Wijyj

 .
The trouble for the BM is that there is generally no closed-form expression
for the partition function. This leads directly to the requirement for the
negative phase of learning.

The Direct method has exactly the same form as above. Now, the weights
V directly parameterize the conditional probabilities for sampling,

P
[
yi = 1|yı̄, x

] = ρ
bi +

[
RTx

]
i
+
∑
j6=i

Vijyj

 ,
and learning again uses the delta rule:

1bi ∝
(

y◦i − ρ
(

bi +
[
RTx◦

]
i
+∑j6=i Vijy◦j

))
,

1Rki ∝
(

y◦i − ρ
(

bi +
[
RTx◦

]
i
+∑j6=i Vijy◦j

))
x◦k,

1Vik ∝
(

y◦i − ρ
(

bi +
[
RTx◦

]
i
+∑j6=i Vijy◦j

))
y◦k,

based on samples x◦ and y◦ from the process that truly generates the data.
If this process happened to be a Boltzmann machine, then this method will
learn to invert it exactly. If the generative process was not a BM, then it is not
so clear to what it will converge. Again, making the conditional probabilities
as close as possible (as close as the method can parameterize) to being correct
does not necessarily make the stationary distribution for the overall Markov
chain as close as the method can parameterize.

Unfortunately, because of the nongaussian nature of the probabilities,
it is no longer possible to derive a sampling scheme such as that in equa-
tions 3.8 and 3.9 to combine top-down and bottom-up inference. True Gibbs
sampling in this method requires significantly more complicated calcula-
tions whose neural instantiation is uncertain.

5 Comparisons

The Direct method is more interesting in the case of binary rather than
gaussian units, since we can calculate the partition function for the BM
in closed form in the gaussian case. We performed two experiments: one
studies the two methods in isolation, and the second uses them in the context
of wake-sleep sampling and a hierarchical generative model.
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5.1 Isolated Models. Figure 3 shows results comparing the BM with
the Direct method for learning two sizes of BM. First, random weights (WR)
were drawn from a uniform distribution in [−3, 3], and the resulting BM
used to generate a set of 5000 learning patterns. Then these patterns were
fed to either a BM or the Direct method. The proximity between the resulting
model and the original BM was assessed by measuring the Kullback-Leibler
distance between their distributions, measured as∑

y
P[y;WR] log

P[y;WR]
P[y;V]

,

where P[y;WR] is the exhaustively calculated generative distribution of
the original BM and P[y;V] is the generative distribution of the learned
BM or Direct method models. For the BMs, this latter distribution was cal-
culated explicitly. For the Direct method, this was assessed by calculating
empirically the stationary distribution of the stochastic automaton.

Since the Direct method avoids the negative phase of learning, we com-
pared it with both a BM whose computational demands are equivalent
(BM(1) in the figure) and a more accurate implementation of the BM (BM(64)).
The difference between these two is the number of Gibbs sampling sweeps
across all the units on each negative phase before taking a single learn-
ing sample. BM(1) takes only one sweep, and therefore the statistics of its
learning sample are unlikely to be that close to that of the real underly-
ing Boltzmann distribution. BM(64) takes 64 sweeps. Although its learning
samples are undoubtedly better (confirmed by the fact that it learns faster),
BM(64) pays a substantial computational cost and still absorbs significantly
less information from training examples than the Direct method. It is possi-
ble that the BM results could have been improved given a better annealing
schedule.

5.2 Wake-Sleep Learning. Although these results favor the Direct
method when run in isolation, it remains to be shown that the Direct method
will work when embedded in the full context of wake-sleep. We therefore
tried it on the bars problem that has been extensively used as a test case
for unsupervised learning algorithms. For our version, 6× 6 binary images
contain either horizontal or vertical bars but not both. Figure 4a shows some
examples of the training patterns. The wake-sleep algorithm should infer
that bars are hidden “causes” of correlations in the activity of input units
and should therefore learn to represent new images of bars in their terms. It
should also pick out the further regularity that horizontal and vertical bars
do not co-occur. In earlier work on the bars problem (Hinton et al., 1995) we
used a hierarchical generative model, in which a single unit in the top layer
made the decision between horizontal and vertical bars (see Figure 4c(i)).
However, this can equally well be done using connections between units
within a single hidden layer, as in Figure 4c(ii), in which the units represent-
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Figure 3: BM versus the Direct method. The graphs show the average KL dis-
tance after 5000 learning samples between 100 target distributions over 6 (left)
and 10 (right) units and the stationary distribution of a learned network. The
target distributions were generated from BMs with random weights. ε is the
learning rate in both cases. BM (1) indicates that only one Gibbs sampling up-
date was used in the negative phase of BM learning before a learning sample
was drawn. BM (64) indicates that 64 Gibbs sampling updates were used.

ing all the horizontal bars inhibit the units representing the vertical bars,
and vice versa. We sought to learn such a lateral generative model using
either the BM or the Direct method. We employed 15 hidden units in the y
layer (which is 3 more than necessary). This earlier work had shown that
it is not necessary for good learning to employ lateral connections in the
recognition model, and so we omitted them.

Hinton et al. (1995) arranged for the wake-sleep algorithm to work on a
4 × 4 version of the bars problem by forcing the generative weights from
y to x to be positive and by using a high learning rate. Rather than forc-
ing positivity, we adopted the statistically motivated competitive activation
function of Dayan and Zemel (1995; see also Saund, 1995), which embodies
an effective constraint that the activity of each input unit is caused on each
occasion by at most one of the causes that are present and uses weights that
act like probability odds and are therefore bound to be positive.

Simulations suggest that the main effect of using a high learning rate is to
encourage the network to store in the generative weights of units complete
input patterns, which the wake-sleep algorithm then manipulates. How-
ever, this is an imperfect method of achieving such a result, since it stores
such patterns properly only at the start of learning. Rather than do this,
at random (on average, once every 5000 pattern presentations), we initial-
ized an unused hidden unit with a pattern that the network fails to explain
competently. Hidden units were considered unused if the sum of their gen-
erative weights was less than one-tenth of the maximum value across units.
A pattern was deemed incompetently represented if the cost of coding the
output units was more than four standard deviations away from the mean
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Figure 4: 6× 6 binary bars patterns and network model. (a) Eight random sam-
ples from the training set. (b) Eight random samples drawn from the Direct
method network’s generative model after 100,000 trials. The gaps in the bars
show that the model is not yet quite perfect. (c) Two different architectures: (i) a
standard hierarchical form; (ii) the recurrent form, for use with either the Direct
sampling method or the BM.

across recent other patterns. The algorithm is insensitive to manipulations
in these parameters, although using a longer periodicity slows learning. It
is easy to see that there is a (nonzero) value of the generative bias for the
added unit such that adding the unit is bound to increase the likelihood.
However, it is generally impossible to know how to set this critical value.
Therefore, we set the generative bias arbitrarily to 1.0 and let wake-sleep
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modify it.3 These modifications made wake-sleep work consistently on bars
problems from 4× 4 to the largest we tried, 20× 20, and with either the BM
or the Direct method. Figure 4b shows some samples generated by a Direct
method version of the network. Note that it has captured the regularity that
horizontal and vertical bars do not coexist.

Finally, it would normally be substantially more work per iteration to
learn BM than to learn the Direct method because of the negative phase of
BM learning (note that both phases will happen during the wake phase of
the Helmholtz machine, since the recurrent model is in the generative model
rather than the recognition model). However, we can take advantage of the
fact that the network has only one hidden layer and perform this negative
phase while drawing (the 75) samples during sleep. This would not be
possible for a hierarchical network with more than one hidden layer.

The left of Figure 5 shows an example of the generative weights learned
for the 6 × 6 bars problem using the Direct method with 15 hidden units
(and 75 random unit updates during the sleep phase). The top line shows
the generative biases and the recurrent weights, the lower lines the gen-
erative weights for these units. The units have been reordered according
to what they generate. Clearly 12 of the units have come to represent the
12 horizontal and vertical bars; the remaining units have such low genera-
tive biases that they very rarely turn on. The recurrent weights show that
there is mutual inhibition between the hidden units representing vertical
and horizontal bars, and weak excitation within each group, as one would
expect, although the actual values are not completely uniform. The right of
Figure 5 shows the activities of the hidden units and the input units dur-
ing generative sampling. Although the initial states of the units can include
horizontal and vertical bars, stochastic sampling cleans up the activity so
that only vertical bars are generated. More quantitatively, even just five
sweeps of sampling through the units (i.e., 75 unit updates) reduces cases
in which both horizontal and vertical bars are generated from about 20% to
about 1%.

Since there are 215 possible states of the hidden units, it is computa-
tionally expensive to work out the true generative distribution for the BM
(which would require calculation of the partition function) or the Direct
method (which would require calculation of the equilibrium distribution).
This inability is orthogonal to the capacity of the network to extract the
bars. Therefore, we took advantage of the fact that the recognition model
does not require sampling and merely report running averages of the cost
of coding just the input units. For the optimal model, this would be 0 nats,
since this measure ignores the cost of coding the activities of the hidden
units. Nevertheless, it is a metric of sorts for how having a more faithful

3 Note that this means that the likelihood can decrease rather than increase on the
introduction of the unit.
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bias recurrent

Figure 5: Learned model. (Left) The generative weights learned by the Direct
model for the 6× 6 bars problem where the units have been reordered to reflect
what they generate. The same organization for the hidden units 3 × 5 is used
for all the plots. The recurrent weights show the 15×15 intracortical connection
matrix. The biases and the generative weights are scaled between −8 (black)
and 8 (white), the recurrent weights between−4 and 5. (Right) Sample activities
from the generative model. The top row shows the activity of the hidden units,
the bottom row sample activity of the output units. Hidden units were picked
at random to be updated.) The successive pictures are after 15, 30, 45, 60, and 75
steps.

generative model in the y layer helps learning of the generative model from
y to x.

Figure 6a shows this measure of the performance of the network for var-
ious learning rates for the lateral weights for the Direct method. Figure 6b
summarizes learning curves for the Direct method and the BM, together
with those for the standard architecture for this task (an extra hidden layer
and no connections between units in the y layer), and an incomplete archi-
tecture without the lateral connections or the extra layer. We see that both
the Direct and BM methods work quite well and that there is a definite ad-
vantage in having these weights even for the task of learning the mapping
from y to x. They perform at least as well as the fully hierarchical version of
the machine.

6 Discussion

In this article we have discussed the issue of using lateral interconnections
between units to express dependencies in their activities. A Markov random
field, in the form of either a gaussian or a binary Boltzmann machine, is the
obvious candidate, and we presented two particular examples of this. We
also suggested an alternative sampling model, which takes advantage of the
key property of wake-sleep learning that, during the sleep phase, the states
of all the hidden units in the network are known. This allows the use of the
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Figure 6: Learning curves for the bars problem. Both graphs show on a linear-
log scale average, low-pass filtered costs (in nats) of coding input patterns as a
function of the number of training trials (together with standard errors about
the mean). Averages are over 300 trials. The legends are ordered according to
the intersection with the right y-axis. (a) Four different learning rates (εg) for the
lateral connections using the Direct method. Note the relative insensitivity to the
learning rate. (b) Comparison of learning curves for four different methods. The
architecture labeled “no structure” does not have the representational power to
capture the fact that there are either horizontal or vertical bars. Although this
incapacity need not affect the cost of coding the input units, it evidently makes
learning significantly slower.

simple and local delta rule to learn the conditional distribution of each unit,
given the states of all its peers. The delta rule is exactly the learning rule
that is used in the rest of the wake-sleep algorithm, and its use here obviates
the need for anything like the negative phase of the Boltzmann machine.
Of course, having to perform sampling at all may incur a severe cost (but
see Hinton & Ghahramani, 1997, for arguments against this). We also ob-
served that it is possible to use essentially exactly the same connections for
deterministic mean-field iterations and stochastic sampling.

For the case of factor analysis, we used the models to answer a ques-
tion posed by earlier work (Neal & Dayan, 1997) as to how to represent
arbitrary covariance matrices in a natural way, without requiring the sort
of laddered architecture seen in Figure 2. Here, by using the natural gra-
dient version of Amari (1998), the Direct method and the BM have similar
complexities, since one can avoid the apparent requirement for the BM of
having either a sample-based negative phase of learning or of inverting the
lateral connection matrix.

We also saw how to use lateral weights within a layer to mediate de-
pendencies within the generative model, and a particular form of Gibbs
sampling to mediate dependencies within the recognition model. This form
of Gibbs sampling requires computing the difference between the activities
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of units in a layer and the top-down prediction of those activities based on
the states of units in the layer above.

The gaussian factor analysis model is clearly a poor model for corti-
cal representations, for instance, lacking nonlinearities and requiring activ-
ity levels to be both positive and negative. However, it can be useful as a
metaphor to think about the roles of different aspects of cortical micro- and
macrocircuitry (Rao & Ballard, 1997). One important issue is exploring ways
of allowing both fast bottom-up inference and slower “interactive” infer-
ence that integrates bottom-up and top-down information (Dayan, 1997).
Thorpe, Fize, and Marlot’s (1996) results showing that fairly complex visual
recognition tasks can be accomplished in as little as 150 ms suggests that
there will not always be enough time to do extensive Gibbs sampling to ex-
plore a recognition distribution. Indeed, this is one of the advantages of the
conventional Helmholtz machine with its computationally straightforward
(albeit approximate) bottom-up model. However, in other cases, top-down
influences are key (see Ullman, 1996, for discussion).

In the context of the integrated gaussian model in equations 3.8 and 3.9,
one attractive, though speculative, possibility is that bottom-up connec-
tions to layer IV calculate R∗Tx directly, to give a first, and fast, estimate of
y. Then, if this estimate is incorrect or inadequate, or, maybe, just that there
is enough time, then some form of sampling can be performed using the two
sets of lateral connections. The vertical connections (between layer IV and
other layers) mediate local interactions between cells that account for similar
structure in the input; the horizontal connections between layer II/III cells
in different columns represent longer-range interactions and form part of
the generative model, as hinted at by the results of Burkhalter (1993) on the
similar times of development of the lateral and top-down weights in human
V1. The switching between bottom-up and integrative modes could result
from neuromodulatory effects of acetylcholine or GABA at GABAB receptors
(Hasselmo, 1995; Hasselmo & Cekic; 1996; Hasselmo, personal communi-
cation, 1997), in a way that somewhat parallels the role that Carpenter and
Grossberg (1991) suggest for neuromodulators in altering dynamics in the
“hidden” layer of their adaptive resonant pattern recognizers. In this case,
rather than eliminating a y unit from competition, it would allow a correct
balance to be made between all possible influences on the representation y.

We also developed sampling methods for a stochastic binary model. In
this case, there is no easy shortcut for the BM, since there is no getting
around the negative phase of learning. The Direct method will still work
(in fact, this case is theoretically preferable for the Direct method, since
there is no possibility of divergence) and can still perfectly recover certain
distributions, including ones created by a BM. A laddered architecture can
do very well too, but at the cost of asymmetry. It is not possible to specify
such a simple recognition architecture to perform correct Gibbs sampling
in a general binary model using just lateral connections whose values are
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determined by the generative model, since one cannot correctly account
for explaining away by subtracting the predicted state of an input from the
actual binary state of that input. It is not clear if the lateral connections really
parameterize a recognition model or if, as in the gaussian case, they can be
used as part of both the generative and recognition processes.
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