
NOTE Communicated by Andrew Barto and Michael Jordan

Using Expectation-Maximization for Reinforcement Learning

Peter Dayan
Department of Brain and Cognitive Sciences, Center for Biological and Computational
Learning, Massachusetts Institute of Technology, Cambridge, MA 02139 USA

Geoffrey E. Hinton
Department of Computer Science, University of Toronto, Toronto M5S 1A4, Canada

We discuss Hinton’s (1989) relative payoff procedure (RPP), a static rein-
forcement learning algorithm whose foundation is not stochastic gradient
ascent. We show circumstances under which applying the RPP is guaran-
teed to increase the mean return, even though it can make large changes
in the values of the parameters. The proof is based on a mapping be-
tween the RPP and a form of the expectation-maximization procedure of
Dempster, Laird, and Rubin (1977).

1 Introduction

Consider a stochastic learning automaton (e.g., Narendra & Thatachar 1989)
whose actions y are drawn from a set Y . This could, for instance, be the set
of 2n choices over n separate binary decisions. If the automaton maintains
a probability distribution p(y|θ) over these possible actions, where θ is a
set of parameters, then its task is to learn values of the parameters θ that
maximize the expected payoff:

ρ(θ) = 〈E[r | y]〉p(y|θ) =
∑
Y

p(y | θ)E[r | y]. (1.1)

Here, E[r|y] is the expected reward for performing action y.
Apart from random search, simulated annealing, and genetic algorithms,

almost all the methods with which we are familiar for attempting to choose
appropriate θ in such domains are local in the sense that they make small
steps, usually in a direction that bears some relation to the gradient. Ex-
amples include the Keifer-Wolfowitz procedure (Wasan 1969), the ARP algo-
rithm (Barto & Anandan 1985), and the REINFORCE framework (Williams
1992). There are two reasons to make small steps. One is that there is a
noisy estimation problem. Typically the automaton will emit single actions
y1, y2, . . . according to p(y|θ), will receive single samples of the reward from
the distributions p(r|ym), and will have to average the gradient over these
noisy values. The other reason is that θ might have a complicated effect on
which actions are chosen, or the relationship between actions and rewards

Neural Computation 9, 271–278 (1997) c© 1997 Massachusetts Institute of Technology

272 Peter Dayan and Geoffrey E. Hinton

might be obscure. For instance, ifY is the set of 2n choices over n separate bi-
nary actions a1, . . . , an, and θ = {p1, . . . , pn} is the collection of probabilities
of choosing ai = 1, so

p(y = {a1..an} | θ) =
n∏

i=1

pai
i (1 − pi)

1−ai , (1.2)

then the average reward ρ(θ) depends in a complicated manner on the
collection of pi. Gradient ascent in θ would seem the only option because
taking large steps might lead to decreases in the average reward.

The sampling problem is indeed present, and we will evade it by as-
suming a large batch size. However, we show that in circumstances such as
the n binary action task, it is possible to make large, well-founded changes
to the parameters without explicitly estimating the curvature of the space
of expected payoffs, by a mapping onto a maximum likelihood probabil-
ity density estimation problem. In effect, we maximize reward by solving
a sequence of probability matching problems, where θ is chosen at each
step to match as best it can a fictitious distribution determined by the aver-
age rewards experienced on the previous step. Although there can be large
changes in θ from one step to the next, we are guaranteed that the average
reward is monotonically increasing. The guarantee comes for exactly the
same reason as in the expectation-maximization (EM) algorithm (Baum et
al. 1970; Dempster et al. 1977) and, as with EM, there can be local optima.
The relative payoff procedure (RPP) (Hinton 1989) is a particular reinforce-
ment learning algorithm for the n binary action task with positive r, which
makes large moves in the pi. Our proof demonstrates that the RPP is well
founded.

2 Theory

The RPP operates to improve the parameters p1, . . . , pn of equation 1.2 in a
synchronous manner based on substantial sampling. It suggests updating
the probability of choosing ai = 1 to

p′
i = 〈aiE[r | y]〉p(y|θ)

〈E[r | y]〉p(y|θ)

, (2.1)

which is the ratio of the mean reward that accrues when ai = 1 to the net
mean reward. If all the rewards r are positive, then 0 ≤ p′

i ≤ 1. This note
proves that when using the RPP, the expected reinforcement increases; that
is,

〈E[r | y]〉p(y|θ ′) ≥ 〈E[r | y]〉p(y|θ) where θ ′ = {p′
1, . . . , p′

n}.

Using EM for Reinforcement Learning 273

The proof rests on the following observation: Given a current value of θ ,
if one could arrange that

αE[r | y] = p(y | θ ′)
p(y | θ)

(2.2)

for some α, then θ ′ would lead to higher average returns than θ . We prove
this formally below, but the intuition is that if

E[r | y1] > E[r | y2] then
p(y1 | θ ′)
p(y2 | θ ′)

>
p(y1 | θ)

p(y2 | θ)

so θ ′ will put more weight on y1 than θ does. We therefore pick θ ′ so that
p(y|θ ′) matches the distribution αE[r|y]p(y|θ) as much as possible (using a
Kullback-Leibler penalty). Note that this target distribution moves with θ .
Matching just βE[r|y], something that animals can be observed to do under
some circumstances (Gallistel 1990), does not result in maximizing average
rewards (Sabes & Jordan 1995).

If the rewards r are stochastic, then our method (and the RPP) does not
eliminate the need for repeated sampling to work out the mean return.
We assume knowledge of E[r|y]. Defining the distribution in equation 2.2
correctly requires E[r|y] > 0. Since maximizing ρ(θ) and ρ(θ) + ω has the
same consequences for θ , we can add arbitrary constants to the rewards so
that they are all positive. However, this can affect the rate of convergence.

We now show how an improvement in the expected reinforcement can
be guaranteed:

log
ρ(θ ′)
ρ(θ)

= log
∑
y∈Y

p(y | θ ′)
E[r | y]
ρ(θ)

= log
∑
y∈Y

[
p(y | θ)E[r | y]

ρ(θ)

]
p(y | θ ′)
p(y | θ)

(2.3)

≥
∑
y∈Y

[
p(y | θ)E[r | y]

ρ(θ)

]
log

p(y | θ ′)
p(y | θ)

, by Jensen’s inequality

= 1
ρ(θ)

[
Q(θ, θ ′) − Q(θ, θ)

]
. (2.4)

where

Q(θ, θ ′) =
∑
y∈Y

p(y | θ)E[r | y] log p(y | θ ′),

so if Q(θ, θ ′) ≥ Q(θ, θ), then ρ(θ ′) ≥ ρ(θ). The normalization step in equa-
tion 2.3 creates the matching distribution from equation 2.2. Given θ , if θ ′ is
chosen to maximize Q(θ, θ ′), then we are guaranteed that Q(θ, θ ′) ≥ Q(θ, θ)

and therefore that the average reward is nondecreasing.

274 Peter Dayan and Geoffrey E. Hinton

In the RPP, the new probability p′
i for choosing ai = 1 is given by

p′
i = 〈aiE[r | y]〉p(y|θ)

〈E[r | y]〉p(y|θ)

, (2.5)

so it is the fraction of the average reward that arrives when ai = 1. Using
equation 1.2,

∂Q(θ, θ ′)
∂p′

i
= 1

p′
i(1 − p′

i)

×
 ∑

y∈Y :ai=1

p(y | θ)E[r | y] − p′
i

∑
y∈Y

p(y | θ)E[r | y]

 .

So, if

p′
i =

∑
y∈Y :ai=1 p(y | θ)E[r | y]∑

y∈Y p(y | θ)E[r | y]
, then

∂Q(θ, θ ′)
∂p′

i
= 0 ,

and it is readily seen that Q(θ, θ ′) is maximized. But this condition is just
that of equation 2.5. Therefore the RPP is monotonic in the average return.

Figure 1 shows the consequence of employing the RPP. Figure 1a shows
the case in which n = 2; the two lines and associated points show how
p1 and p2 change on successive steps using the RPP. The terminal value
p1 = p2 = 0, reached by the left-hand line, is a local optimum. Note that the
RPP always changes the parameters in the direction of the gradient of the
expected amount of reinforcement (this is generally true) but by a variable
amount.

Figure 1b compares the RPP with (a deterministic version of) Williams’s
(1992) stochastic gradient ascent REINFORCE algorithm for a case with
n = 12 and rewards E[r|y] drawn from an exponential distribution. The
RPP and REINFORCE were started at the same point; the graph shows the
difference between the maximum possible reward and the expected reward
after given numbers of iterations. To make a fair comparison between the
two algorithms, we chose n small enough that the exact averages in equa-
tion 2.1 and (for REINFORCE) the exact gradients,

p′
i = α

∂

∂pi
〈E[r | y]〉p(y|θ),

could be calculated. Figure 1b shows the (consequently smooth) course of
learning for various values of the learning rate. We observe that for both
algorithms, the expected return never decreases (as guaranteed for the RPP
but not REINFORCE), that the course of learning is not completely smooth—
with a large plateau in the middle—and that both algorithms get stuck in

Using EM for Reinforcement Learning 275

local minima. This is a best case for the RPP: only for a small learning rate
and consequently slow learning does REINFORCE not get stuck in a worse
local minimum. In other cases, there are values of α for which REINFORCE
beats the RPP. However, there are no free parameters in the RPP, and it
performs well across a variety of such problems.

3 Discussion

The analogy to EM can be made quite precise. EM is a maximum likelihood
method for probability density estimation for a collection X of observed
data where underlying point x ∈ X there can be a hidden variable y ∈ Y .
The density has the form

p(x | θ) =
∑
y∈Y

p(y | θ)p(x | y, θ),

and we seek to choose θ to maximize∑
x∈X

log
[
p(x | θ)

]
.

The E phase of EM calculates the posterior responsibilities p(y|x, θ) for
each y ∈ Y for each x:

p(y | x, θ) = p(y | θ)p(x | y, θ)∑
z∈Y p(z | θ)p(x | z, θ)

.

In our case, there is no x, but the equivalent of this posterior distribution,
which comes from equation 2.2, is

Py(θ) ≡ p(y | θ)E[r | y]∑
z∈Y p(z | θ)r(z)

.

The M phase of EM chooses parameters θ ′ in the light of this posterior
distribution to maximize∑

x∈X

∑
y∈Y

p(y | x, θ) log[p(x, y | θ ′)] .

In our case this is exactly equivalent to minimizing the Kullback-Leibler
divergence

KL[Py(θ), p(y | θ ′)] = −
∑
y∈Y
Py(θ) log

[
p(y | θ ′)
Py(θ)

]
.

Up to some terms that do not affect θ ′, this is −Q(θ, θ ′). The Kullback-Leibler
divergence between two distributions is a measure of the distance between
them, and therefore minimizing it is a form of probability matching.

276 Peter Dayan and Geoffrey E. Hinton

Figure 1: Performance of the RPP. (a) Adaptation of p1 and p2 using the RPP
from two different start points on the given ρ(p1, p2). The points are successive
values; the lines are joined for graphical convenience. (b) Comparison of the
RPP with Williams’s (1992) REINFORCE for a particular problem with n = 12.
See text for comment and details.

Using EM for Reinforcement Learning 277

Our result is weak: the requirement for sampling from the distribution
is rather restrictive, and we have not proved anything about the actual
rate of convergence. The algorithm performs best (Sutton, personal com-
munication) if the differences between the rewards are of the same order of
magnitude as the rewards themselves (as a result of the normalization in
equation 2.3). It uses multiplicative comparison rather than the subtractive
comparison of Sutton (1984), Williams (1992), and Dayan (1990).

The link to the EM algorithm suggests that there may be reinforcement
learning algorithms other than the RPP that make large changes to the val-
ues of the parameters for which similar guarantees about nondecreasing
average rewards can be given. The most interesting extension would be
to dynamic programming (Bellman 1957), where techniques for choosing
(single-component) actions to optimize return in sequential decision tasks
include two algorithms that make large changes on each step: value and
policy iteration (Howard 1960). As various people have noted, the latter ex-
plicitly involves both estimation (of the value of a policy) and maximization
(choosing a new policy in the light of the value of each state under the old
one), although its theory is not at all described in terms of density modeling.

Acknowledgments

Support came from the Natural Sciences and Engineering Research Coun-
cil and the Canadian Institute for Advanced Research (CIAR). GEH is the
Nesbitt-Burns Fellow of the CIAR. We are grateful to Philip Sabes and Mike
Jordan for the spur and to Mike Jordan and the referees for comments on
an earlier version of this paper.

References

Barto, A. G., & Anandan, P. (1985). Pattern recognizing stochastic learning au-
tomata. IEEE Transactions on Systems, Man and Cybernetics, 15, 360–374.

Baum, L. E., Petrie, E., Soules, G., & Weiss, N. (1970). A maximization tech-
nique occurring in the statistical analysis of probabilistic functions of Markov
chains. Ann. Math. Stat., 41, 164–171.

Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Princeton University
Press.

Dayan, P. (1990). Reinforcement comparison. In Proceedings of the 1990 Connec-
tionist Models Summer School, D. S. Touretzky, J. L. Elman, T. J. Sejnowski, &
G. E. Hinton (Eds.), (pp. 45–51). San Mateo, CA: Morgan Kaufmann.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Proceedings of the Royal Statistical So-
ciety, 1–38.

Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.
Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence, 40,

185–234.

278 Peter Dayan and Geoffrey E. Hinton

Howard, R. A. (1960). Dynamic programming and Markov processes. Cambridge,
MA: MIT Press.

Narendra, K. S., & Thatachar, M. A. L. (1989). Learning automata: An introduction.
Englewood Cliffs, NJ: Prentice-Hall.

Sabes, P. N., & Jordan, M. I. (1995). Reinforcement learning by probability match-
ing. Advances in Neural Information Processing Systems, 8. Cambridge, MA: MIT
Press.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. Unpub-
lished doctoral dissertation, University of Massachusetts, Amherst.

Wasan, M. T. (1969). Stochastic approximation. Cambridge University Press, Cam-
bridge.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8, 229–256.

Received October 2, 1995; accepted May 30, 1996.

