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Optimal decisions for contrast discrimination
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Contrast discrimination functions for simple gratings famously look like a dipper. Discrimination thresholds are lower than
detection thresholds for moderate pedestal contrasts, and the rate of growth of thresholds as the pedestal contrast gets
larger typically lies between the values implied by two popular treatments of noise. Here, we suggest a new normative
treatment of the dipper, showing how it emerges from Bayesian inference based on the responses of a population of
orientation-tuned units. Our central assumption concerns the noise corrupting the outputs of these units as a function of the
contrast: We suggest that it has the shape of a hinge. We show the match to the psychophysical data and discuss the
neurobiological and statistical rationales for this form of noise. Finally, we relate our model to other major accounts of

contrast discrimination.
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Introduction

Human behavior can often be understood as optimal
inference about the state of the world given noisy data.
Tasks as varied as motor control (Faisal & Wolpert, 2009;
Kording & Wolpert, 2004), animal learning (Courville,
Daw, & Touretzky, 2006; Daw, Courville, & Dayan,
2008), semantic memory (Shiffrin & Steyvers, 1997;
Steyvers, Griffiths, & Dennis, 2006), and categorization
(Anderson, 1991; Heller, Sanborn, & Chater, 2009; Kemp,
Perfors, & Tenenbaum, 2007) have all been successfully
modeled in these terms. Vision has been a particular
poster child for the approach, with a venerable and
influential history of ideal observer (de Vries, 1943;
Green & Swets, 1966; Peterson, Birdsall, & Fox, 1954;
Rose, 1942) and sequential ideal observer (Geisler, 1989)
analyses. As with other applications of Bayesian methods,
optimal inference lays assumptions bare and, in its
failures, suggests approximations. However, optimal
inference has been used only somewhat sparingly in
contrast discrimination (Chirimuuta & Tolhurst, 2005);
this is our focus.

In a standard two-alternative forced-choice (2AFC)
contrast discrimination experiment, participants are pre-
sented with two successive stimuli (A and B) that differ
only in contrast. They are then asked to declare whether
the first or second stimulus had higher contrast. We will
treat the lower contrast stimulus as defining a pedestal
contrast; the experiments indicate how much contrast
needs to be added to this pedestal for the resulting
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stimulus to be detected with suitable reliability; this is
the threshold contrast increment. The crosses in Figure 1A
shows a sample graph relating pedestal contrast to
threshold (Foley, 1994). This is non-monotonic, having
the shape of a dipper or ladle (Solomon, 2009).

Performance can be separated into two distinct regimes:
one each for discrimination about low- and high-contrast
pedestals. In the former, the key phenomenon is that
the increment thresholds needed for discrimination can
be lower than the detection threshold (Campbell &
Kulikowski, 1966; Nachmias & Sansbury, 1974); this puts
the “dip” in the dipper. Conversely, for high-contrast
discrimination, the threshold increments needed to reach
threshold rise very regularly, as a power function of
contrast with an exponent somewhere between 0.5 and 1
(Barlow, 1957; Campbell & Kulikowski, 1966; Legge,
1981; Nachmias & Sansbury, 1974). On a log—log plot of
threshold increment against pedestal contrast, these
“handles” of the dipper function form a straight line with
slope equal to the exponent. In Figure 1A, for thresholds
when the pedestal contrast was high, the slope of the data
points lies between 0.5 and 1.

The mechanisms that have been proposed to explain
human contrast discrimination performance have largely
been aimed at either the low- or the high-contrast regimes.
To explain the dips in the contrast discrimination function
at low contrast, mechanisms including threshold models
(Crozier, 1950; Foley & Legge, 1981; Green & Swets,
1966), an expansive transducer followed by additive noise
(Legge & Foley, 1980; Nachmias & Sansbury, 1974), and
intrinsic uncertainty about stimuli at low contrast (Pelli,
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Figure 1. Contrast discrimination data and predictions. (A) Contrast discrimination data of Observer JYS in Experiment 2 of Foley (1994).
Error bars are plus or minus one standard error of the mean. The dotted line extends the detection threshold for comparison. The dot-
dashed line and dashed lines show handle slopes of 1/2 and 1, respectively. The solid line shows the prediction made by the hinge noise
model. (B) Predictions of the hinge noise model for different percent correct thresholds.

1985; Tanner, 1961) have been proposed. These mecha-
nisms can individually produce dips, but none also
produces the increasing handle seen in human data.
Instead, the handle has been explained as the result of
noise that increases more quickly because of a compres-
sive non-linearity followed by additive noise (e.g., Legge
& Foley, 1980), a comparison between stimuli based on
variance alone (Laming, 1986), or correlations in a
particular kind of neural noise (Triesman, 1964).

In this paper, we propose an explanation (which results
in the solid line in Figure 1A) for both the dip and the
handle of the contrast discrimination function. It also
reproduces other empirical contrast discrimination results,
including deeper dips for lower percent correct thresholds
and steeper slopes for detection compared to high-contrast
discrimination (as shown in Figure 1B). Our account is
based on a population of units that are tuned to the
stimulus parameters, a linear transducer, increasing noise,
and optimal decision making. First, we introduce the
population model, which we term the hinge noise model,
justify its components, and show its close match with the
discrimination data. Next, we discuss the computational
basis of the model, using the Cramér—Rao lower bound for
intuition. Finally, we relate our account to mechanisms
that have previously been proposed.

A new approach to modeling

contrast discrimination

The first key component is a population of units tuned
to the oriented gratings that serve as input to the system.
Populations of units have been used in many models of
visual processing and contrast discrimination (Goris,
Wichmann, & Henning, 2009; Itti, Koch, & Braun,

2000), and we make standard assumptions about how
they are activated. We assume that each unit has a
preferred orientation but responds to suboptimal target
orientations according to a squared exponential function
of the angular difference between preferred and target
orientations. Its response also depends on the contrast of
the target stimulus.

In total, we model the response r; of neuron i, given an
input grating at angle 6 and contrast ¢ as being Gaussian
distributed (e.g., Goris et al., 2009; Itti et al., 2000;
Kontsevich, Chen, & Tyler, 2002):

rilc, 0 ~N<7,-, 2 <7,->>, where 7; = cf;(0)

—(0 -0

with f;(0) = exp — e

(1)

Here, 0; is the preferred orientation of the unit. 7* is the
signal-dependent variance of the response, which we
describe in detail below. ¢ = 15° is the tuning width,
chosen based on the mean empirical values in cat visual
cortex for both simple and complex cells (Li, Peterson, &
Freeman, 2003), and also close to values used before in
fitting human contrast discrimination performance (Itti
et al., 2000). In all the simulations we report, we used a
population of 36 equally spaced filters across the possible
180 degrees of orientation (for symmetric stimuli), with
one unit directly centered on the stimulus orientation. We
also make the approximation of allowing the activities r;
to be negative; this is a simplification away from a non-
zero baseline.

The fact that the mean of r; scales linearly with the
contrast is equivalent to using a linear (in fact, an identity)
transducer. Figure 2A cartoons the mean of responses r;
for various contrasts. Our model abstracts away some of
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Figure 2. Population elements. (A) Mean response of units to a 90° grating with separate lines for each of a selection of contrasts. The
population response scales linearly with contrast and has squared exponential orientation tuning. (B) Hinge noise. This shows the
variance of the response as a function of mean response. To make it suitably smooth, we use the functional form 2(F;) = a + ylog(8 + e'i/7)
with y = 0.0015 being very small. The other parameters, used for all simulations, are @ = —0.009 and = 341.5.

the detail of the neural architecture, and so we cannot
specify the precise mapping to individual cell types and
regions. However, we note that cells in the visual cortex
are linear in the middle of their range (Albrecht &
Hamilton, 1982) and the responses of neurons very early
in the visual pathway are often rather linear functions of
contrast, especially for lower contrasts (Derrington &
Lennie, 1984; Kaplan & Shapley, 1986), though these
cells are not tuned to orientation.

The variance of the response depends on the mean. As
shown in the solid lines in Figure 2B, we assume that this
takes the form of a (soft) hinge function. For high-contrast
values, the variance is nearly equal to the mean and so is
consistent with the typical finding that the variability in
neural firing rates is roughly a constant multiple of the
mean. However, for zero contrast, we assume there to be
an irreducible level of noise (allowing, for convenience,
the activities to be negative). These dependencies collec-
tively define the hinge function shown in the figure. Note
that our model does not make the additional assumption
that the irreducible and contrast-dependent noise are
separate additive components (cf. Lu & Dosher, 1998).

As in sequential ideal observer analysis (Geisler, 1989),
we consider the consequence of making optimal 2AFC
decisions based on these noisy activations. This procedure
makes the implicit assumption, which is credible for
contrast discrimination experiments, that all stimulus and
unit tuning properties other than the contrast are known,
including the presented orientation, the preferred orienta-
tion and tuning width of each unit, the nature and slope of
the linear transducer, and the function that relates the
variance to the mean.

In this ideal observer context, the form of the noise has
two critical effects. First, even if there was only a single
unit, it would not necessarily be optimal to declare the
2AFC interval with the greater response as having the
greater contrast. Although this decision rule is frequently
a default assumption (Foley & Legge, 1981; Legge &
Foley, 1980), it is well known that two thresholds are

typically required to separate signal from noise when the
distributions concerned have different variances (Green &
Swets, 1966, p. 63). Second, though perhaps less
intuitively, the noise itself conveys information about the
contrast, from which the ideal observer can benefit (Dayan
& Abbott, 2001; Shamir & Sompolinsky, 2004; Snippe &
Koenderink, 1992; Yoon & Sompolinsky, 1999).

The decision made by the model is a combination of the
likelihoods of different contrasts, pa[ralc] and pg[rglc],
which are determined by the identity transducer and
variance functions we assumed above, and the prior
information about which contrasts are likely to appear.
Different methods of collecting thresholds imply different
prior distributions over the target and pedestal contrasts;
we consider three canonical cases.

First, a task in which the pedestal and target contrasts are
fixed over a block would, in the limit, imply a prior that
only these two contrasts would be displayed (Both Known).
Here, the best guess is to evaluate the sampled responses as
coming from the target contrast, ct, and pedestal contrast,
cp, choosing A as the target if pa[raler]lpslrslep] >
palraleplpglrsler].’ Second, a threshold obtained by a
staircase on the contrast increment, such as used in
Foley’s (1994) data that we fit in Figure 1, implies that
the pedestal contrast would be well known, but the target
contrast could be a range of values (Pedestal Known). We
captured this case by using a prior distribution in which the
pedestal was known and the target contrast was equally
likely to be any larger contrast for this task. In this case,
interval A is chosen if pa[raler] CIT: decppB[rBIcP] >
pelrsler] fc ichdcpp alralep]. Finally, if target and pedestal
are chosen randomly on each trial, this might imply a
uniform prior distribution over both pedestal and target
contrasts with the assumption that the target contrast is
higher (Neither Known). In this case, interval A is chosen

. 1 C

if fCAZOchpA[rAch]fC:ZOdCBpB[rgch] > 05, where CA
and cp are the possible contrasts of interval A and interval
B, respectively. In various limits, the full Bayesian
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Figure 3. Contrast discrimination threshold predictions using
different priors for the hinge noise model. The Both Known prior
has exact knowledge of both the pedestal and target contrasts.
The Pedestal Known prior has exact knowledge of the pedestal
contrast and assumes that the target contrast could be any
contrast value above that. The Neither Known prior puts a uniform
distribution over the pedestal contrast and assumes that the target
contrast is equally likely to be any greater value up to the
maximum contrast.

treatment with this prior distribution will give the same
answer as maximum likelihood inference (Gelman, Carlin,
Stern, & Rubin, 2004; Jaynes, 2003).

As shown in Figure 3, we found that using any of the
three prior distributions over contrast made remarkably
little difference in the thresholds predicted from the hinge
noise model.> The reason that the prior only has a slight
influence on the threshold is analogous to being told only
the final score in a match between two teams: It is often
not much help in guessing which team was the winner.
This prediction corresponds to empirical results in contrast
detection and discrimination, in which prior knowledge of
contrast has surprisingly little effect. In forced-choice
detection, Davis, Kramer, and Graham (1983) found no
difference between blocks with a single contrast (Both
Known) and blocks with multiple target contrasts (Pedes-
tal Known). Huang and Dobkins (2005) used a staircase
procedure to determine contrast discrimination thresholds
and found little difference between blocks in which a
single pedestal contrast was used (Pedestal Known) and
blocks in which pedestal contrasts were mixed (Neither
Known).

The solid line in Figure 1A shows the result of fitting
this hinge noise model to the data and constitutes the main
result of this paper. It is apparent that the hinge noise
model fits both the dip and the handle of the dipper. As for
other population models motivated by the characteristics
of the first stages of orientation processing in the cortex
(Goris et al., 2009; Itti et al., 2000), this fit is based on
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more parameters than some more abstract models. How-
ever, as we see below, the constraints of optimal inference
render our model quite inflexible, making this a significant
finding.

In the following sections, we use simplifying analyses
to provide some intuition as to how this model produces
the dip and the handle and explain why this model is not
equivalent to previous, mechanistic, suggestions.

The Cramér—-Rao lower bound

A key tool for analyzing population codes is the
Cramér—Rao (CR) lower bound (Oram, Foldiak, Perrett,
& Sengpiel, 1998; Seung & Sompolinsky, 1993; van den
Bos, 2007). This starts from the density function p[ric]
that relates contrast to population response r (we omit
parameters other than contrast, since these are known) and
considers estimators ¢(r) of the contrast given a sample of
r. The bound limits the minimum variance G%(C) of any
unbiased such estimators (i.e., having mean c) to

1
2

O; (C) z FI(C) ) (2)
where FI is the Fisher information, which is a character-
istic of the population response r and not the estimator,
and is given in Appendix A. The variance of the estimator
is important because it helps to determine discrimination
performance. For instance, for an unbiased estimator with
Gaussian statistics with nearly equal variances, the
probability of getting the contrast discrimination correct
when c¢;, is the pedestal contrast and ¢, is the target contrast
would be approximately

Pc=a' S , (3)

o2(c) + 0% (cp)

where @' is the inverse of the standard cumulative
Normal distribution. This would then determine the
threshold contrast increment shown in Figure 1.

The discrimination bound in Equation 3 is, in some
cases, a good quantitative predictor of model performance
but, in other cases, can only be used as a heuristic guide.
The bound is only a heuristic guide when the prior on the
contrasts is flat over the region of the likelihoods, but
given the results of Figure 3 it can still be an accurate
guide. For the low-contrast case that we will explore first,
the bound is suggestive but less accurate. There are two
reasons for this: the bias in the estimator and the non-
Gaussian nature of the distribution of maximum like-
lihood estimates. The first problem concerns how the
derivative of the bias of the estimator b’ (c¢) affects the CR
lower bound, since bias acts in the same way as non-linear
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transduction. Seriés, Stocker, and Simoncelli (2009) show
that the resulting change in the variability of the estimator
is exactly matched by a change in its systematic output,
thus leaving thresholds unaffected. This only holds when
the slope of the bias is relatively constant; for the case
with low contrast, this slope changes significantly.

In the high-contrast case, the bound does provide a good
quantitative prediction of our simulations. Here, oZ(c)
either accurately reflects the variance of the Bayesian
estimator or can be used to calculate the thresholds. In
those cases, with a flat prior on ¢ (ignoring limits on the
contrast), the posterior distribution is approximately
Gaussian, with mean and median being the maximum
likelihood value of c:

cmL(r) = argmax {p[r|c]}, (4)

which is asymptotically unbiased and saturates the CR
lower bound. The regime in which this is true broadly
requires there to be sufficient activation in the population.
This is typically true in our case again for all but the
lowest contrasts. In all cases, we show the results of
substantial, realized, stochastic simulations, as in Figure 1,
to back up claims made on the basis of the CR bound.

Contrast discrimination at low contrasts

The presence of the “dip” in the contrast discrimination
function shows that the contrast needed to discriminate
between a blank interval and a target can be more than the
contrast needed to discriminate between two stimuli both
of which have non-zero contrast (Campbell & Kulikowski,
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1966; Nachmias & Sansbury, 1974). This may be a
surprising result in the face of growing noise: Indeed in
standard models, the combination of a linear transducer,
increasing noise, and perfect knowledge of all stimulus
parameters aside from contrast has not been shown to
produce dips. However, optimal decision making with
hinge noise does produce a dip. To motivate this result, we
examine the form of the Cramér—Rao bound for Gaussian
noise in a single unit. We can solve for the bound on the
standard deviation of the maximum likelihood estimator
when the variance is a function of contrast:

(i)
GML(C) > T—z, (5)
1+ 2[dj,<gf>]

where 7(7;) is the hinge noise at a particular mean
response and % is the derivative of the hinge noise at
that mean response with respect to contrast. The denom-
inator in this expression can be shown to arise from the
information about ¢ that is present in signal-dependent
noise (Abbott & Dayan, 1999).

For purely additive noise, digg"> = 0. Thus, the CR lower
bound would depend only on the absolute level of the
noise. Hence, from Equation 3, so would the threshold.
However, the growth in 7(7;) with 7; specified by hinge
noise has two opposite effects: The rising standard
deviation will increase the bound and push the threshold
upward, but an increasing slope will decrease the bound
and push the threshold downward. For the case of hinge
noise, the change in regime, from nugatory dependence on

¢ to substantial dependence, makes for the dip.
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Figure 4. Lower bound on maximum likelihood estimator (MLE) variance and distributions of MLE values at various contrasts. (A) The CR
lower bound for the case of hinge noise. (B) Distributions of MLEs for the threshold target and pedestal contrasts for detection (top),
discrimination at the maximum dip (middle), and discrimination at high contrast (bottom). The purple region is where the pedestal and
target bars overlap. The range of axes is set in each plot to provide the best view of the overlap between target and pedestal distributions.
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Figure 4A shows the threshold increments implied by
the CR lower bound for our form of hinge noise.
However, as mentioned, the CR lower bound can only
provide an approximation to the actual performance of the
estimator; we show full distributions of the maximum
likelihood estimator (constrained to lie between 0 and 1)
for various pedestal and threshold target contrasts in
Figure 4B. These distributions provide a more accurate
approximation of the performance of the hinge noise
model, but the predictions shown in Figure 1 make use of
the more informative posterior distributions over contrast
rather than just the maximum likelihood estimates.

In addition to the dip, our model predicts other
empirical effects found at low contrast. The first is that
the depth of the dip is larger for lower percentage correct
thresholds than for higher (Bird, Henning, & Wichmann,
2002), as shown in Figure 1B. The second is that the slope
of the psychometric function for contrast discrimination is
steeper for detection than for discrimination on a log plot
(Bird et al., 2002; Nachmias & Sansbury, 1974). The
smaller distances between the various percentage thresh-
olds for detection relative to discrimination in Figure 1B
show that the hinge noise model matches this empirical
finding.

Contrast discrimination at high contrast

The central puzzle for contrast discrimination at high
contrast is that the noise corrupting neural responses
depends on the mean response in a way that is inconsistent
with overall behavior. Both the photon counts that arise
from stimuli in most psychophysical experiments and
spike counts of neurons have a variance that is propor-
tional to the mean rate (as, for instance, for the case of
Poisson noise). However, were contrast discrimination
thresholds determined by choosing the largest sample with
a linear transducer and noise variance that scaled in this
way, then the handle of the contrast discrimination dipper
function should approximately be a function of the square
root of the contrast (Barlow, 1957; de Vries, 1943; Rose,
1942) and so have a slope of 0.5 on a log—log plot.

Indeed, consider the effect, contrary to Equation 1, of
using the canonical model of neural noise, namely, the
Poisson distribution, about the same mean 7; = cfi(0). In
Appendix A, we derive the Cramér—Rao lower bound as
having the expected square-root dependence:

NG

omL(c) =2 ——=—= (6)

T VifiO)

We also show in Appendix A that even for large
differences between target and pedestal contrasts, the log—
log slope of the contrast discrimination function should
not exceed 0.5. However, contrast discrimination thresh-
olds for human observers appear to have a larger
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exponent, between 0.5 and 1 (Barlow, 1957; Campbell
& Kulikowski, 1966; Legge, 1981; Nachmias & Sansbury,
1974).

The fact that these slopes are generally less than 1 is
also significant, since Weber’s law would suggest that
contrast increment thresholds should be proportional to
the contrast itself, i.e., to have a slope of 1. In sum, the
empirical thresholds lie between the values associated
with the two classic models.

For the actual, mean-dependent, Gaussian noise of
Equation 1, Appendix A shows that the CR lower bound
enjoys a subtly different dependence on c:

c

om(c) = —r———————————n/z 0 : (7)

Here, the scaling resembles Weber’s law for low values
of contrast and square-root scaling for very high values of
contrast as shown in Figure 5. In effect, a constant has
been added to the denominator for each unit in the
population—this constant reflects a fixed amount of
information that each unit contributes, regardless of
stimulus contrast.’

The hinge that caused the dip in the contrast discrim-
ination function at low contrasts has a secondary effect: It
forces the slope of the contrast discrimination function to
be below 1 at high contrasts. Including also the hinge in
the noise, we found that the slope of the simulation
thresholds in Figure 1 is 0.84 for pedestal contrasts
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Figure 5. Standard deviation of the maximum likelihood estimator
for different mean responses. The mean response is the contrast
multiplied by the tuning curve of a unit perfectly tuned to the
stimulus, as in Equation 1. Lines are Cramér—Rao bounds and the
markers are individual simulation results. The Gaussian distribu-
tion has been constrained, so like the Poisson distribution, the
variance is equal to the mean.
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between ¢ = 0.1 and ¢ = 0.36. This result matches the
qualitative finding of a slope between 0.5 and 1, though
quantitatively misses the slope of the data at high
contrasts.* The intermediate slope of the function is due
to hinge noise being partly constant and partly growing. A
high-contrast stimulus produces high activations in units
that are well tuned to the stimulus but low activations in
units that are poorly tuned to the stimulus, as shown in
Figure 2. For very low activations, the noise is essentially
flat, which would produce a contrast discrimination
function with a slope of 0. For higher activations, the
variance of the response is equal to the mean, which
produces a slope of 1 as shown above. The result is a
compromise between the two possible slopes—a result of
the interaction between the population of variously tuned
units, hinge noise, and optimal decisions.

Comparison to other models

of contrast discrimination

Many different models of contrast discrimination have
already been developed (Solomon, 2009). Most have been
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designed to apply to either the dip or the handle but not
both. In this section, we discuss the different models of
high- and low-contrast discrimination and how our
approach differs from each.

Low contrast

Cutoff models provide an intuitive explanation for the
dip evident for low-contrast discrimination. Constant
noise is added to each stimulus, and any net sample that
fails to exceed the cutoff is set to zero, while any sample
that does exceed the cutoff is unaffected. This is shown
schematically in Figure 6A. If the sample from the
pedestal and the sample from the target are both below
the cutoff, then the choice is a pure guess. However, as an
increasing pedestal causes both types of samples to exceed
the cutoff more frequently, discrimination becomes more
accurate. Several varieties of cutoff accounts have been
proposed, including high cutoff models, which assume
that samples from a blank interval never exceed the cutoff
(Blackwell, 1963), and low cutoff models, which allow the
cutoff to be exceeded by noise (Foley & Legge, 1981).

The hinge noise we proposed above looks a bit like a
cutoff, but instead of being applied to the mean, it affects

Nonlinear
transducer model

Contrast gain function

Pedestal ——> / — P
\ M
/ ax
D

Contrast gain function

Target —— e

Hinge noise model

Tuned filter ——— ®

Pedestal — Mistuned filter —— (X)

Mistuned filter —— (X)

Optimal
Tuned fiter —— () 7

Target — Mistuned filter — (X)

Mistuned filter — (X)

Figure 6. Schematic diagrams of various models of dipper functions. Circled pluses indicated additive noise and circled xs indicate signal-

dependent noise.
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the variance of the response. Thus, it does not squash the
activations, which is the way cutoff models generate the
dip.

A second approach to producing dips is an expansive
non-linearity followed by noise (Legge & Foley, 1980;
Nachmias & Sansbury, 1974). In this account, the mean
response of a unit is a non-linear function of contrast,
schematically shown in Figure 6B. A dip can be produced
by a transducer with a slope that is initially flat, then is
steep. Late additive noise is crucial to this account as well,
because Birdsall’s theorem implies that transduction alone
will not have any impact on accuracy for single units. It is
the noise that causes transduced contrasts that are closer
together to be less discriminable. As a result, the greater
slopes of the transducer at higher contrasts allow for more
accurate responses, producing the dip.

It is well known that a non-linear transducer with
additive noise is, in many circumstances, equivalent to a
linear transducer with multiplicative noise (Legge, Kersten,
& Burgess, 1987). The hinge noise we propose is not just
the non-linear transducer written in a different form. To
see this, we note that an expansive transducer followed by
constant noise is equivalent to a linear transducer with
decreasing noise,” while our proposed model uses a linear
transducer and noise that never decreases.

Threshold models and expansive non-linearities can
both produce dips in the contrast discrimination function
based on the responses of a single unit. A very different
way of producing a dip is through intrinsic uncertainty
(Pelli, 1985; Tanner, 1961), which is shown schematically
in Figure 6C. This approach assumes that many filters are
active in each interval, of which only a small number are
tuned to the target. The remaining filters only contribute
noise to the decision process. The optimal decision is
approximated by choosing the interval that has produced
the largest overall sample (Pelli, 1985). For higher
pedestal contrasts, the largest samples almost exclusively
result from the filters tuned to the features of the stimuli,
meaning less noise in the decision process and lower
thresholds.

Our approach, shown schematically in Figure 6D, works
differently from intrinsic uncertainty because the decoder
is not uncertain about any parameter of the stimulus other
than its actual contrast (as even its potential contrast is
known). If we were to apply our form of optimal decisions
to the noisy population of units used in intrinsic
uncertainty, all the irrelevant units tuned solely to noise
would be ignored by the estimator, and so it would not
matter how many of these there were. By contrast, each
member of our population of orientation-tuned units had
some (possibly extremely weak) tuning to the signal, and
the decoder, being aware of the orientation, could take
advantage of them according to their own signal/noise
ratios. Instead of uncertainty about the stimulus proper-
ties, it is the sudden increase in noise at the hinge that
drives the dip.

Sanborn & Dayan 8

High contrast

Explanations of the contrast discrimination function at
high pedestal contrasts have tended to focus on processes
that transform the mean of the signal distribution,
including a compressive non-linearity (Legge & Foley,
1980) and a transformation that removes any differences
in the mean signal entirely (Laming, 1986). The predom-
inant explanation is to appeal to a transducer that suffers
from a compressive non-linearity at high contrasts. If the
output of this transducer is followed by additive noise,
then the difference between equally spaced contrasts will
be less the higher that these contrasts are—meaning that
the additive noise that follows will have a larger effect.
Unlike the case for the expansive non-linearity in the low-
contrast regime, such a compressive non-linearity would
be compatible with a linear transducer and growing noise.
However, in order to produce a handle with a slope that is
greater than 0.5, the noise would have to grow faster than
implied by neural noise. Our results are able to produce a
handle with a slope greater than 0.5 using noise that would
imply a slope of 0.5 when used with the standard decision
model.

Laming (1986) developed a mechanistic model in which
noise whose variance is proportional to its mean is
nevertheless consistent with Weber’s law for discrimina-
tion. Using the motivation that the visual system is only
sensitive to gradients, the stimulus is divided into positive
and negative aspects, each of which is represented by
Gaussian noise with variance proportional to the mean.
These two aspects are subtracted from one another,
producing a zero-mean Gaussian distribution, but with
the variance still proportional to the mean. Discrimina-
bility between two zero-mean Gaussian distributions with
different variances is proportional to the ratio of the
variances, producing thresholds that would be consistent
with Weber’s law. Essentially, the approach works by
discarding the means. Our results differ from this
approach in that all the information is available, including
mean contrasts.

A final, perhaps less well-known explanation for the
discrepancy between neural and behavioral noise is based
on a different statistical structure. Triesman (1964)
proposed a compound Poisson process, in which each
quantum resulted in a new sample from a Gaussian
distribution being drawn and added to a decision variable.
This decision variable, which is the sum of a Poisson
number of Gaussian samples, would have a variance that
is equal to the mean, unless the samples are correlated. By
assuming that all the samples were perfectly correlated,
Triesman showed that for high contrasts the sum will have
a standard deviation equal to the mean and thus follow
Weber’s law. Unlike this explanation, we assume that
there are no correlations between the units. This is in
keeping with many treatments of cortical activity. Indeed,
empirical assessments of correlations in neural noise vary
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from tiny to modest (Cohen & Kohn, 2011; Ecker et al.,
2010).

Comparison to models that use non-linear
transduction

The hinge noise model provides a unitary normative
account of both low and high pedestal contrast regimes.
Perhaps the most influential model that has attempted to
accommodate both regimes involves non-linear trans-
duction (Legge & Foley, 1980), which has been adopted
by models of contrast discrimination that use populations
of units (Chirimuuta & Tolhurst, 2005; Goris et al., 2009;
Itti et al., 2000) and has also served as the basis for
models that use optimal decoding (Chirimuuta & Tolhurst,
2005; Itti et al., 2000). This is perhaps best seen as two
explanations glued into one: an expansive non-linearity at
low contrasts and a compressive non-linearity at high
contrasts. The hinge noise model is a unitary explanation
rather than the combination of two explanations: Both
regimes of noise are necessary to produce the dip, and
both are necessary to produce a handle with a slope
between 0.5 and 1.

We developed a statistical computational explanation
for empirical observations of contrast discrimination
thresholds. The central claim of our account is that both
the main features of the contrast discrimination function
arise from optimal inference subject to a plausible form of
noise. This contrasts with the rather numerous suggestions
that combine separate explanations for the origins of the
dips and handles.

According to our account, it is the structure of the noise,
together with appropriate inference, that substantially
controls the shape of the dipper. The dip in the threshold
occurs around the input contrast at which the noise
provides information about the signal; the shape of the
handle in the threshold is partly determined by doing full
inference rather than making the approximation of con-
sidering the interval with the larger input as automatically
being the interval with the greater contrast.

Of course, unlike the mechanistic suggestions described
above, we have offered a computational account without an
algorithmic or network implementation. An estimator that
is purely linear in the input activities would likely not be
able to extract information from the covariance; however,
mild non-linearities are known to suffice (Shamir &
Sompolinsky, 2004), opening up a range of possibilities.

Our use of a population code, as in various others such
as Goris et al. (2009), Itti et al. (2000) and Pelli (1985),
leads us to look at population phenomena such as the tilt
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illusion or the tilt aftereffect (Solomon & Morgan, 2006)
as extensions. We would hope, for instance, to combine
this present account of contrast analysis with the Gaussian
scale mixture model approach of Schwartz, Sejnowski,
and Dayan (2009), which eliminates the bulk of contrast
effects through a statistically normative form of divisive
normalization. Its account of orientation processing
should, therefore, be well placed to survive the contrast
processing implied by the inferences discussed here.

It would also be interesting to investigate further aspects
of prior information. We explored some simple models of
prior structures motivated by standard psychophysical
paradigms, but there is broad scope for generalization.
As an example, attentional tasks have explored how cues
influence performance: Findings show that people use
these cues to exclude the irrelevant noisy aspects of the
stimuli (Dosher & Lu, 2000; Lu, Lesmes, & Dosher,
2002). In addition, perceptual learning tasks have shown
similar findings where later trials show more efficient
processing than earlier trials (Gold, Bennett, & Sekuler,
1999; Gold, Sekuler, & Bennett, 2004). Both of these
results could be interpreted as the use of prior knowledge:
outside information or experience that allow people to
exclude irrelevant hypotheses. Of interest is whether we
could reproduce the form and rate of learning.

Conclusions

A general conclusion from our study is that surprisingly
subtle features of noise can have a qualitative effect on the
output of an ideal observer. Other studies have shown that
optimal inference with a non-linear transducer can
produce dipper functions (Chirimuuta & Tolhurst, 2005;
Itti et al., 2000), but here we have fixed the transducer to
be linear and shown that changes in the higher order
moments result in the same predictions. People have
shown a sensitivity to the variance and higher order
moments of stimuli in their behavior (Kording & Wolpert,
2004; Morgan, Chubb, & Solomon, 2008; Symmonds,
Wright, Bach, & Dolan, in press), and here we propose
that the sensitivity extends to how the noise variance
changes with signal intensity.

Along with their application to higher level aspects of
visual processing such as multimodal integration (Ernst &
Banks, 2002) and attention (Chikkerur, Serre, Tan, &
Poggio, 2010; Yu, Dayan, & Cohen, 2009), the current
work is part of a movement bringing Bayesian principles
into relatively early visual processing (Chirimuuta &
Tolhurst, 2005; Dayan & Solomon, 2010; Whiteley &
Sahani, 2008). Of course, there is a need to develop
stronger data on the uncertainties faced by organisms and
how inference is implemented in the brain. However, the
normativity of these approaches gives us the hope of
encompassing more of the complexity evident in behavior
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in accounts that refer to the nature of the environment,
resulting in a set of simple principles that can predict
human behavior across a broad array of situations.

Appendix A

In this appendix, we derive the standard deviations of
the maximum likelihood estimators for Poisson noise,
Gaussian noise when the variance is constrained to be
equal to the mean response, and the time to the first event
for a Poisson process. In addition, we derive an upper
bound on the slope of the contrast discrimination function
when the noise is Gaussian with the variance equal to the
mean response. We write f;(0) as f; in this appendix for
convenience.

Poisson noise

For each unit / of the total of n units, let the mean
response equal 7; = cf;, where f; is the orientation-
dependent response of unit / based on the discrepancy
between its preferred orientation and the stimulus ori-
entation at a contrast of 1. Let r be the vector of outputs
drawn as independent Poisson samples with these mean
values.

For distributions that satisfy certain regularity condi-
tions, we can substitute in the negative second derivative
for the square of the first derivative in the expected Fisher
information calculation:

r 2

FI(c) =E|-—
(C) _dc2

<—1ogp[r|c]>] | (A1)

Time to first Poisson event

For a Poisson process with mean count cf; on a
particular interval, the interarrival times ¢; follow an
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exponential distribution with mean 1/cf;. Thus, writing r;
as the time to the first event of unit i, we have

FI(C) = E| s (g i) (A6)

& .
=E e (—logH cfe ‘f‘[')] , (A7)

=E 26—12] : (A8)
S and so, (A9)

omL(c) = —=. (A10)

Simulations showed that the variance of the maximum
likelihood estimator is nearly equal to this bound for a
wide range of contrasts using the same population
parameters as the simulations in Figure 5. Unlike the
bound on Gaussian noise, the bound on the time to the
first Poisson event produces scaling consistent with
Weber’s law for any value of the mean response.

Gaussian noise

In Equation 1, we employ a Gaussian rendition of the
Poisson case. According to this, each unit is an independent
Gaussian random variable with mean 7; = ¢f; and %(c) =
cf;. In this case, the Fisher information is

r g2
FI(C) = £ | (o i) | (A1)
e i o)’
(el (5 )|
(A12)
_ _% ZEVQZ—CJ%Jr [( %ﬁCﬁ)]’ (A13)
__zi:ﬁ+2 5, and so (Al4)
oML(C) > — (A15)
Vi/24+c¢) i fi
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Bound on slope of threshold for Gaussian
variance equal to its mean

Consider the case in which we have a single output
from a stimulus, either the output of a model with a single
channel or the maximum likelihood estimate from a
population of responses. Assume that the output is
Gaussian distributed and that both the mean of the output
and the variance of the output are equal to the contrast. In
a contrast discrimination experiment in which two outputs
are compared, we show that the slope of the contrast
discrimination function on a log—log plot is never greater
than 1/2.

The probability correct P simplifies from Equation 3 to

(A16)

Pe= ! Ac
V20 +Ac)’

where Ac is the threshold difference in contrast between
the pedestal ¢, and the target ¢, We assume that Pc is
equal to the threshold probability correct. Solving for this
threshold increment using the quadratic formula:

A A+ /A% + 8Ac,
C =

2 Y

(A17)

where assuming Ac is positive eliminates the negative root
and where A = [d)(PC)]2 > 0. To find the slope of the
threshold in log—log coordinates, we take the derivative of
log Ac with respect to log cp:

dlogAc dcp - 1
dloge,  8c, +A+ /A2 +8Ac, 2’

with the inequality resulting from the positivity of all the
terms in the denominator of the middle expression. For
large values of cp, this slope will converge to 1/2.

(A18)
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lMaking the evident assumption that there is no bias in
the order of presentation.

As a result of the near equivalence between Both
Known and Pedestal Known priors, we used the computa-
tionally simpler Both Known prior for the predictions
made in Figure 1.

3Interestingly, even in the Poisson case, pure Weber law
scaling arises if the relevant statistic consists of the times
to the first spikes of each neuron in the population rather
than the summed activities over a fixed period (shown in
Appendix A).

4A more complex form for the noise could, of course,
pr(s)duce a better quantitative fit.

Looking at Equation 3, in order for a smaller difference
between ¢ and ¢, to produce an equivalent Pc, the sum of
the variances in the denominator must decrease.
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