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Abstract

We have calculated analytical expressions for how the bias and
variance of the estimators provided by various temporal di�erence
value estimation algorithms change with o�ine updates over trials
in absorbing Markov chains using lookup table representations. We
illustrate classes of learning curve behavior in various chains, and
show the manner in which TD is sensitive to the choice of its step-
size and eligibility trace parameters.

1 INTRODUCTION

A reassuring theory of asymptotic convergence is available for many reinforcement
learning (RL) algorithms. What is not available, however, is a theory that explains
the �nite-term learning curve behavior of RL algorithms, e.g., what are the di�erent
kinds of learning curves, what are their key determinants, and how do di�erent
problem parameters e�ect rate of convergence. Answering these questions is crucial
not only for making useful comparisons between algorithms, but also for developing
hybrid and new RL methods. In this paper we provide preliminary answers to some
of the above questions for the case of absorbing Markov chains, where mean square
error between the estimated and true predictions is used as the quantity of interest
in learning curves.

Our main contribution is in deriving the analytical update equations for the two
components of MSE, bias and variance, for popular Monte Carlo (MC) and TD(�)
(Sutton, 1988) algorithms. These derivations are presented in a larger paper. Here
we apply our theoretical results to produce analytical learning curves for TD on
two speci�c Markov chains chosen to highlight the e�ect of various problem and
algorithm parameters, in particular the de�nite trade-o�s between step-size, �, and
eligibility-trace parameter, �. Although these results are for speci�c problems, we



believe that many of the conclusions are intuitive or have previous empirical support,
and may be more generally applicable.

2 ANALYTICAL RESULTS

A random walk, or trial, in an absorbing Markov chain with only terminal payo�s
produces a sequence of states terminated by a payo�. The prediction task is to
determine the expected payo� as a function of the start state i, called the optimal
value function, and denoted v�. Accordingly, v�i = Efrjs1 = ig, where st is the
state at step t, and r is the random terminal payo�. The algorithms analysed are
iterative and produce a sequence of estimates of v� by repeatedly combining the
result from a new trial with the old estimate to produce a new estimate. They have
the form: vi(t) = vi(t � 1) + �(t)�i(t) where v(t) = fvi(t)g is the estimate of the
optimal value function after t trials, �i(t) is the result for state i based on random
trial t, and the step-size �(t) determines how the old estimate and the new result
are combined. The algorithms di�er in the �s produced from a trial.

Monte Carlo algorithms use the �nal payo� that results from a trial to de�ne the
�i(t) (e.g., Barto & Du�, 1994). Therefore in MC algorithms the estimated value of a
state is una�ected by the estimated value of any other state. The main contribution
of TD algorithms (Sutton, 1988) over MC algorithms is that they update the value
of a state based not only on the terminal payo� but also on the the estimated
values of the intervening states. When a state is �rst visited, it initiates a short-
termmemory process, an eligibility trace, which then decays exponentially over time
with parameter �. The amount by which the value of an intervening state combines
with the old estimate is determined in part by the magnitude of the eligibility trace
at that point.

In general, the initial estimate v(0) could be a random vector drawn from some
distribution, but often v(0) is �xed to some initial value such as zero. In either case,
subsequent estimates, v(t); t > 0, will be random vectors because of the random �s.

The random vector v(t) has a bias vector b(t)
def
= Efv(t) � v�g and a covariance

matrix C(t)
def
= Ef(v(t) � Efv(t)g)(v(t) � Efv(t)g)Tg. The scalar quantity of

interest for learning curves is the weighted MSE as a function of trial number t, and
is de�ned as follows:

MSE(t) =
P

i pi(Ef(vi(t)� v�i )
2g) =

P
i pi(b

2

i (t) +Cii(t));

where pi = (�T [I �Q]�1)i=
P

j(�
T [I�Q]�1)j is the weight for state i, which is the

expected number of visits to i in a trial divided by the expected length of a trial1

(�i is the probability of starting in state i; Q is the transition matrix of the chain).

In this paper we present results just for the standard TD(�) algorithm (Sutton,
1988), but we have analysed (Singh & Dayan, 1996) various other TD-like algorithms
(e.g., Singh & Sutton, 1996) and comment on their behavior in the conclusions. Our
analytical results are based on two non-trivial assumptions: �rst that lookup tables
are used, and second that the algorithm parameters � and � are functions of the
trial number alone rather than also depending on the state. We also make two
assumptions that we believe would not change the general nature of the results
obtained here: that the estimated values are updated o�ine (after the end of each
trial), and that the only non-zero payo�s are on the transitions to the terminal
states. With the above caveats, our analytical results allow rapid computation of
exact mean square error (MSE) learning curves as a function of trial number.

1Other reasonable choices for the weights, pi, would not change the nature of the results
presented here.



2.1 BIAS, VARIANCE, And MSE UPDATE EQUATIONS

The analytical update equations for the bias, variance and MSE are complex and
their details are in Singh & Dayan (1996) | they take the following form in outline:

b(t) = a
m +Bmb(t� 1) (1)

C(t) = AS +BSC(t� 1) + fS (b(t� 1)) (2)

where matrix Bm depends linearly on �(t) and BS and fS depend at most quadrat-
ically on �(t). We coded this detail in the C programming language to develop a
software tool2 whose rapid computation of exact MSE error curves allowed us to ex-
periment with many di�erent algorithm and problem parameters on many Markov
chains. Of course, one could have averaged together many empirical MSE curves
obtained via simulation of these Markov chains to get approximations to the an-
alytical MSE error curves, but in many cases MSE curves that take minutes to
compute analytically take days to derive empirically on the same computer for �ve
signi�cant digit accuracy. Empirical simulation is particularly slow in cases where
the variance converges to non-zero values (because of constant step-sizes) with long
tails in the asymptotic distribution of estimated values (we present an example in
Figure 1c). Our analytical method, on the other hand, computes exact MSE curves
for L trials in O(jstate spacej3L) steps regardless of the behavior of the variance
and bias curves.

2.2 ANALYTICAL METHODS

Two consequences of having the analytical forms of the equations for the update
of the mean and variance are that it is possible to optimize schedules for setting �
and � and, for �xed � and �, work out terminal rates of convergence for b and C.

Computing one-step optimal �'s: Given a particular �, the e�ect on the MSE
of a single step for any of the algorithms is quadratic in �. It is therefore straight-
forward to calculate the value of � that minimises MSE(t) at the next time step.
This is called the greedy value of �. It is not clear that if one were interested
in minimising MSE(t + t0), one would choose successive �(u) that greedily min-
imise MSE(t);MSE(t+ 1); : : :. In general, one could use our formul� and dynamic
programming to optimise a whole schedule for �(u), but this is computationally
challenging.

Note that this technique for setting greedy � assumes complete knowledge about
the Markov chain and the initial bias and covariance of v(0), and is therefore not
directly applicable to realistic applications of reinforcement learning. Nevertheless,
it is a good analysis tool to approximate omniscient optimal step-size schedules,
eliminating the e�ect of the choice of � when studying the e�ect of the �.

Computing one-step optimal �'s: Calculating analytically the � that would
minimize MSE(t) given the bias and variance at trial t � 1 is substantially harder
because terms such as [I � �(t)Q]�1 appear in the expressions. However, since it is
possible to compute MSE(t) for any choice of �, it is straightforward to �nd to any
desired accuracy the �g(t) that gives the lowest resulting MSE(t). This is possible
only because MSE(t) can be computed very cheaply using our analytical equations.

The caveats about greediness in choosing �g(t) also apply to �g(t). For one of the
Markov chains, we used a stochastic gradient ascent method to optimise �(u) and

2The analytical MSE error curve software is available via anonymous ftp from the
following address: ftp.cs.colorado.edu /users/baveja/AMse.tar.Z



�(u) to minimise MSE(t + t0) and found that it was not optimal to choose �g(t)
and �g(t) at the �rst step.

Computing terminal rates of convergence: In the update equations 1 and 2,
b(t) depends linearly on b(t� 1) through a matrix Bm; and C(t) depends linearly
on C(t� 1) through a matrix BS . For the case of �xed � and �, the maximal and
minimal eigenvalues of Bm and BS determine the fact and speed of convergence
of the algorithms to �nite endpoints. If the modulus of the real part of any of
the eigenvalues is greater than 1, then the algorithms will not converge in general.
We observed that the mean update is more stable than the mean square update,
i.e., appropriate eigenvalues are obtained for larger values of � (we call the largest
feasible � the largest learning rate for which TD will converge). Further, we know
that the mean converges to v� if � is su�ciently small that it converges at all,
and so we can determine the terminal covariance. Just like the delta rule, these
algorithms converge at best to an �-ball for a constant �nite step-size. This amounts
to the MSE converging to a �xed value, which our equations also predict. Further,
by calculating the eigenvalues of Bm, we can calculate an estimate of the rate of
decrease of the bias.

3 LEARNING CURVES ON SPECIFIC MARKOV

CHAINS

We applied our software to two problems: a symmetric random walk (SRW), and a
Markov chain for which we can control the frequency of returns to each state in a
single run (we call this the cyclicity of the chain).
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Figure 1: Comparing Analytical and Empirical MSE curves. a) analytical and empirical
learning curves obtained on the 19 state SRW problem with parameters � = 0:01, � = 0:9.
The empirical curve was obtained by averaging together more than three million simulation
runs, and the analytical and empirical MSE curves agree up to the fourth decimal place;
b) a case where the empirical method fails to match the analytical learning curve after
more than 15 million runs on a 5 state SRW problem. The empirical learning curve is
very spiky. c) Empirical distribution plot over 15:5 million runs for the MSE at trial 198.
The inset shows impulses at actual sample values greater than 100. The largest value is
greater than 200000.

Agreement: First, we present empirical con�rmation of our analytical equations
on the 19 state SRW problem. We ran TD(�) for speci�c choices of � and � for more
than three million simulation runs and averaged the resulting empirical weighted
MSE error curves. Figure 1a shows the analytical and empirical learning curves,
which agree to within four decimal places.

Long-Tails of Empirical MSE distribution: There are cases in which the agree-
ment is apparently much worse (see Figure 1b). This is because of the surprisingly
long tails for the empirical MSE distribution { Figure 1c shows an example for a 5



state SRW. This points to interesting structure that our analysis is unable to reveal.

E�ect of � and �: Extensive studies on the 19 state SRW that we do not have
space to describe fully show that: H1) for each algorithm, increasing � while holding
� �xed increases the asymptotic value of MSE, and similarly for increasing � whilst
holding � constant; H2) larger values of � or � (except � very close to 1) lead
to faster convergence to the asymptotic value of MSE if there exists one; H3) in
general, for each algorithm as one decreases � the reasonable range of � shrinks,
i.e., larger � can be used with larger � without causing excessive MSE. The e�ect
in H3 is counter-intuitive because larger � tends to amplify the e�ective step-size
and so one would expect the opposite e�ect. Indeed, this increase in the range of
feasible � is not strictly true, especially very near � = 1, but it does seem to hold
for a large range of �.

MC versus TD(�): Sutton (1988) and others have investigated the e�ect of �
on the empirical MSE at small trial numbers and consistently shown that TD is
better for some � < 1 than MC (� = 1). Figure 2a shows substantial changes as a
function of trial number in the value of � that leads to the lowest MSE. This e�ect
is consistent with hypotheses H1-H3. Figure 2b con�rms that this remains true
even if greedy choices of � tailored for each value of � are used. Curves for di�erent
values of � yield minimumMSE over di�erent trial number segments. We observed
these e�ects on several Markov chains.
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Figure 2: U-shaped Curves. a) Weighted MSE as a function of � and trial number for
�xed � = 0:05 (minimum in � shown as a black line). This is a 3-d version of the U-shaped
curves in Sutton (1988), with trial number being the extra axis. b) Weighted MSE as a
function of trial number for various � using greedy �. Curves for di�erent values of � yield
minimum MSE over di�erent trial number segments.

Initial bias: Watkins (1989) suggested that � trades o� bias for variance, since � �
1 has low bias, but potentially high variance, and conversely for � � 0. Figure 3a
con�rms this in a problemwhich is a little like a randomwalk, except that it is highly
cyclic so that it returns to each state many times in a single trial. If the initial bias
is high (low), then the initial greedy value of � is high (low). We had expected the
asymptotic greedy value of � to be 0, since once b(t) � 0, then � = 0 leads to lower
variance updates. However, Figure 3a shows a non-zero asymptote { presumably
because larger learning rates can be used for � > 0, because of covariance. Figure 3b
shows, however, that there is little advantage in choosing � cleverly except in the
�rst few trials, at least if good values of � are available.

Eigenvalue stability analysis: We analysed the eigenvalues of the covariance
update matrix BS (c.f. Equation 2) to determine maximal �xed � as a function
of �. Note that larger � tends to lead to faster learning, provided that the values
converge. Figure 4a shows the largest eigenvalue of BS as a function of � for various
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Figure 3: Greedy � for a highly cyclic problem. a) Greedy � for high and low initial bias
(using greedy �). b) Ratio of MSE for given value of � to that for greedy � at each trial.
The greedy � is used for every step.
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Figure 4: Eigenvalue analysis of covariance reduction. a) Maximal modulus of the eigen-

values of BS. These determine the rate of convergence of the variance. Values greater than
1 lead to instability. b) Largest � such that the covariance is bounded. The inset shows a
blowup for 0:9 � � � 1. Note that � = 1 is not optimal. c) Maximal bias reduction rates
as a function of �, after controlling for asymptotic variance (to 0:1 and 0:01) by choosing
appropriate �'s. Again, � < 1 is optimal.

�. If this eigenvalue is larger than 1, then the algorithm will diverge { a behavior
that we observed in our simulations. The e�ect of hypothesis H3 above is evident {
for larger �, only smaller � can be used. Figure 4b shows this in more graphic form,
indicating the largest � that leads to stable eigenvalues for BS . Note the reversal
very close to � = 1, which provides more evidence against the pure MC algorithm.
The choice of � and � control both rate of convergence and the asymptotic MSE.
In Figure 4c we control for the asymptotic variance by choosing appropriate �s as
a function of � and plot maximal eigenvalues of Bm (c.f. Equation 1; it controls
the terminal rate of convergence of the bias to zero) as a function of �. Again, we
see evidence for TD over MC.

4 CONCLUSIONS

We have provided analytical expressions for calculating how the bias and variance
of various TD and Monte Carlo algorithms change over iterations. The expressions
themselves seem not to be very revealing, but we have provided many illustrations
of their behavior in some example Markov chains. We have also used the analysis
to calculate one-step optimal values of the step-size � and eligibility trace � param-
eters. Further, we have calculated terminal mean square errors and maximal bias
reduction rates. Since all these results depend on the precise Markov chains chosen,



it is hard to make generalisations.

We have posited four general conjectures: H1) for constant �, the larger �, the
larger the terminal MSE; H2) the larger � or � (except for � very close to 1), the
faster the convergence to the asymptotic MSE, provided that this is �nite; H3) the
smaller �, the smaller the range of � for which the terminal MSE is not excessive;
H4) higher values of � are good for cases with high initial biases. The third of
these is somewhat surprising, because the e�ective value of the step-size is really
�=(1 � �). However, the lower �, the more the value of a state is based on the
value estimates for nearby states. We conjecture that with small �, large � can
quickly lead to high correlation in the value estimates of nearby states and result
in runaway variance updates.

Two main lines of evidence suggest that using values of � other than 1 (i.e., using a
temporal di�erence rather than a Monte-Carlo algorithm) can be bene�cial. First,
the greedy value of � chosen to minimise the MSE at the end of the step (whilst
using the associated greedy �) remains away from 1 (see Figure 3). Second, the
eigenvalue analysis of BS showed that the largest value of � that can be used is
higher for � < 1 (also the asymptotic speed with which the bias can be guaranteed
to decrease fastest is higher for � < 1).

Although in this paper we have only discussed results for the standard TD(�) al-
gorithm (called Accumulate), we have also analysed Replace TD(�) of Singh &
Sutton (1996) and various others. This analysis clearly provides only an early step
to understanding the course of learning for TD algorithms, and has focused exclu-
sively on prediction rather than control. The analytical expressions for MSE might
lend themselves to general conclusions over whole classes of Markov chains, and our
graphs also point to interesting unexplained phenomena, such as the apparent long
tails in Figure 1c and the convergence of greedy values of � in Figure 3. Stronger
analyses such as those providing large deviation rates would be desirable.
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