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Abstract

The selectivities of neurons in primary visual cortex are often considered to be adapted to the statistics of natural images. Accordingly,
simple cell-like tuning emerges when unsupervised learning models that seek sparse representations of input probabilities are trained on
natural scenes. However, orientation tuning develops before structured vision starts, rendering these previous results moot as models of
activity-dependent development. A more stringent examination of such models comes from experiments demonstrating altered neural
response properties in goggle-reared kittens. We show that an unsupervised learning model of cortical responsivity accounts well for
the dramatic effects of stimulus driven development during goggle-rearing.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Although the mammalian visual system undergoes sub-
stantial development before experiencing structured vision
(Barlow, 1975; Blakemore & Van Sluyters, 1975; Buisseret
& Imbert, 1976; Crair, Gillespie, & Stryker, 1998; Frégnac
& Imbert, 1984; Godecke & Bonhoeffer, 1996; Hubel, 1988;
Movshon & Blakemore, 1974), there is much evidence that
visual neurons’ response properties are significantly influ-
enced by the statistics of visual inputs after eye opening
(Blakemore & Cooper, 1970; Hirsch, Leventhal, McCall,
& Tieman, 1983; Hirsch & Spinelli, 1970; Hubel, 1988;
Hubel & Wiesel, 1963; Movshon & Blakemore, 1974;
Sengpiel, Stawinski, & Bonhoeffer, 1999; Stryker & Sherk,
1975; Stryker, Sherk, Leventhal, & Hirsch, 1978; Tanaka,
Ribot, & Tani, 2006; Wiesel, 1982). This poses important
mechanistic questions about neural plasticity, and func-
tional questions about how neural response properties are
shaped by the visual environment. Indeed, many theoreti-
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cal studies have provided mechanistic (Barlow, 1975;
Goodhill, 1993; Goodhill & Willshaw, 1990; Miller, Erwin,
& Kayser, 1999; Miller, Keller, & Stryker, 1989; Swindale,
1996; Tanaka, Miyashita, & Ribot, 2004; von der Mals-
burg, 1973; Willshaw & von der Malsburg, 1979; Willshaw
& von der Malsburg, 1976) and functional (Bell & Sejnow-
ski, 1997; Hyvarinen & Hoyer, 2001; Karklin & Lewicki,
2003; Lewicki, 2002; Li & Atick, 1994; Olshausen & Field,
1997; Osindero, Welling, & Hinton, 2006; Rehn & Som-
mer, 2007) accounts.

Functional models aim to provide insight into the repre-
sentational capacities and goals of the visual system rather
than to offer mechanistic explanations of how neural
responses are, or come to be, implemented. The most
widely investigated class of functional models for visual
receptive fields are based on informational (Barlow, 1981;
Zhaoping, 2006; Li & Atick, 1994; Linsker, 1990) and
probabilistic (Hinton & Ghahramani, 1997) notions, and
involves variants of independent component analysis
(ICA) or sparse/independent coding. ICA-like models posit
that the functional goal of the visual cortex is to capture
the statistics of its input with sparse and marginally- or con-
ditionally-independent coding elements (Bell & Sejnowski,
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1997; Hyvarinen & Hoyer, 2001; Olshausen & Field, 1997;
Osindero et al., 2006; Rehn & Sommer, 2007; Teh, Welling,
Osindero, & Hinton, 2003). When trained on natural
images, these models result in linear or log-linear receptive
fields (RFs) which are localized and orientation-tuned (i.e.
Gabor-like) and also resemble other response properties of
simple cells in V1.

Since most models have only been applied to normal
development, much of which occurs without guidance from
natural scene stimuli, it has remained unclear whether these
descriptions of cortex apply to stimulus-driven cortical
changes. An obvious way to test these ideas is to observe
the consequences of changing the visual environment in a
structured manner. Three broad classes of manipulation
have been used, affecting the input from a single eye (e.g.
monocular deprivation Hubel, Wiesel, & LeVay, 1977),
the gross correlations between the two eyes (e.g. strabismus
Hubel & Wiesel, 1965); or the fine correlations within both
eyes (e.g. rearing with access to only restricted orientations
Blakemore & Cooper, 1970; Hirsch & Spinelli, 1970;
Sengpiel et al., 1999; Stryker & Sherk, 1975; Stryker
et al., 1978; Tanaka et al., 2006). The last class is perhaps
the most revealing, since the manipulation is less drastic
than deprivation, but the results are much more dramatic
than strabismus. However, except for Tanaka’s mechanis-
tic treatment (Tanaka et al., 2004), it has not so far been
well addressed by modelling studies. In this paper we exam-
ine the validity of a functional description for visual corti-
cal organization which has been previously widely applied
only to normal visual development, by applying it to the
case of development in the face of vision-distorting goggles
worn for many months after eye-opening.

Against a backdrop of long-standing contention as to
the neural consequences of rearing kittens in either striped
cylinders or with goggles that limit the angle of view
(Blakemore & Cooper, 1970; Hirsch & Spinelli, 1970; Stry-
ker & Sherk, 1975; Stryker et al., 1978), recent studies have
reinforced the view that restricted exposure to a single ori-
entation significantly influences the development of orien-
tation selectivity in primary visual cortex, biasing neurons
towards representing the exposed orientation (Sengpiel
et al., 1999; Tanaka et al., 2006). Tanaka and colleagues
showed that severely restrictive striped goggle rearing
exerts widespread influence on neural development
(Tanaka et al., 2006) with the number of neurons in gog-
gle-reared kittens preferring the exposed orientation being
over three times that for normal kittens. There are also
more subtle changes, such as to the shapes of the receptive
fields and the proportion of oriented receptive fields.
Tanaka and his colleagues used both optical imaging and
electrophysiological methods to characterize the effects of
their goggle-rearing regimen, and confirmed that these
methods were mutually consistent. We show that the
results of this stimulus driven cortical plasticity can be cap-
tured by an unsupervised learning model with the func-
tional goals of capturing input statistics with sparsely
distributed responses. To our knowledge this is the first
application of such models to the altered neural organiza-
tion effected by major and sustained experimentally-con-
trolled manipulations of developmental stimulus statistics.

2. Methods

It has long been observed that oriented, simple cell-like, RFs arise from
applying to natural scenes, learning algorithms which are designed to cap-
ture the statistical structure of their input. This has motivated accounts of
the functional goals of the cortical representation based on statistical
unsupervised learning.

In particular, we consider the products-of-experts (POE) algorithm
(Osindero et al., 2006; Teh et al., 2003), which is an extension of indepen-
dent components analysis (ICA) to overcomplete representations. In the
POE model, representational units respond to linear projections of the
input, and capture structure by reporting unlikely stimuli, or those that
can be described as violating constraints defined by the RFs. When trained
on conventional natural scene input, the POE model produces model neu-
ron units which have RFs resembling Gabor-like receptive fields, with a
range of preferred spatial frequencies, orientations and shape characteris-
tics that fairly well match those observed in cat and monkey cortex. Here,
we study the consequences of training a POE with the unnatural scenes
arising from a model of goggle-rearing.

In the POE model applied to natural scenes by (Osindero et al., 2006),
the probability of the input is modelled as a product of generalized Stu-
dent-t distributions. This model captures the statistics of its inputs, x, as
follows:
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1
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where x contains the image data inputs, yi is the activity of the ith neuron,
n is the total number of output units or model neurons and h contains all
the parameters of the model (J and a). The linear mapping between input
and output, is defined by matrix J, where the ith row of J is the response
function, or in our case, the visual receptive field of the ith neuron a is a
learned parameter that corresponds to the sparseness of the Student-t dis-
tribution. This decreases with increasing overcompleteness and ranges
from 1 to 1.8. Z(h) is the normalization constant. The parameters a and
J are adapted on the input statistics by maximizing the log-likelihood of
this model given the input. That is, we seek:
arg max
J;a
fhlogðpmodelðxÞÞix�datag
The gradient of the log likelihood is

oðlogðpðxÞÞÞ
oh

¼ o

oh
�ai

Xn

i¼1

log 1þ 1

2
ðJixÞ2

� �
� log ZðhÞ

 !* +
x�data

ð1:2Þ

where h ix�data means an average over all image data and h refers to either
of the parameters a or J.

In the complete case, for which the total number of neurons n equals
the number of dimensions in the input x, this model is exactly equivalent
to standard ICA (Teh et al., 2003), and Eq. (1.2) can be written in a simple,
closed form because Z(h) can be shown to be equal to jinv(det(J))j. In gen-
eral, ICA can be performed with a variety of functional forms other than
that in the product of Eq. (1.1). (See Bell & Sejnowski, 1997 for further
discussion). In these cases the exact gradient can be computed and the
learning update rules are exactly equal to those proposed in traditional
ICA (Teh et al., 2003).

In the over-complete cases, for which the number of neurons is greater
than the dimensions of x, the normalizing constant Z(h) no longer has a
simple analytic form and thus the exact gradient is computationally intrac-
table. However, this gradient (Eq. (1.2)) can be shown to be equal to:
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where h ix�data means averaged over samples of the input training data
such that x consists of samples from the input x, and h ix�model means
an average over samples where x is drawn from pmodel(x) as given by
Eq. (1.1), which is the distribution of data defined by the current model.
In general pmodel(x) is not equal to the actual distribution of the image
data. When the two do become equal, the gradient (1.3) becomes zero
and (typically) a (global) maximum has been reached. In order to approx-
imate the h ix�model term in the gradient, Eq. (1.3), Monte Carlo Markov
Chain (MCMC) sampling methods must be used in order to sample from
pmodel(x). An approximate scheme called Contrastive Divergence (CD) is
available for avoiding part of the computational cost of this. Further de-
tails of CD learning and MCMC methods are provided in (Teh et al.,
2003).

The inputs to the algorithm were derived from eleven natural images
taken from the Van Hateren database (van Hateren & van der Schaaf,
1998). An input was either a 25 · 25 patch of a natural scene (each pixel
has an angular resolution of approximately 2 min of arc), or a 25 · 25
patch of a natural scene that had been filtered in a way that simulates
the effects of the goggles that Tanaka used. This was achieved by obtaining
a 2D Fourier transform of the image and keeping the power for all com-
ponents at the orientation selected by the goggles (GO) while performing
Gaussian blurring on all other components (see Fig. 1). Our simulated fil-
ter had a bandwidth such that only a 7 degree range of orientations kept
more than 30% of their maximum power.

Tanaka implemented what appears to be the most restrictive goggle-
rearing regimen to date (Tanaka et al., 2006), fitting freely moving kit-
tens with cylindrical lens goggles continuously from post-natal week
three. For our purposes, the best way to match this regimen would
not necessarily be to use exclusively goggle-filtered scenes as model
inputs because of the many factors that may limit the instructive effects
of goggle inputs. For instance, the presence of spontaneous activity
whose structure is determined by developmental factors that precede
the goggle rearing (Miyashita, Kim, & Tanaka, 1997; Miyashita &
Tanaka, 1992; Ruthazer & Stryker, 1996; Tanaka et al., 2004; Thomp-
son, 1997) could provide a counteracting bias. Indeed many studies
have shown that relatively normal neural responses are found in ani-
mals raised in completely dark environments (Barlow, 1975; Blakemore
& Van Sluyters, 1975; Buisseret & Imbert, 1976; Crair et al., 1998; Fré-
gnac & Imbert, 1984; Godecke & Bonhoeffer, 1996; Movshon & Blake-
more, 1974), which suggests that there is a spontaneous activity that
may serve to restore normal tuning properties. Indeed, kittens which
experienced longer periods of dark rearing showed more modest effects
of goggle-rearing (Sengpiel et al., 1999; Tanaka et al., 2006). Since func-
tional models trained on natural scenes have previously been shown to
produce results which resemble the tuning properties of normal neurons
(Bell & Sejnowski, 1997; Hyvarinen & Hoyer, 2001; Olshausen & Field,
1997; Osindero et al., 2006; Rehn & Sommer, 2007; van Hateren & van
der Schaaf, 1998), we explore the effects of mixing different proportions
Fig. 1. Computer-simulated goggles. (a) An original natural image from
the van Hateren database. (b) The image in (a) transformed to simulate
goggles that restrict the image power to an input orientation of 56 degrees.
of goggle-filtered and un-filtered natural scene inputs. Differences in
results induced by this, along, perhaps, with differences in rigor among
striped rearing protocols, may help account for the variability in the
outcomes of early goggle- and stripe-rearing experiments.

Here, we simulated the effects of goggle-rearing by training a (POE)
model with inputs consisting of unadulterated natural scenes and/or nat-
ural scenes that had been filtered with (software-defined) goggles (see
Fig. 1 and Supplementary Fig. 1). The cortical representation is substan-
tially overcomplete in the sense that the visual cortex has roughly two
orders of magnitude more cells than its thalamic input (Olshausen & Field,
1997) so we applied POE models with differing degrees of overcomplete-
ness. As discussed above, different proportions of natural-scene inputs
were also tested.

More formally, we created stimulus sets consisting of image patches
from which 0, 50, 75, 90, 95, 98, and 100% were selected from goggle-
filtered scenes, mixed randomly with others from un-altered natural
scenes. Each set consisted of 150,000 samples in total. As is the conven-
tion, the input intensities were logarithmically transformed (Osindero
et al., 2006; van Hateren & van der Schaaf, 1998), and were then whit-
ened and reduced in dimension using principal components analysis to
the most variable 196 dimensions. Whitening and the logarithmic trans-
form speed up learning; they do not significantly change the results of
learning. Learning proceeded in this whitened, reduced space using one-
step contrastive divergence learning on batch sizes of 200 patches for
200 iterations. See Supplementary Methods for further learning details.
See also (Osindero et al., 2006) for the details of the learning algorithm.
The learned RFs were confirmed as being stable after about 100
iterations.

RFs were learned for 1·, 2·, and 4· overcomplete representations
(quantifying the number of model neurons compared with the number
of input dimensions) yielding sets of either 196, 392, or 784 RFs. All sum-
mary figures presented in the Results are averages of 4 runs with the same
input and degree of model overcompleteness, using different initial ran-
dom seeds for RF values. Following (Teh et al., 2003), a was set to 1.5
for the complete case and was initialized to 1 and learned for the overcom-
plete cases.

We used standard methods (Osindero et al., 2006; Ringach, 2002;
Tanaka et al., 2006) to investigate the receptive field properties of the
resulting individual RFs, such as their orientation selectivity, and also
the properties of the population, such as the fraction tuned to the orienta-
tion favored by the goggles. In particular, we obtained tuning curves for
each of our model neurons by averaging the absolute values of their
responses to all phases of cosine gratings spaced 2 degrees apart. Absolute
values were used in measuring tuning curves because ICA-like models do
not differentiate between positive and negative model neuron responses
(see the quadratic term in Eq. (1.1)). The frequencies of the cosine gratings
were matched to the best-frequency of the Gabor functions that fit each of
the model neurons most closely. RF parameters of aspect ratio and lengths
were computed from the length/width and width, respectively, of the 2D
Gaussian envelope corresponding to the best-fit Gabor functions of each
neuron. Unless stated otherwise, histograms of preferred orientation for
our model neurons are shown for 36 bins centered at 5–180 degrees. Best
orientations of our model neurons were mapped circularly onto the range
2.5–182.5 degrees.

3. Results

The POE model, using regular natural scene input, has
been shown (Osindero et al., 2006) to provide a reasonable
fit to many receptive field (RF) properties of simple cells in
the normal cat and macaque monkey. Model results com-
pare well with simple cell properties of peak spatial fre-
quency, spatial frequency bandwidth, aspect ratio, and
shape (De Valois, Albrecht, & Thorell, 1982; Jones & Pal-
mer, 1987; Parker & Hawken, 1988; Ringach, 2002). (See
Supplementary Fig. 5.)
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We studied the RF properties for the different degress of
overcompleteness and the different strengths of
goggle-reared input (see Fig. 1). Except for the cases
involving the most extreme percentages of goggle-filtered
stimuli, many model neuron units developed localized,
oriented gabor-like receptive fields (RFs) with well-formed,
unimodal tuning curves (having a single peak and a circular
variance as defined by Ringach (2002) of 60.6). Fig. 2a
shows two examples.

As has also been observed with natural scene inputs
(Osindero et al., 2006), the degree of overcompleteness
has an effect on the total number of such localized model
neurons. In particular, the absolute number rises with the
total number of available units, but, as a percentage, falls
(Fig. 2b; 0% bars). Fig. 2b further shows that the number
of localized neurons also decreases when the proportion
of goggle-filtered stimuli used in the training set is
increased. This decrease can possibly be explained by the
following: Localized RFs are necessary for maintaining
sparse responses to inputs with natural scene statistics
inputs. Since goggle-filtered stimuli occupy a much smaller
volume of dimensional space than natural stimuli, the
necessity for localized responses decreases. In Tanaka’s
data, two out of three goggle-reared kittens showed about
1.5–2 times as many non-oriented units as the normally-
reared kitten (see Figs. 3 and 4 in Tanaka et al., 2006).
In our model, the non-oriented neurons (Supplementary
Fig. 2) also contribute to the appropriate representation
of the statistics of input images. Unfortunately, the
response properties of non-oriented neurons in goggle-
reared kittens have not been documented, and their contri-
bution to visual representation and behaviour is not clear.
In view of the scope of the data in Tanaka et al. (2006), for
the rest of the results, we report statistics only for model
neurons that are uni-modal and pass a standard test for
orientation-selectivity (i.e. circular variance 60.6).

The key consequence of training with stimuli containing
an over-representation of the goggle-filtered orientation
(GO) is an asymmetry in the distribution of cells which
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favors that orientation. Different degrees of overcomplete-
ness and over-representation lead to qualitative results that
have different strengths, a finding that may have relevance
to some of the early controversies in the experimental field
about the relative strengths of the effects of different rearing
protocols. We also find that for very high percentages of
goggle-filtered stimuli, the preferred distribution histogram
changes significantly in a way that has not been reported
experimentally.

More formally, the degree of over-representation in each
visual area can be defined by the over-representation index
(ORI), which for optical imaging data, is the ratio of the
number of pixels selective to GO, NGO, to the average
number of pixels per bin for all other orientations in the
histogram, Naverage.

ORI ¼ NGO

N average

In Tanaka’s study, area 17 and 18 of kittens reared with a
strict goggle regimen showed ORI values ranging from 3.74
to 12. A kitten whose goggle rearing was interleaved with
dark-rearing episodes showed lower ORI values (a result
that was expected, since spontaneous activity in darkness
was believed to aid normal development). In contrast, neu-
rons in normally reared kittens showed no bias in orienta-
tion tuning preference (see Fig. 3g in Tanaka et al., 2006).

Fig. 3 shows the complete set of distributions for all lev-
els of overcompleteness and all proportions of bias towards
goggle-filtered inputs (here favoring the orientation 56
degrees). The plots that are highlighted in bold show the
parameter range which produces results most comparable
to Tanaka’s data. In these cases, there is an over-represen-
tation of RFs oriented at GO and a roughly even distribu-
tion of neurons oriented at other orientations (with the
exception that there is an absence of neurons immediately
on either side of GO, a point we consider in more detail
below). The over-representation of the GO, which scales
with the proportion of goggle-filtered stimuli, can be over
3 times that of other orientations, as is also seen in the
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Tanaka data. Exact ORI values depend on the histogram
bin width used for calculation. Tanaka’s study used 1
degree bins. In our study, ORI was calculated from a pre-
ferred orientation histogram with 5 degree bins in order to
obtain histograms with an adequate number of samples in
each bin. The ORI values reported for our model neurons
are averages over 4 runs. ORI values did not change by
more than 10% when using histograms with 1, 2, 5 and
10 degree bins, and trends in the values remained the same.

We also found that the tuning curve widths, RF aspect
ratios and lengths of our model neurons were similar to
those of real neurons. In the parameter range that appears
relevant to the experimental data, results with different per-
centages of goggle filtered stimuli are very similar so we
only show results for 90% goggle-filtered stimuli. For our
model neurons, the tuning widths (measured as full width
at half maximum of the tuning curve, FWHM) are smaller
for those neurons tuned to GO (Fig. 4a). Exactly the same
phenomenon is apparent in Tanaka’s data (Figs. 3,4,
Tanaka et al., 2006). Note that the tuning widths of RFs
measured using unit recordings cannot be exactly com-
pared to tuning widths measured by imaging (Tanaka
et al., 2006). Fig. 4b shows the mean FWHM as a function
of orientation for imaged pixels of the same goggle-reared
cat as Fig. 3b (Tanaka et al., 2006). Observe that while the
black and white lines in Fig. 3a and b respectively both rep-
resent the mean values of model and data neurons’ FWHM
as a function of preferred orientation, the background on
which the mean is overlaid differs. Results for our model
neurons are overlaid on a 2D density histogram whereas
the plot from Tanaka et al. (2006) is just a 2D plot of all
imaged points, gray scale (in print)/color (online)-coded
for preferred orientation.

Finally, in addition to having narrower tuning widths, our
GO neurons are found to have receptive fields (RFs) with
greater aspect ratios (length vs. width) and trends towards
greater absolute spatial lengths than neurons at other orien-
tations (see Fig. 5). Neurons with extremely long RFs which
were elongated in parallel to the GO were also observed in
the experimental study (Tanaka, personal communication,
2006). An earlier study involving a less severe form of stripe
rearing (Hirsch & Spinelli, 1970), also found, using electro-
physiology, that receptive fields at GO were markedly large.
Additionally, our model GO neurons have RFs with higher
spatial frequencies than neurons at other orientations (see
Supplementary Fig. 3). These high spatial frequency RFs
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20 degrees. (c) Sample elongated RFs of model neurons oriented at GO.
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are a result of the fact that goggle-filtered images have power
in high spatial frequencies only at the goggle-orientation.
This is a significant prediction of our model.

The most noticeable discrepancy between the output of
our model using these parameters and the results from
experimental goggle-rearing is the apparent absence of
model neurons which prefer orientations that are less than
10� away from GO (see Fig. 3). There is no evidence for
this in the kitten data. In our model, the pressure for this
absence results from the strong competition among model
neurons imposed by the sparseness constraint, not
restricted (perhaps unlike cortex) by any constraint to the
extent of receptive fields changes in response to the chan-
ged input statistics. This feature would likely be common
to all models that prefer sparse outputs, for reasons that
are discussed in the Supplementary Note. Furthermore,
our model neurons oriented away from GO also contribute
to the representation of goggle-filtered stimuli through a
systematic dip in their tuning functions at GO (see Supple-
mentary Fig. 4), a phenomenon which has also not been
reported experimentally. It may not be present in real neu-
rons due to the innate tendencies for natural tuning prop-
erties and limits on developmental plasticity (see Section 4).

The plots that are not highlighted in Fig. 3 show that the
model can produce other classes of output when the bal-
ance between overcompleteness and input overrepresenta-
tion is different. At a critical percentage of goggle-filtered
stimuli, the representation shifts to having no neurons pre-
ferring GO, along with a sharp increase of unoriented RFs.
This critical percentage increases with the degree of over-
completeness (further simulations with results not shown
were done to verify this trend). For the highest proportions
of goggle-stimuli, most RFs were large and un-localized,
and at 98% and 100%, few RFs even had obvious tuning
characterstics. The unlocalized RFs appear because the
lack of structure (i.e. the relatively small dimensional vol-
ume) in goggle-filtered stimuli no longer requires oriented,
localized RFs for the production of sparse responses.

Compared with the experimental data, it may be that the
percentage of goggle-filtered stimuli here is too large for
there to be an experimental goggle-rearing regimen of com-
parable strength in the presence of innately driven sponta-
neous activity, especially in light of the ostensible extreme
overcompleteness present in the cortex. Alternatively, these
anomalous results could be a failing of this model for
describing the most extreme regimens of goggle-rearing,
revealing a limitation of this type of model in the face of
extreme stimulus driven cortical alterations.

One dimension of variation that may be important in
comparing the results of different experiments on goggle-
rearing is the strength of the goggles used, which
determines the severity to which visual input is restricted
to a single orientation. To explore the effects of different
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strengths, we simulated goggles for which a 20 degree range
of orientations kept more than 30% of their maximum
power. These goggles are significantly weaker than those
used in the Tanaka study. The weaker goggles resulted in
systematically smaller ORI values, consistent with the
trend that rather weaker effects of GO over-representation
were observed in previous experiments (Hirsch et al., 1983;
Sengpiel et al., 1999). Additionally, the weaker goggles do
not result in dips in the orientation histograms near but not
at GO. That is, there is no longer an absence of model neu-
rons tuned near to, but not at, GO. This absence reflects
the fact that the weaker goggles allow through more power
at a wider range of orientations, therefore weakening the
competition for GO oriented RFs.

Another feature of model RFs learned with weaker gog-
gles is the population representation at extreme propor-
tions of GO stimuli (98–100%). Here, instead of the
prevalence of un-localized RFs along with the complete
absence of RFs aligned to GO that arise with the strong
goggles, two characteristic types of localized RFs arise:
one set which are elongated and aligned parallel with GO
(as was also observed for lower percentages of GO), and
one set which are fatter, and orthogonal to GO. Intuitively,
the parallel RFs arise because the presence of power at ori-
entations other than GO favors the same sort of solution as
for lower percentages of GO stimuli; the orthogonal RFs
arise to help represent the extreme proportions of GO.

In models such as ours, the whole collection of units
evolves together, and is jointly responsible for representing
inputs. Thus the development of one unit depends on the
other units that are present. To explore the effects of limits
to cortical plasticity, perhaps associated with a critical per-
iod, we simulated a case in which all the units were initialized
with receptive fields that arise when the model is trained on
natural-scenes data, and then a proportion of the units had
their receptive fields clamped during the subsequent presen-
tation of goggle-filtered images, so that they would preserve
their original tuning. We observed (data not shown) that
these clamped units did not significantly affect the pattern
of results. Indeed, the distribution of RFs was similar to
those seen before, and the GO oriented model neurons had
the same elongated RFs and narrow tuning widths described
above. Finally, we also ran our simulations without dimen-
sionality reduction on smaller image patches (14 · 14 and
16 · 16). This produced similar results to our original dimen-
sion-reduced analysis with the only difference being that the
presence of additional power at high frequencies had the
effect of shifting the transition from representations with
an over-representation of GO parallel RFs to an absence
of GO parallel RFs to a lower percentage of GO-oriented
stimuli (75%) for the 1· complete case.

4. Discussion

We have shown that a model based on particular princi-
ples of statistical unsupervised learning captures many fea-
tures of cortical neural development under the drastic
environmental manipulation of rearing with goggles per-
mitting exposure to just a single visual orientation (GO).
The resulting model neurons share with the neurons of gog-
gle-reared kittens an over-representation of RFs with pre-
ferred orientation at GO, a lower proportion of oriented-
localized neural RFs relative to normally-reared kittens,
narrower tuning widths for RFs at GO, and larger and
more elongated shaped RFs at GO. We also found that
the degree of over-representation of RFs at GO scales
markedly with both the proportion of goggle-filtered stim-
uli used in the input and the strength of the simulated gog-
gles, which is our attempt to replicate different degrees of
severity in goggle-rearing protocols. This may explain the
variable extents of over-representation observed across
the many various experiments (Blakemore & Cooper,
1970; Hirsch & Spinelli, 1970; Sengpiel et al., 1999; Stryker
& Sherk, 1975; Stryker et al., 1978; Tanaka et al., 2006).

We followed previous work and explored the behaviour
of our model with overcomplete representations (Olshau-
sen & Field, 1997; Osindero et al., 2006; Teh et al., 2003).
While the representation in the cortex is typically assumed
to be greatly overcomplete relative to its thalamic imput,
the (not unquestioned) estimate of �100 times overcom-
pleteness is too large to simulate. Therefore, it is important
that our models exhibit reasonable behaviour as the degree
of overcompleteness increases, licensing extrapolation.
Indeed, we found that the model results still hold with
increasing overcompleteness and also that the proportion
of goggle-oriented stimuli that still gives rise to experimen-
tally observed receptive-fields increases with
overcompleteness.

The results we showed here are inevitably qualitative,
because we could not simulate the actual degree of over-
completeness of the cortex, and we did not have a way of
exactly simulating the balance between stimulus and spon-
taneous activity driven influences on the kitten’s cortical
development. Thus, we explored different levels of over-
completeness to show the robustness and general qualita-
tive trends of our results within a broad range of
parameters.

Another reason we emphasize the qualitative nature of
our results is that the data in Tanaka et al. (2006) was col-
lected from six goggle-reared kittens. While all kittens
showed the systematic cortical changes mentioned above,
there was no clear quantitative statistical relationships
between different aspects of the changes. For example,
the exact proportion of oriented vs. non-oriented neurons
did not have an obvious monotonic relationship with
ORI value. It remains unknown whether more data would
establish a more consistent quantitative relationship
between changes that is captured by our model (some of
which are described below), or whether these relationships
lie outside the scope of our model.

ICA-based unsupervised learning models embodying the
same functional goals as ours have previously been applied
to the development of normal cortical organization.
Indeed, the 1x overcomplete version of our model is iden-
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tical to traditional ICA (Teh et al., 2003). Our results show
that they also well describe the plasticity engendered by
(altered) stimuli. In fact, the conditions which we have con-
sidered, in which plasticity is driven by goggle-filtered nat-
ural scenes, is closer to the biological reality, since
development in those previous accounts depends on input
(i.e. natural scenes) that is not actually available during
those phases of development.

One natural reaction to our study is that an ICA-based
model would have no option but to produce the over-rep-
resentation of RFs aligned with the goggle orientation.
However, further consideration reveals a more counter-
intuitive nature to these results. The task for all such mod-
els is to decompose the statistical distribution of inputs into
separate pieces signalled by the output units. In the models,
large neural responses signal the presence of rare (low
probability) stimuli. Learning therefore captures the statis-
tics of the input by finding RFs such that units would gen-
erally only be weakly activated by high probability images,
leading to a representation that is sparse. Therefore, a rea-
sonable naı̈ve guess for the form of such RFs would be that
they are aligned orthogonal to rather than parallel with
GO.

We investigated the properties of such orthogonal RFs
and found that while they do in fact produce sparse
responses to goggle stimuli, they need to be fat and large
in order to capture the statistics of goggle-stimuli structure.
These large fat orthogonal RFs produce very un-sparse
responses to natural scenes and consequently are poor at
representing image data that even consists of a small pro-
portion of natural scenes. Indeed, in our simulations such
RFs are more common in the face of extreme proportions
of goggle-filtered inputs.

Similarly, one might assume that model neurons with
RFs orientated parallel with GO would respond all the
time (very un-sparsely) to goggle-filtered stimuli. However,
the elongated shape of the RFs parallel to GO actually
make them very selective, responding with large activities
only for particular classes of goggle-filtered input stimuli,
thus preserving their sparse response distributions. Fur-
thermore, RFs that are elongated parallel to GO also pro-
duce sparse responses to natural stimuli as well.

Aside from sparseness, the central task for unsupervised
learning in this model is to find RFs that effectively repre-
sent the stimulus statistics. The various models differ
according to the semantics of the units’ activities, and the
way that their outputs are combined to characterize the
overall input distribution. In the POE model we used, the
activity of a unit reports the violation of a set of constraints
defined by its RFs. The improbability of the stimulus is
determined by multiplying together the costs of all the vio-
lations. Stimuli rarely violate many common constraints
simultaneously, and so the activity of the representational
units is sparse. This view of RFs as setting constraints
can help illuminate the reason for the characteristics of
the model RFs that we find for goggle-filtered images: elon-
gated GO RFs act together to constrain the stimulus to
particular striped patterns. Thus the over-representation
of GO RFs serves to capture the striped statistics of the
goggle-filtered scenes while maintaining sparse responses.

The POE model has some advantages over more con-
ventional so-called causal generative models (Hyvarinen
& Hoyer, 2001; Karklin & Lewicki, 2003; Olshausen &
Field, 1997). Most particularly, it better captures the
shapes and preferred frequencies of RFs of real neurons
(Osindero et al., 2006; Ringach, 2002) than traditional
sparse coding and ICA models (though recent work has
shown that imposing hard sparseness constraints on sparse
coding models can also result in a more realistic distribu-
tion of RF shapes; (Osindero et al., 2006; Rehn & Sommer,
2007)). Also, causal generative models are based on the
assumption that natural images arise from independent
causes. This assumption has its limitations because salient
natural scene features often contain clear dependencies.
The POE offers an alternative way of capturing input sta-
tistics that does not assume independent causes in its input.

Nevertheless, the extent to which the assumptions in dif-
ferent models accurately describe the organization of visual
cortex remains unclear. It is likely that other overcomplete
models also based on sparse characterizations of the input
(Olshausen & Field, 1997; Osindero et al., 2006) will share
at least some, if not all, of the results with the POE model
discussed here. These results are not intended as a means of
distinguishing between different ICA-based models.
Instead, we hope our results will serve as an example of
the applicability of this larger class of ICA-based models
to cortical adaptation. Also, of course, the model is still
highly simplified, for instance lacking a clear separation
between excitatory and inhibitory units, or the sort of
non-linear, complex-cell-like units whose functional roles
are slowly becoming understood (Bell & Sejnowski, 1997;
Hyvarinen & Hoyer, 2001; Karklin & Lewicki, 2003; Ols-
hausen & Field, 1997; Rehn & Sommer, 2007). It has been
suggested (Zhaoping, 2006) that these latter features play
only a modest role in capturing input statistics, and so need
not necessarily alter the essential structure of our findings.

The imperative for sparsity accounts for the two main
aspects of our model that do not seem to have a clear par-
allel in the experimental data. First, our non-GO oriented
model neurons have rather specific dips in tuning at GO
in order to enhance sparseness (see Supplementary
Fig. 4). Second, our model produces fewer neurons with
best-orientations near, but not exactly, GO. This is because
these neurons would not be able to maintain sparse selec-
tive responses to GO. One possible source of the difference
is that we do not constrain the range of possible changes to
the RFs of the model neurons, whereas it is quite likely that
the real neurons are not so labile. Indeed, (Tanaka et al.,
2006) suggests that two different functional mechanisms
are responsible for the changes: instruction (shifts in pre-
ferred orientations of neurons towards GO) and selection
(decreases in orientation selectivity of neurons that prefer
orientations other than GO). One main rationale for selec-
tion is that neurons may not be arbitrarily plastic. This
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requires them to shift gradually towards having peak tun-
ing at GO and thus could explain why there are not fewer
experimental neurons with preferred orientations near, but
not at, GO. The requirement for gradual tuning shifts may
be due to the significant lateral interactions present among
experimental neurons with similar tuning. Constrained
plasticity could also limit their ability to have tuning curves
that dip specifically at GO. Understanding how best to
characterize these constraints is an important direction
for future work.

Additional studies involving larger samples of electro-
physiological recordings would be the best way of further
assessing the validity of this model. A first test would be
to determine whether neural responses, including neurons
with non-localized, oriented RFs, really do exhibit sparse
responses to GO filtered input. An even more complete
characterization of neurons’ RFs and tuning properties
would be needed in order to compare more precisely with
the RF characteristics predicted by this model. Most nota-
bly, model neurons with RFs aligned to GO have higher
peak spatial frequencies (see Supplementary Fig. 3). Also,
the results of our simulation predict an extreme shift in
neural representation in the case that goggle-stimuli repre-
sent very nearly all of the instructive force guiding develop-
ment. Under these circumstances, our model predicts RFs
that exhibit a marked absence of preferred orientations at
goggle-orientation and that are mostly un-localized and
un-oriented. These RFs may also have dips in tuning at
GO. Unfortunately testing this would require such extreme
manipulations that it may not be experimentally feasible.

Functional and mechanistic models are both important
for understanding neural systems. Indeed, each has its
own advantages and disadvantages. Our account inherits
all the limitations of a purely functional account of cortical
organization, in particular not suggesting a biologically
testable mechanism that prescribes the step-by-step pro-
gress of cortical development. Thus, this type of model can-
not resolve pertinent issues about how the cortex
accomplishes its organization, as is addressed in the debate
between instruction vs. selection. Furthermore, whereas
mechanistic models can directly be refuted or at least
refined by any failure in the face of very unusual inputs,
it might seem that a functional model could be protected
from this fate on the grounds that it is only intended to
describe normal, not abnormal, function. However, one
major intent for unsupervised learning models is to provide
an account that can address the general capacity of differ-
ent cortical regions to represent statistical structure in a
variety of inputs. Therefore, if such models such as ours
had failed in the face of altered input statistics, it would
indeed have provided a route towards refinement.

We believe that the applicability of these models to
extreme stimulus-driven cortical organization reinforces
the insight that nervous system adaptation has functional
goals similar to those of innate hard-wired organization.
This expands on the domains in which these functional
principles are able explain nervous system characteristics.
In the end, a fully coherent view of cortical organization
will only be complete when functional models are incorpo-
rated and made compatible with more detailed mechanistic
models of neural development (Miller et al., 1999, 1989).
Additionally, the most challenging direction for future
work is to extend both the experimental and theoretical
paradigms to richer classes of manipulations to the input
distribution. In particular, it is most compelling to treat
the adaptations to input statistics shown over the course
of months of goggle-rearing as being one end of a whole
spectrum, at the other end of which are the millisecond
scale changes evident in very short-term adaptation para-
digms (Dragoi, Sharma, & Sur, 2000; Teh et al., 2003).
Finding a functional explanation that accounts for the
changes across this range of time scales is a pressing and
important problem.
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