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ABSTRACT

Background: Attention-deficit/hyperactivity disorder (ADHD) affects up to 10% of school-age
children. The impulsivity which is seen as its core feature persists over years, yet experimen-
tal measures of impulsivity can be altered in a single session. In this study, we tested the
theory that both the persistence and the variability of impulsivity could be the result of ab-
normalities in learning mechanisms and environment.

Method: We extended an existing model of the role of dopamine in operant conditioning to
address the delayed response time task, which is one of the standard tests for impulsivity in
ADHD. In this task, subjects choose between immediate responding for a small reinforcer
and later responding for a larger one. We studied the influence on impulsivity of four key pa-
rameters of the model: The learning rate, discount factor, brittleness, and action bias.

Results: The behavior of the model is broadly comparable with electrophysiological (mon-
key) and behavioral (ADHD and normal) data. Variations in any of the parameters can cause
impulsivity. All parameters except the discount factor show inverted U-shaped curves for
their effects on impulsivity, suggesting, for example, how either hyper- or hypofunctioning
of dopamine can cause impulsivity. The model suggests how decision making can be affected
by environmental unpredictability, and thus offers an account of one aspect of the natural
history of ADHD.

Conclusions: Some types of ADHD may be caused by specific deficits in reinforcement
learning and in the use of learned lessons. Environmental factors can interact with these
deficits to delay maturation.

INTRODUCTION attention, hyperactivity, and impulsivity. It af-
fects 5%—10% of school-age children, in severe
TTENTION-DEFICIT / HYPERACTIVITY DISORDER  cases putting their social and psychological de-

(ADHD) is a developmental disorder de- velopment at risk (Scahill and Schwab-Stone
fined as involving difficulties with sustained 2000; Taylor 1994).
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Neuropsychological deficits have been de-
scribed in ADHD, particularly in tests of selec-
tive attention and frontal function (Doyle et al.
2000; Grodzinsky and Barkley 1999; Lockwood
etal. 2001). Reduced activation of various frontal
areas has been described in ADHD children
during Stroop, stop, and motor-timing tasks
(Bush et al. 1999; Rubia et al. 1999). Abnormal-
ities of event-related potentials in a continuous
performance task, of visuomotor perception, and
of verbal memory and learning have also been
described (Oie and Rund 1999; Raggio 1999;
Sunohara et al. 1999). Children with ADHD also
suffer from academic impairments (Barkley et
al. 1991; Faraone et al. 1993). Some impairments
persist from preschool to college age (DuPaul
et al. 2001; Heiligenstein et al. 1999). These char-
acteristics may be more marked in certain sub-
groups (Swanson et al. 2000a).

Even though several large twin studies have
established the inheritability of ADHD to be
approximately 0.80 (Swanson et al. 2000b; Tha-
par et al. 1999), it is also subject to important
environmental influences, both within and be-
tween experimental episodes. For example, the
learning of ADHD children is particularly sus-
ceptible to disruption by noncontingent and par-
tial reinforcement schedules (Douglas and Parry
1983). Slusarek et al. (2001) found that ADHD
children’s performance in a stop-signal task was
deficient under conditions of low incentive but
normal with higher incentive. Castellanos et al.
(2000) have found that the oculomotor go-no
go task, in which ADHD children make twice
as many commission errors, and three times as
many intrusion errors, as normals, is subject to
a “practice effect” sufficient to prevent the use
of repeat testing in experiments. Similarly, Chee
et al. (1989) felt their data indicated that prac-
tice was an important variable affecting per-
formance of ADHD children in a continuous
performance task. There is, however, no evi-
dence that such experimental changes general-
ize to day-to-day life.

ADHD symptoms, though sometimes lasting
into late adolescence or adulthood, do appear
to reduce with age in many cases (Mannuzza
and Klein 2000; Pineda et al. 1999). Hence, both
continuity and its apparent opposite, context
specificity, are seen in ADHD, in both every-
day behavior and the laboratory. This paper

161

proposes that both aspects are predictable, and
result from: (1) idiosyncratic, genetically deter-
mined learning mechanisms, and, to a lesser
extent, (2) idiosyncratic environments. This con-
forms with the framework of nature-nurture
interactions, which are being increasingly rec-
ognized as central to child psychiatry (Rutter
and Plomin 1997; Rutter and Rutter 1993).

Impulsivity in ADHD

Many researchers have suggested that the
central deficit in ADHD is impulsivity (Barkley
1997; Tannock 1998). Impulsivity generally
means acting with inadequate thought, or with-
out adequate consideration of reward or punish-
ment. Varieties of impulsivity can be defined,
often based on hypothesized underlying mech-
anisms (such as deficits in response inhibition
or switching or timing). Experimental tests used
to access these include delayed reward, go-no
go, stop tasks, response time in the uncertain
visual discrimination test, and delayed response
time tasks (DRTT) (Evenden 1999; Rubia et
al. 2001).

In the DRTT, subjects are offered two different-
sized reinforcers (of various different sorts): A
small one if they act immediately, or a larger
one if they act later. Though this willingness to
wait has not yet been completely quantified, it
is clear that children with hyperactivity are
more likely to respond to get the small imme-
diate reinforcer than are control subjects (Rap-
port et al. 1986). In this study, we modeled
impulsivity in the DRTT, exploring, quantita-
tively, Taylor’s (1994) view that “it cannot be
assumed from the cognitive studies so far that
we are dealing with a deficit of inhibitory con-
trol rather than an alteration in the ways that
decisions about inhibition are made.” Indeed,
as in the model, such decisions may be based
on many factors other than the size of the rein-
forcers (Sonuga-Barke et al. 1998).

Computational modeling of neuromodulation
in ADHD

Computational modeling is widely used in
psychology and neuroscience as a tool for spec-
ifying and testing information-processing ac-
counts of neural function and behavioral data,
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and for integrating and accounting for large and
disparate bodies of experimental data. O'Reilly
and Munakata (2000; see also Dayan and Ab-
bott 2001) provide an excellent overview of
this approach.

This paper is primarily concerned with the
behavioral effects of variations in constraints
(or parameters) controlling learning. The map-
ping of these parameters to brain structures (as
in Fig. 1A) is considered mainly where the ex-
perimental data are strongest, namely with the
dopaminergic neuromodulatory system origi-
nating in the ventral tegmental area (VTA) and
substantia nigra pars compacta (SNc). The im-
portance of other neurotransmitters and neu-
romodulators is considered later.

The model presented in this paper is a sim-
ple application to the DRTT of a form of learn-
ing called temporal-difference learning, which
is standard in a computational field called re-
inforcement learning (Sutton and Barto 1998).
The link from this learning method to dopamine
function was originally made by Montague et
al. 1996; see also Friston et al. 1994) to account
for data on the activity of dopamine cells in the
VTA and SNc of macaque monkeys during the
learning of an operant conditioning task (Schultz
1998). The idea is that the monkeys are con-
stantly learning to predict future reinforcement
within a trial, and that the phasic (not tonic) ac-
tivity of dopaminergic cells signals mismatches
in these predictions. This “error signal” is used
directly to control the learning of predictions,
and the predictions are used, in turn, to control
which actions are selected. The model accounts
well for a wide variety of data on the dopamine
system in learning (Schultz et al. 1997), for which
there is also accumulating evidence in humans
(Fried et al. 2001). It has also been used to model
human (fMRI) data in reward learning (Mc-
Clure et al. 2003; O'Doherty et al. 2003, 2004).

MODEL AND METHODS

Our model is based on a computational ac-
count of the involvement of dopamine in
Pavlovian and operant conditioning. In this
account, dopaminergic activity reflects ongo-
ing errors in the subjects” predictions of future
reinforcement. These errors are used as signals
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for learning appropriate predictions and also,
in the operant case, for learning actions that
maximize the delivery of rewards.

In the version of the DRTT that we modeled,
a buzzer sounded at a fixed time in a trial, and
then the subject had multiple opportunities to
press a lever. If the lever was pressed shortly
after the buzzer, then a small reinforcement was
given; if the subject waited for longer, a larger
reinforcement was provided. The lever could
only be pressed once in each trial, and only after
the buzzer. In the simulation, time after the
buzzer was discretized into steps (of a length of
a few seconds), the small reward (magnitude
r =1) was given if the (model) lever was pressed
in the second timestep after the buzzer, and the
larger reward (magnitude R = 4) was provided
if the computer chose to wait until the fifth
timestep before the lever was pressed.

Figure 1A shows the model. The different
timesteps following the buzzer count as sepa-
rate, distinct states, each represented by a unique
pattern of neural activity in the cortex (likely the
prefrontal cortex). The basal ganglia (together
with affective processing structures, such as the
amygdala) learn to associate these states, to-
gether with potential actions, with predictions
of future reinforcements. The “action” (such as
pressing a lever or waiting) which appears likely
to produce the largest future reinforcement is, in
general, selected by the basal ganglia. The “pre-
dicted reinforcement” is used together with in-
formation about actual reinforcement to create a
“prediction error” signal. This, in turn, is used to
alter the predictions that are made when, in fu-
ture, the same situation or state is encountered
again. The prediction error signal models activ-
ity of the dopaminergic cells in the VTA and SNc.

Prediction and action learning follow the
tenets of temporal-difference learning, which
is described in detail in the Appendix. Briefly,
note first that learning to get the larger, more
delayed reinforcer is quite tricky. For instance,
consider the case that a subject, or the model,
gets a large reinforcer by randomly happening
to press the lever for the first time within a
trial at timestep 5. To repeat this feat, not only
does the subject need to remember the benefit
of pressing the lever at this timestep, but the
subject also must remember or figure out not
to press the lever at timestep 4 (and then time-
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FIG.1. Overview and operation of the model. (A) Structure of the model. VTA: ventral tegmental area and substan-

tia nigra pars compacta. (B) Decisions that must be made by

the model in each DRTT trial. At each timestep (t1-t5), the

model must select either waiting or pressing the lever. DRTT, delayed response time task; OFC, obitofrontal cortex.

step 3 and 2 and 1) so that the larger reinforce-
ment is still available. In temporal-difference
learning, knowledge about future events usually
propagates backward step-by-step over multi-
ple learning trials—in this case, to the time of
the buzzer.

To clarify the operation of the model, Figure
1B shows the 10 numbers which the model ad-
justs to form its representation of the DRTT en-
vironment. These numbers comprise a pair of
numbers for each timestep, giving the total fu-
ture reinforcement expected for each of the two
choices, namely pressing the lever or waiting.
These numbers are represented in what is
known as a lookup table, which is the very
simplest form of neural network.

Before any trials have been performed, there
is no expectation of any reinforcement. The val-
ues of the 10 predictions are, therefore, all zero,
as follows (corresponding to the structure shown
in Fig. 1B):

t1 t2 t3 t4 th
Wait: 0 0 0 0 0
Press: 0 0 0 0 0

The following table shows the situation after
a hypothetical learning episode in which the
model has learned to predict, from the start of
any trial, the availability of small reinforcement

1, which can be achieved by deciding at t1 to
wait, and at t2 to press. Such a steady state, re-
flecting ignorance of the availability of large
reinforcement R, can be achieved in several
ways that we explore later:

t1 t2 t3 t4 th
Wait: 1 0 0 0 0
Press: 0 1 0 0 0

The final table shows the situation after a
learning episode in which the model has ex-
plored his or her options thoroughly and is
aware of both r and R; the only real choice fac-
ing the model is at t2, when he or she must select
between the small reinforcement immediately
and the larger one later. The “Press” line reads
0-1-0-0-4 because these are the rewards for press-
ing at each timestep. Pressing at t1, t3, or t4 is
not rewarded at all, and the model correctly
learns this.

t1 t2 t3 t4 th
Wait: 4 4 4 4 0
Press: 0 1 0 0 4

Figure 2A shows the model learning to per-
form the task over the course of 500 trials. The
short horizontal lines show when, in each trial,
the lever was pressed. In the first few trials, the
lever is pressed at the time of the buzzer, lead-
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ing to no reinforcement. Quite rapidly, the model
learns to get the small reinforcement by wait-
ing one timestep after the buzzer, but only after
some 250 trials does the model learn to wait
for the large, later, reinforcement. Figure 2B
shows the prediction error signal that controls
learning. Unexpected reinforcers, or “pleasant
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surprises,” increase this signal, shown as upgo-
ing peaks in the figure. The color of the peaks is
an artefact of the plotting program, but conve-
niently separates white foreground peaks (t > 0)
from the black slower-changing values at t = 0.

The white peaks form two curved “mountain
ranges,” one corresponding to the small rein-
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FIG. 2. Comparison with electrophysiological recording in monkey. (A) Choices made by model during normal
learning of the task over 500 trials. The horizontal axis starts at t = 0 in each trial; b is the time of the buzzer, indicating
the start of the period during which the lever can be pressed; r indicates the time when a small reinforcement can be
obtained by pressing the lever; R indicates the time when a large reinforcement can be obtained. (B) Prediction error
during the same 500 trials. The trial number is shown on one axis, and the time within each trial on another, using no-
tation as in (A). Note that positive prediction errors (shown on the vertical axis) occur earlier within later trials, re-
sulting from lessons accumulated gradually over many trials (see text for explanation). (C) Macaque VTA dopamine
cell activity at an early stage (upper plot: corresponds with early trials in (B) and late stage (lower plot: corresponds
with late trials in (B) of learning to perform an operant conditioning task. Standard values of parameters for A and B
and subsequent figures (explained later): brittleness = 2; action bias = 0; discount factor = 0.95; learning rate = 0.3. See
text for further explanation. (C) adapted from Mirenowicz and Schultz (1994)). VTA, ventral tegmental area.
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forcements, which are increasingly well pre-
dicted (so the peaks become smaller and move
toward t = 0) as the first 20 trials pass; and the
other corresponding to the large reinforcements
(which are much less frequent in early trials
and which also move toward t = 0). Figure 2A
shows that, within approximately 20 trials, the
model is reliably achieving the small reinforce-
ment r. At the same trial in Figure 2B, the small
reinforcement r is perfectly predicted from the
beginning of the trial (t = 0), so the signal, indi-
cating “pleasant surprise,” shows a brief posi-
tive deflection at the beginning of each trial.
After approximately 250 trials, though, the large
reinforcement R is reliably achieved (Fig. 2A),
so the large reinforcement can be perfectly pre-
dicted from the beginning of the trial, and so
the error signal at t = 0 reliably rises to 4 (Fig.
2B). This signal formally arises from the assump-
tion that the start of each trial is completely un-
expected; its existence is crucial for the way
that temporal-difference learning models an
exactly equivalent signal seen in recordings of
dopamine-cell activity (Schultz et al. 1997) and
also temporal phenomena in classical condi-
tioning, such as secondary conditioning (Dick-
inson 1980).

In cases discussed below, the model can get
trapped pressing the lever at timestep t2 and
receiving the small reward rather than waiting
until t5 and getting the large reward. Pressing
the lever too early is an operational definition
of impulsivity. Thus, in studying what controls
this outcome for the model, we studied the
conceptual provenance of impulsivity.

Parameters of the model

Whether or not the model ever learns to wait
for the larger reinforcement, and how the model
does so, are controlled by four key parameters.
In this context, parameters are numerical mea-
sures of long-term aspects of the model’s (and
thus, putatively, the child’s) behavior. These
parameters are generally unchanging during a
single experimental episode and may be genet-
ically controlled. Although the parameters in-
teract to determine the overall behavior of the
model, we studied primarily the simple case of
their effects in isolation.
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The first parameter of the model is the brit-
tleness, defined as “the extent to which behav-
ior is based on learned lessons” (Holland 1986;
Servan-Schreiber et al. 1990 discuss the same
idea, using the term “signal-to-noise ratio”).
This determines how differences in the predic-
tions of the future reinforcement translate into
differences in the propensity of the model to
select those actions. Clearly, actions that are
expected to lead to higher rewards should be
chosen more frequently. Just how much more
frequently is determined by the brittleness pa-
rameter. Brittleness is one way of controlling
the balance between exploitation of existing
knowledge (in the difference in predicted re-
wards) and exploration to improve and refine
the knowledge. Exploration becomes more im-
portant in “noisy” and changing environments,
in which the past is only an imperfect guide to
the future. If the model is set to be very brittle,
then early observation of the small reward r
will make pressing at t2 overwhelmingly more
likely than waiting. This, in turn, will make it
hard for the model ever to discover the large
reward R, and will, therefore, impede the de-
velopmental progression of the model beyond
the type of behavior characterized as impul-
sive. If the brittleness is set very low, then the
model would exhibit a comparative inability
to persist with one behavior, even when it had
collected adequate information about reinforce-
ment availability. This effect is closely related
to Servan-Schreiber et al.’s (1990) analysis of the
influence of stimulants on the ability of net-
works to detect a signal embedded in noise.

The second parameter is action bias, which
is a measure of the model’s preference of action
over inaction. This is greater than zero if there
is an inate bias to act, as would arise if the ac-
tion of pressing is, itself, reinforcing. Conversely,
it is negative if inactivity is preferred. A non-
zero action bias can force the model to make
decisions which are suboptimal from the per-
spective of harvesting external rewards. Such
a preference could, in theory, be innate or
learned, or both.

The third parameter is learning rate. In the
model, changes in predictions (and, thereby,
changes in the probabilities of actions) are pro-
portional to the prediction error. The learning
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rate is the constant of proportionality and, there-
fore, has a multiplicative effect on the speed of
change. Note that for consistency with the com-
putational literature, the term is taken to mean
the maximal rate at which predictions can
change, rather than, as would be more natural
from a behaviorist perspective, the rate at which
behavior changes. Changing the learning rate
has significant effects beyond simply altering
the rate of DRTT acquisition. For instance, if
learning happens too quickly, then the merits
of the first reinforcement found (which is likely
to be the smaller one) can be learned so strongly
that the model never explores adequately to
find the other reinforcement. Conversely, if the
learning rate is too slow, then it may take too
long (more than 500 trials in our model) to learn
about the later reinforcement. In our study, we
treated the learning rate as a surrogate for var-
ious heritable factors associated with enhanced
or suppressed release of dopamine. However,
various other factors are also likely to control
the learning rate, notably cholinergic and nor-
adrenergic neuromodulation (Holland and Gal-
lagher 1999; Yu and Dayan 2002a,b).

The final parameter is the discount factor
(D). The idea in this parameter is that a rein-
forcement expected in the future is worth less
than the same reinforcement delivered now.
We quantify this by multiplying the reinforce-
ment by a number D (between 0 and 1) at each
timestep. At timestep t5, when it is actually re-
ceived, the larger reinforcement is worth R.
However, at timestep t4, the value of this fu-
ture reinforcement is decreased by a factor of
D, reflecting the fact that it won’t be available
for one timestep. Thus, it will only be worth RD.
At timestep t3, this same reward (available at
t5) is worth even less, namely RD?, reflecting
the two timesteps that must be waited. At time-
step t2, the subject faces a choice between a
small, immediate reinforcement, worth r, and
a late, large reinforcement, worth RD3. Using
the terminology of our model, the ADHD chil-
dren have a smaller D, so future reinforcements
are discounted more, and they will choose the
small reinforcement more often than control
children. Indeed, Sagvolden et al. (1998) have
explicitly demonstrated this effect, which they
describe as a “shorter and steeper delay gradi-
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ent” in ADHD children, and they have proposed
that this gradient leads to the development of
overactivity, increased behavioral variability,
motor impulsiveness, and impaired sustained
attention (Sagvolden et al. 2000). Such a gra-
dient has also been correlated with impulsive
behaviour in general psychiatric outpatients
(Crean et al. 2000) and has been quantified in
heroin addicts (a disorder sometimes comorbid
with ADHD) as twice that of controls (Kirby et
al. 1999).

The kind of discounting we used is called ex-
ponential, meaning that a reinforcement loses a
fixed proportion of its value at each timestep.
However, a different kind of curve, the hyper-
bolic, better describes the discounting found in
many psychological studies (Ainslie 1975; but
see also Kacelnik 1997; Kirby and Herrnstein
1995; Madden et al. 2003; Monterosso and
Ainslie 1999). The key difference is that with
hyperbolic discounting, preferences between
two reinforcements—one early and one late—
can reverse as the time to both increases. How-
ever, there is, as yet, no evidence that children
show preference reversals in the DRTT, and so,
for simplicity, we preserve the exponential dis-
counting that Montague et al. (1996) used in
their model.

RESULTS

Comparison with actual electrophysiological
recording

Figure 2C shows Schultz’s (1998) recordings
from monkey dopamine neurons, in an operant-
conditioning task somewhat similar to ours. In
early trials, the dopamine cells show slightly
increased firing at the time of the stimulus, and
much greater firing when the reinforcement is
delivered. However, in late trials (i.e., after learn-
ing), there is no response to the reinforcement,
but only to its earliest reliable predictor, the
stimulus. The “early” recording in Figure 2C
can be compared with trials 1-100 in Figure 2B,
and the “late” recording with trial 500 in Figure
2B. Both the experimental data and the simula-
tion show a movement of excitation, from the
time of the reinforcer in early trials, toward its
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earliest reliable predictor in later trials. The
model’s stimulus-linked signals (at t = 0) are
large because very little discounting is used in
this simulation.

Comparison with actual delayed reward
performance in ADHD

Figure 3 shows the performance of the model
in a paradigm similar to the DRTT, but with a
single decision rather than the five shown in
Figure 1B. These results can be compared with
those from real children (Sonuga-Barke et al.
1992). The “trials constraint” part of that study,
in which the children had a fixed number of
trials, is the closest to ours. The experimenters
explained the fixed number of trials thoroughly
to the children before they started. Over 20 trials,
18% of delayed large rewards (standard devia-
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tion, 20%) were obtained by hyperactive chil-
dren, compared to 48% (standard deviation,
34%) obtained by controls. Their data match the
model’s, if one arbitrarily assumes that their
thorough explanation had an effect compara-
ble to preliminary trials (we had no way of ver-
bally priming our model, and preliminary trials
are often included in such studies, e.g., 30 in
Slusarek et al. (2001)). The possibility that task
performance had not stabilized by the end of
the experiment is supported by: (1) the large
standard deviations, and (2) the fact that this
experiment had fewer trials than several other
published trials, which mentioned major prac-
tice effects in other paradigms (Castellanos et
al. 2000; Chee et al. 1989; see also Tannock and
Schachar 1992).

For the lower learning rate shown in Figure
3, the model’s performance in “trials constraint”
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FIG. 3. Effect on model’s performance of altering the learning rate. The lines were obtained by averaging 100 sim-
ulated learning episodes, each consisting of 150 trials in which the model had a single choice, between a small imme-
diate reinforcement (r = 1) and a larger delayed reinforcement (R = 2). This paradigm is simpler than that used in the
rest of the current paper. The solid line was made using a learning rate of 0.5. The dotted line was made using a lower
learning rate (0.25) as one candidate explanation for impulsivity. Apart from the learning rate, parameters are as in
Figure 2. (m = mean; s = standard deviation). Simulated results in the figure can be compared with actual results from
Sonuga-Barke et al (1992): hyperactive children achieved R on 18% of trials (standard deviation 20%), whereas control
children scored 48% (standard deviation 34%). Note that local stability of performance in the experimental period
does not reliably indicate achievement of asymptotic performance.
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learning is altered, but not its asymptotic per-
formance after prolonged learning. In general,
changes in any of the parameters are able to in-
fluence both “trials constraint” and asymptotic
performance. Brittleness and action bias influ-
ence behavior directly, whereas learning rate
and discounting act more indirectly by affect-
ing the gradual acquisition of predictions.

Effect on impulsivity of varying
learning parameters
Figure 4 shows the basic effect of changing the

parameters away from their standard values.
Each solid line in Figures A-D was produced by
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varying a single parameter. The first three of
these are inverted-U-shaped curves, but the
fourth (discount factor) is not. Interestingly, U-
shaped dose-response curves have previously
been predicted to be particularly common in
task acquisition (Tannock and Schachar 1992).
We also tested the effect of interactions be-
tween the above manipulations and simultane-
ously increasing the learning rate (dotted lines in
Figures A-D). Given the parallel between learn-
ing rate and dopamine in our model, it is unsur-
prising that Figure 4C displays a prediction that
prodopaminergic agents will reduce impulsivity
caused by preexisting hypodopaminergia (as the
dotted treatment line is higher than the solid un-
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FIG. 4. Factors affecting model’s performance on DRTT. The four columns show the model’s behavior, using the
same parameters as in Figure 2, except that in each column the effect of changes in one parameter are shown. In (A), the
effect on performance of varying brittleness between 0 and 4 is shown by the dark line, with “+” showing each data-
point which is the percentage of large reinforcements R achieved in trials 401-500, averaged over 500 episodes. Error
bars indicate +/— 1 standard error of the mean. The circle indicates the result for one episode randomly chosen from
the 4500, in this case with brittleness = 2.5, and shown in full in (E). In (A), as in (B-D), the effect on performance of
doubling the learning rate is shown by the dotted lines, with “x” at each datapoint. (B) shows the effect of varying the
action bias, (C) the learning rate, and (D) the discounting. Because the x-axis of (C) is the learning rate, comparison of
the solid and dotted lines in (C) provides a trivial verification that the program is correctly doubling the learning rate.
This can also be interpreted as the effect of dopaminergic genes on performance (solid line), being modified by hypo-
thetical prodopaminergic medication (dotted line). This medication improves performance for subjects starting in the
left half of the plot, but has a negative effect on those starting in the right half. DRTT, delayed response time task.
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treated line when the learning rate is low). On
the other hand, the model predicts that such
agents will not reduce the impulsivity caused by
hyperdopaminergia, if such a thing exists (with
the learning rate over 0.5, the solid line is higher
than the dotted one.) Interestingly, benefit from
simulated “treatment” is seen for all the factors.
This is a possible explanation for the apparent
paradox that while ADHD has many causes,
stimulants help in most of them.

Figures 4E-G show that particular values of
parameters produce distinct “behavioral styles,”
including various degrees of repetitiveness.
Severe and degenerative cognitive disorders are
often associated with repetitive activity (and
with reduced learning). A characteristic of this
perseveration is that individuals repeat their
last utterances. However, the current model
does not explicitly address such perseveration,
as during any trial, the model retains no infor-
mation about the preceding trial, distinct from
other trials, and so cannot preferentially repeat
the actions performed in the previous trial. The
repetitiveness seen in the DRTT task is caused by
repeated independent action selections, all based
on a relatively stable knowledge of the task.

Brittleness

Figure 4A shows an inverted U-shaped rela-
tionship between brittleness and performance.
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Figure 5 shows the same effect but in more
detail.

A priori, one might expect that impulsive
children had more random behavior (i.e., less
brittle decision making). The model shows that
this is not necessarily the case. Note that in
Figures 5C and D, simulations with moderate
brittleness achieve R consistently within 250-
350 trials. Also as expected, in the insufficiently
brittle simulations of Figures 5A and B, the
model errs on the side of exploration, not suffi-
ciently using the information it already has
about reinforcement availability. However, con-
trary to the a priori view, the highly brittle,
over-regulated model in Figure 5E demonstrates
“impulsivity” as well. This variety of impul-
sivity is quite different from that seen in Figures
5A and B: After finding the small reinforce-
ment, the model concentrates its effort on that
small reinforcement, never exploring enough
to find the large reinforcement.

Figure 5F plots the entropy (i.e., the random-
ness; see the Appendix) of the responding as a
function of brittleness. As seen in Figures 5A-E,
the entropy decreases with increasing brittleness.

Effect of environment on impulsivity

As we mentioned above, when RD3 < 1, it is
appropriate to choose the small reinforcement
instead of waiting for the large one. Changes
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FIG. 5. Brittleness. (A-E) show that increasing brittleness produces first an improvement (B,C) and then a deterio-
ration (D,E) in DRTT performance. (F) shows the means and standard deviations of the entropy, in bits, of the
timestep at which the lever is pressed, for values of brittleness as in (A-E), over 100 runs (see the Appendix). DRTT,

delayed response time task.
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in D affect the model’s performance, as shown
in Figure 4D, and it is interesting to see how D
might be environmentally determined (i.e., sub-
ject to learning; see the Appendix for details).

One theoretical interpretation of D is as the
probability that the whole trial will unexpect-
edly terminate at each timestep, thus denying
the subject the late reward that it might be
awaiting. In Figure 6, we consider the possibil-
ity that D might “learn” the predictability of the
environment, thus altering the apparent im-
pulsivity over time. Although this effect is in-
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teresting, the longitudinal simulation shown
in Figure 6 is based on rather crude assump-
tions, notably that the only memory for the task
preserved between learning episodes is actually
D. Furthermore, D only changes during the
DRTTs, which are modeled as presented every
year for 5 years; in reality, we imagine that it
will change during the multitude of other tasks
that real children are faced with during each
year. The graphs demonstrate that as the model
grows “older” (i.e., learns to discount less), the
model becomes faster at achieving optimal re-
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FIG. 6. Model of environmental effects on impulsivity. Each of the three rows in this figure depicts a “virtual
child” tested on his first, second, third, fourth, and fifth birthdays, in 500 trials of the DRTT. The three children start
identically, with discount factor = 0.2, but are exposed to environments of differing reliability. These environments are
modeled by making the task itself somewhat unpredictable, and steadily adjusting the discount factor during trials,
to track success in predicting rewards (see the Appendix for details). The first child (Figures A and B) has a substan-
tially predictable environment, in which during only 5% of timesteps is the current trial interrupted. (A) shows the
development of the discount factor over trials; (B) shows the resulting performance on the annual test. This child ac-
quires, by age 3, the ability to delay his responding easily in order to achieve a larger reinforcement. Graphs C-F show
the consequences of environments in which there is either a 15% or a 25% chance per timestep that each trial will ter-
minate. In either case, the development of delayed responding is abnormal, being either slowed (C,D) or practically
absent (E,F). For clarity, only each tenth response is plotted. DRTT, delayed response time task.
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sponse delay in the DRTT, but that this is sub-
ject to a major effect from the predictability of
the environment.

DISCUSSION

Principal findings

We have used a pre-existing learning model
to explore the conceptual roots of impulsivity
in ADHD. We have validated the model, quali-
tatively or quantitatively, against genetic,
electrophysiological, neuropsychological, phar-
macological, and developmental data. The be-
havior of the model reflects the action of a
number of parameters, which we have given
neurobiological and psychiatric interpretations.
In particular, we have studied the possible role
played by dopaminergic mechanisms. The
model shows that variation in simple learning
and behavioral parameters can all lead to im-
pulsivity in the DRTT. This supports our un-
derlying theory, that ADHD can be caused by
abnormalities in learning mechanisms, in the
use of learned information, or in information
available to be learned. In the model, apparent
impulsivity in a DRTT can be caused by over-
regulated or underregulated behavior, an in-
nate action bias, a hypo- or hyperfunctioning
prediction error signal, or by discounting of
delayed reinforcements (see Fig. 4).

One interesting and counterintuitive sugges-
tion from the model is that there may be peo-
ple with too high a learning rate (i.e., too high
to allow them to achieve optimal performance
on a particular task, as at the right of Figure
4C). Such people would be expected to adapt
quickly, and to place inadequate weight on old
lessons (Tripp and Alsop 1999). Note that learn-
ing that was too rapid for optimal performance
on varying or multichoice tasks could aid per-
formance on simple tasks, and so might not
impair the functioning of such an individual in
a simple environment.

An inability to delay responding is often
described as a deficit in response inhibition.
Response inhibition has been suggested as
forming part of an executive function system,
in which defects have been documented in
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ADHD (Barkley 1997; Bayliss and Roodenrys
2000; Shallice and Burgess 1996), which does
not form part of our model. However, nonin-
hibitory deficits may be just as prominent (Shal-
lice et al. 2002), and it has been suggested that
deficits in executive function may characterize
particular subtypes of ADHD. For instance,
Swanson et al. (2000a) found a subgroup com-
prising 40.6% of their ADHD group (and char-
acterized by a 7-repeat D4 polymorphism),
within which, at a mean age of 11 years, psy-
chological testing revealed no deficits on re-
sponse inhibition, re-engagement, shifting and
maintenance of attention, or conflict resolu-
tion. (In the other, somewhat larger, subgroup,
a proportion of subjects did have such deficits.)
If confirmed, this suggests that these executive
deficits are not necessary in the development
of ADHD. It is possible that the development
of executive functions can be either altered by
psychosocial effects of impulsivity, or merely
delayed so that, by adulthood, the deficit has
often disappeared (Walker et al. 2000).

In its current form, our model concentrates
specifically on reinforcement. However, dopa-
minergic systems are also activated by various
other factors, notably novelty (Cloninger 1987;
Horvitz 2000; Schultz 1998). Novelty can be in-
trinsically reinforcing—animals will work to
deliver novel stimuli that are not primary rein-
forcers and have not been associated with pri-
mary reinforcers (Reed et al. 1996). Novelty may
account for the small increase in dopamine fir-
ing seen in Figure 2C, in early trials at the time
of the stimulus. Such novelty-based responses
(sometimes called bonuses in the computational
literature (Kakade and Dayan 2002)) play the
important role in some abstract reinforcement
learning models of controlling the exploration
to find optimal actions. Indeed, increased nov-
elty-seeking is found in ADHD (Downey et al.
1996; Young et al. 2000), and associations have
been found between a specific allele of the do-
pamine D4 receptor and novelty-seeking (Mal-
hotra and Goldman 2000).

Our model does not provide a natural expla-
nation for clearly unlearned changes in behavior
which rapidly follow stimulant administration,
including the “zombie effect” in overdose. We
have explored ways of extending our model to
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incorporate a “set point” for dopamine levels,
which may provide a simple explanation for the
behavioral effects of both medication and nov-
elty (Williams and Taylor 2004). For example,
either stimulant medication or novel stimuli
could produce an immediate increase in dopa-
minergic transmission; when this exceeded a
genetically determined set point, dopamine-
seeking behavior would reduce.

By not scaling parameters, we have inten-
tionally avoided the misleading practice of
choosing numerical values for parameters in
neural networks, giving precise matches with
data when the real target is matches with pro-
cess. Instead, in our case, we are specifically
demonstrating how a previously described pro-
cess (dopaminergic temporal-difference learn-
ing) can fit not just one set of data, but a wide
range of data (measurements in ADHD). This
is, we believe, an important way of using com-
putational models, particularly for disorders
such as ADHD, which are on a continuum
with normality.

We should emphasize that this paper is in-
tended to present a new approach to studying
ADHD rather than being a complete theory of
the disorder. Such a theory would need to ac-
count for performance differences between In-
ternational Classification of Diseases (ICD) and
Diagnostic and Statistical Manual (DSM) types
and subtypes of hyperactivity, as well as ex-
plaining why only certain subtypes have asso-
ciated executive function deficits (Swanson et
al. 2000a). Although we have specified four
parameters which can control impulsivity, spe-
cific values for these, in various subtypes of
ADHD, cannot be specified until more detailed
experimental data become available. ADHD
deficits in a wide range of testing paradigms
need to be explained, beyond the two para-
digms explored in this paper. The model does
not address frustration or anger, because the
electrophysiological and computational under-
standing of these paradigms is currently less
advanced than that of dopamine. Sequelae of
ADHD may include anger, but our model fo-
cuses more on what seem, to us, to be earlier
etiological mechanisms.

Furthermore, a complete theory will need to
specify the roles of transmitters other than do-
pamine. Several serotonergic and noradrenergic
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genes have been implicated in ADHD (Comings
et al. 2000). Serotonin is particularly important
in theories of impulsivity, and may have partic-
ular relevance to learned and aversive aspects
(Carter and Pycock 1978; Meneses 1998; Popper
1997). Also implicated are noradrenaline, gluta-
mate, and possibly acetylcholine, GABA, and
enkephalin (Blum et al. 2000; Carlsson 2001;
Comings et al. 2000). It is our hope that the para-
meters of the model will suggest novel func-
tional roles for these transmitters.

Of course, a weight of evidence implicates
dopamine in ADHD, captured in terms of
“learning rate” in the model. A variant D4 re-
ceptor repeat length and a variant DAT1 trans-
porter allele have been associated with ADHD
(Cook, Jr. et al. 1995; LaHoste et al. 1996). Fur-
thermore, siblings with higher numbers of DAT1
high-risk alleles have higher symptom levels
(Waldman et al. 1998). Elevated midbrain ac-
cumulation of dopamine precursors has been
found in adolescents with ADHD (Ernst et al.
1999). In addition, symptoms of hyperactivity
and inattention can be produced indirectly by
reduction of dopamine transmission, as in phe-
nylketonuria (Diamond 1998; Weglage et al.
1996), or in rats by selective lesions of the VTA
(Koob et al. 1989). ADHD can be treated by
prodopaminergic stimulants (see below). Im-
portantly, though, evidence exists that both
hyper- and hypofunctioning dopamine systems
may be associated with hyperactivity (Sag-
volden and Sergeant 1998; Spielewoy et al.
2000), as also seen in our model (Fig. 4C).

Changes during development

Based on an interpretation of discounting in
which it reflects the chance of a premature ter-
mination of a trial, we have suggested how an
environment replete with inconsistent reinforce-
ment schedules might lead to the development
of impulsive responding. In this case, impul-
sive responding is actually an optimal solution
to an abnormal environment. By the same rea-
soning, impulsive responding can be an opti-
mal adaptation to a child’s own deficits in
predicting his environment.

We interpreted the discount factor D as com-
ing from the possibility, learned by the subjects
over the course of many operant tasks, that trials
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will end unexpectedly without provision of the
delayed reinforcement. That is, children living in
a persistently unpredictable environment should
learn to discount more steeply than children
living in a normal environment, and this will
translate into apparent impulsivity. For example,
ADHD is significantly associated with large fam-
ily size (Eddy et al. 1999); unfortunately, we do
not know the effect of birth order, which could
shed light on the well-replicated absence of sig-
nificant additive contributions from shared envi-
ronmental factors (Levy et al. 1997).

ADHD symptoms decrease as a child grows
older (Biederman et al. 2000; Scahill and
Schwab-Stone 2000), though some of the ap-
parent decrease may result from the use
of age-inappropriate diagnostic criteria. Hy-
peractive-impulsive symptoms probably de-
cline faster than symptoms of inattention
(Pineda et al. 1999). “Developmental lag the-
ory” (McLaren 1989; Sagvolden 1996) predicts
that “at each age level studied, children with
ADHD would perform like younger children
without ADHD” (Barkley 1997). Several sub-
classes of overactive behavior are also found in
normal children, most commonly in the first
few years of life (De Negri 1995). We presented
a learned reduction in discounting (i.e., a learned
increase in D) as a possible means by which
both normal and ADHD children may gradu-
ally learn, or mature, out of the hyperactivity
of their infancy.

Comparison with other models

The main existing model is that of Ownby
and Harwood (1998), who model the sustained
attention deficit in ADHD by teaching a three-
layer feed-forward network to perform the con-
tinuous performance task. They show that the
loss of neural connections (for which there is
no evidence in ADHD) could lead to degrada-
tion of performance. It would be interesting
future work to model this task using an exten-
sion of our model.

By comparison with ADHD, which has at-
tracted little modeling, there are many compu-
tational approaches to phenomena of attention
(Parasuraman 1998; Pashler 1998). Although
one could consider modeling ADHD by study-
ing modes of failure of these models, none of
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them addresses tasks, like the DRTT, that are
validated experimentally in ADHD.

ADHD medication

Stimulants such as methylphenidate (MPH)
block dopamine transporters (Volkow et al. 1998),
and are used to treat ADHD, in which they
normalize various neuropsychological measures
and, to a limited extent, improve academic per-
formance (Elia et al. 1993; Haenlein and Caul
1987; Sunohara et al. 1999; Tannock et al. 1989).
Despite individual etiological factors, each ap-
pearing in a minority of cases of ADHD, the
great majority of cases are responsive to MPH,
in a clear parallel with the results in Figures
4A-D. Comparable effects of MPH are found
in some rat strains (Richards et al. 1999).

The possibility that stimulants act by alter-
ing the processing of reinforcement in the brain
has experimental support from many studies
(Cador et al. 1991; Evenden 1999; see McBride
et al. 1999; Richards et al. 1999). MPH appears
to increase the reinforcement value of rewards
in ADHD (Wilkison et al. 1995). Tannock and
Schachar (1992) found that effects of MPH re-
versed between the first and second assessments
of a learning task, and suggested that this might
reflect different effects on acquisition and per-
formance. Tonic MPH-induced increase in the
dopamine signal may achieve its clinical effect
by overcoming the elevated reinforcement
threshold postulated as a basis for ADHD by
Haenlein and Caul (1987).

Clonidine, a second-tier ADHD treatment,
stimulates central alpha-2 receptors, thus reduc-
ing release of noradrenaline. MPH also influ-
ences noradrenaline, beside its primary effect
on dopamine. For instance, in ADHD patients
who responded to MPH, urinary excretion of a
noradrenaline metabolite was reduced by 43%,
suggesting a depressive affect on noradrener-
gic processing (see also Biederman and Spencer
1999; Shekim et al. 1979). Though the role of
noradrenaline in cognitive regulation is well
supported (Usher et al. 1999), as is its impor-
tance in prefrontal cortex, working memory, and
attention (Arnsten 2000), we did not assign
noradrenaline a place in the current model be-
cause, bar this, there is insufficient evidence of
its relation to ADHD. In any case, clonidine is
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considerably less effective than stimulants (Abo-
Zena et al. 2000; Connor et al. 1999).

CONCLUSIONS

Several falsifiable predictions follow directly
from the above results. We predict that the per-
formance of a subgroup of ADHD children on
measures of impulsivity will normalize with
practice to be asymptotically the same as that
of well-matched control children. We predict
that some ADHD sulfferers are particularly prone
to the induction of impulsivity by purely be-
havioral means. If there is a variety of ADHD
caused by hyperdopaminergia, the model pre-
dicts, unsurprisingly, that MPH will worsen hy-
peractivity in this. The behavior of the model’s
extension, described in Figure 6, suggests that
the age at which certain individuals” impulsiv-
ity reduces will be related to the predictability
of their environments (though accurate quan-
titation of environmental reliability is currently
not practical).

In contrast to the usual view that impulsivity
affects learning, we believe we have demon-
strated the reverse, that learning mechanisms
and learned lessons can both affect impulsivity.

Note that the model is able to learn many
delayed-reward tasks (see, e.g., Fig. 3). How-
ever, we have focussed on the DRTT for its nat-
uralistic provision of: (1) multiple decision
points in each trial, and (2) the potentially rele-
vant cognitive hurdle of making the associa-
tion between events separated in time, namely,
the rewards and the buzzer.
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APPENDIX

In temporal-difference learning, using exponen-
tial discounting, the discounted sum of future re-
inforcements V(t) should be:

V()= zDT"r(r)>
T2t

where t is the current time in the trial, 7 is the
future time, r(7) is the reinforcement delivered
at time 1, and D is the discount factor. Angle
brackets ( ) indicate that this is averaged over
the random choice of actions and the random
reinforcements (e.g., the random termination
of trials).

Montague et al. (1996) used exactly V(t) as
the critic in a form of the actor-critic architec-
ture (Barto et al. 1983). In this paper, we use
V(t) = Q(t,u), where Q(t,u) (whose values are
presented in the tables in the main text) depend
(Watkins 1989) on the action u selected by the
model at time ¢, where u is either act or wait. The
model gradually comes to estimate the correct
value of Q(t,u) for every explored time-action
combination by adjusting its estimates based
on prediction errors:

3(t)=r(t) + V(t+1) — V(1)

where r(f) is the actual reinforcement obtained at
time t. The adjustment to the parameter Q(t,u) is

Q(t,u) — Q(tu) + md(t)

if action u is actually taken at time t, whence
also V(t) = Q(t,u). Here, n is the learning rate.

We have, so far, discussed how temporal-
difference learning comes to make predictions
about future rewards. How can subjects use
these predictions to choose among possible ac-
tions? Temporal-difference learning has explored
a number of different possibilities. We adopted
a simple one in our study, in which the subjects
learned a different prediction Q(t,u) for each
possible action (u; act or wait) at each timestep
(t) (Watkins 1989). At each timestep the model
makes a decision about whether to act or not
(i.e., whether to press the lever) based on the
expected sum of future reinforcements in either
case. Some randomness was added into this
behavior, to permit exploration, using the soft-
max function:

ePQ(tu) + dy)

p,(u) = B« + )
e
"
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where p,(u) is the probability of performing a
particular action u, ¢, is a fixed bias for par-
ticular actions, and B is the brittleness. Ac-
tion bias could, in principle, be moved out
of the parentheses, changing the interaction
with brittleness (broadly) from multiplica-
tion to addition, but there is insufficient ex-
perimental data to be certain that either way
is better.

For Figure 6, we assumed that, as a child
grows up, his discount factor D increases, so
that delayed reinforcements come to seem more
valuable. At each timestep, D was adjusted to-
ward D’ = 0 or 1, depending on whether or not
the trial was interrupted at that timestep:

D,,=D;+n, (D'-D)
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where m  is the learning rate for the metalearn-
ing. We set = 0.0002, making it much slower
than trial learning.

In Figure 4, we calculated the entropy of the
timestep at which the lever is pressed, using
Shannon’s definition for entropy, as follows:

H=- Z act, log, act,

0<t<10

where act, is the proportion of trials on which
the lever was pressed at timestep t. This for-
mula gives the average number of bits needed
to encode behavior in a trial. (So, for example,
if the subject always pressed the lever at ex-
actly the same timestep, there would be no en-
tropy, and H = 0.)



