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Acetylcholine in Cortical Inference

Abstract

Acetylcholine (ACh) plays an important role in a wide variety of cognitive tasks, such
as perception, selective attention, associative learning, and memory. Extensive experi-
mental and theoretical work in tasks involving learning and memory has suggested that
ACh reports on unfamiliarity and controls plasticity and effective network connectivity.
Based on these computational and mechanistic insights, we develop a theory of choliner-
gic modulation in perceptual inference. We propose that ACh levels reflect the uncertainty
associated with top-down information, and have the effect of modulating the interaction
between top-down and bottom-up processing in determining the appropriate neural rep-
resentations for inputs. We illustrate our proposal by means of an hierarchical hidden
Markov model, showing that cholinergic modulation of contextual information leads to
appropriate perceptual inference.

keywords: acetylcholine, perception, neuromodulation, representational inference, hidden
Markov model, temporal context, selective attention, memory
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1 Introduction

Neuromodulators such as acetylcholine (ACh), serotonine, dopamine, norepinephrine, and his-
tamine play two characteristic roles. One, most studied in vertebrate systems, concerns the
control of plasticity. The other, most studied in invertebrate systems, concerns the control
of network responses. For instance, a single, recurrently connected, assembly of neurons can
exhibit multiple dynamical modes (Pfliiger, 1999), as neuromodulators alter the excitabilities
of individual neurons and the amplitudes of synaptic potentials (Marder, 1998). These two
roles have also been brought together, notably in the theoretical and experimental studies of
Hasselmo and his colleagues (Hasselmo & Bower, 1993; Hasselmo, 1995) into the neuromod-
ulatory control of plasticity in recurrently connected neural networks. This work sits with
that on dopamine (eg Schultz, Dayan & Montague, 1997) in proposing computationally specific
roles for neuromodulation.

A significant proportion of Hasselmo’s work has concerned ACh. This neuromodulator is de-
livered to the cortex from a small number of nuclei in the basal forebrain (BF): medial septum
(MS), diagonal band of Broca (DBB), and nucleus basalis (NBM). Physiological studies on ACh
indicate that its neuromodulatory effects at the cellular level are diverse, causing direct hyper-
polarization and depolarization as well as synaptic facilitation and suppression, all within the
same cortical area (Kimura, Fukuda, & Tsumoto, 1999). ACh is involved in behavioral tasks
designed to test a wide variety of cognitive functions, such as perception, selective attention,
associative learning, and memory (Everitt & Robbins, 1997; Hasselmo, 1995; Holland, 1997).

Hasselmo and his colleagues (Hasselmo & Bower, 1993; Hasselmo, 1995) focused on neuro-
modulatory influences over learning and memory in the hippocampus and cortex. They pro-
posed that cholinergic (and perhaps other) neuromodulation controls read-in to, and read-out
from, recurrently-connected, attractor-like memories, such as that in area CA3 of the hip-
pocampus. Such attractor networks (Amit, 1989) fail if the recurrent connections are op-
erational during storage, since new memories lose their specific identity by being forced to
map onto existing memories retrieved through the recurrent dynamics. Hasselmo and col-
leagues suggested that cholinergic neuromodulation during storage could selectively suppress
the recurrent connections (and perhaps the perforant path connections) onto CA3 cells and
selectively boost the feedforward mossy fiber inputs from the dentate gyrus. During recall,
the recurrent connections should play a fuller part, allowing associative retrieval. The de-
gree of ACh release would reflect the unfamiliarity of the input, and thereby act as a gate to
learning. This mechanism has been widely adopted, for instance in our own work, by Kali &
Dayan (2000) to understand how spatial place cells in CA3 might result from a learned surface
attractor network.

Hasselmo and colleagues demonstrated physiologically how septal ACh might achieve this pu-
tative modulatory function. During the learning of a new memory, ACh prevents retrograde
interference by selectively suppressing recurrent and feedback synaptic transmission, and en-
hances response to feedforward inputs by decreasing pyramidal cell adaptation. During recall,
a lower ACh level boosts recurrent synaptic transmission and suppresses recurrent synaptic
plasticity, thus allowing the network to settle into a stored pattern. Hasselmo and his col-
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leagues have also demonstrated that ACh has similar physiological and functional effects in
the piriform cortex (Linster & Hasselmo, 2001), which is important for olfactory memory.

Lesions studies in classical conditioning tasks provide additional insight into ACh’s role in the
cortex. Animals are known to learn faster about stimuli about whose consequences the animals
are uncertain (Pearce & Hall, 1980). Through an extensive series of selective lesion experiments
in rats, Holland and his colleagues have demonstrated that the cholinergic projection from the
nucleus basalis magnocellularis (nucleus basalis of Meynert in primates) to the parietal cortex
is essential for this sort of faster learning (Holland, 1997; Holland & Gallagher, 1999). These
data have been interpreted, using the theoretical viewpoint of statistical learning models, as
implying that the ACh signal reports the unfamiliarity of the stimuli, or the uncertainty in its
predictions (Dayan, Kakade, & Montague, 2000).

In this paper, we present a theory of cortical cholinergic function in perceptual inference based
on combining the physiological evidence that ACh can differentially modulate synaptic trans-
mission to control states of cortical dynamics, together with theoretical ideas about the in-
formation carried by the ACh signal. Crudely speaking, perception involves the inference
of the most appropriate representation for sensory inputs. This inference is influenced by
both top-down inputs, providing contextual information, and bottom-up inputs from sensory
processing. We propose that ACh reports on the uncertainty associated with top-down infor-
mation, and has the effect of modulating the relative strengths of these two input sources.
Many cognitive functions affected by ACh levels can be recast in the conceptual framework of
representational inference.

In section 2, we present a simple hierarchical HMM model that casts sensory perception in
the theoretical framework of representational inference. As we demonstrate in section 3, ap-
proximate inference in such a model could be mediated by cortical cholinergic innervation.
A summary of relevant experimental data and proposals for new experiments is presented in
section 4.

2 Hidden Markov Models and Perceptual Inference

Inferring appropriate representations for the constant stream of sensory inputs is a formidable
task, largely because of the inherent ambiguity and noise in the sensory input. A vital source of
information that helps resolve ambiguities comes from temporal and spatial context, and thus
a key issue for perceptual inference is updating and maintaining this top-down contextual
information, and using it correctly in concert with bottom-up information from the sensory
input (Helmholtz, 1896; Neisser, 1967; Grenander, 1995).

For simplicity, we consider the most basic form of top-down contextual information, namely
that coming from the recent past. That is, we consider a series of sensory inputs whose
internal representations are individually ambiguous. Disambiguation comes via top-down in-
formation based on a slowly-changing overall state of the environment. Here, only temporal
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Figure 1: Hierarchical HMM. A) Three-layer model, with two hidden layers, z and y, and one
observed layer, x. The temporal dynamics are captured by the transition matrix 77, ,-, in
the z layer, and the observations x are generated from 7y and, indirectly, from z. B) Example
parameter settings: z € {1-4} > ye {1-4} =>x¢ R2 with dynamics (7)) in the z layer
(Plzt = z¢—1] = 0.97), a probabilistic mapping (©) from z — y (P[y: = z¢t|z:] = 0.75), and a
Gaussian model p[x|y] with means at the corners of the unit square and standard deviation
o = 0.5 in each direction. Only some of the links are shown to reduce clutter.

o X

context is relevant; there is no spatial context. The resulting model (see also Becker, 1999) is
a form of Hidden Markov Model (HMM). The HMM captures the way that sensory inputs are
generated or synthesized. We consider the inferential task of recognition or analysis in which
the representation for each input is determined. We compare an approximate model based
on cholinergic neuromodulation with the exact model, which, in this case, is computationally
tractable (Rabiner, 1989).

Our HMM (figure 1A;B) consists of three pieces. One, z¢, is the overall state of the environment
at time t, which we also call the context. Changes to z; are stochastically controlled by a tran-
sition matrix T, ,,, whose entries ensure that the context changes rarely. The second piece is
¢, which is determined stochastically on each time-step, in a way that depends on the current
state of the environment. The third piece, the observed input x;, depends stochastically on ;.
The inferential task is to represent inputs x in terms of the y values that were responsible for
them. However, the relationship between y; and X; is such that this is ambiguous, so top-down
information from the likely states of z;, ie the likely context, is important to find the correct
representation for x;.

Figure 1A shows the probabilistic contingencies among the variables. Figure 1B shows the
same contingencies in a different way, and specifies the particular setting of parameters used
to generate the examples found in the remainder of the paper.

More formally, the context is a discrete, hidden, random variable z¢, whose stochastic temporal
dynamics are described by a Markov chain with transition matrix 77, ,-,, where

y ifzr=2zt1

P[Zt|2t71] = th—lzt = 1 1-y (1)

71 Otherwise
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Figure 2: Generative model. A sample sequence involving 400 time steps, generated from the
model shown in Figure 1B. Note the slow dynamics in z, the stochastic mapping into y, and
substantial overlap in x’s generated from the different y’s (different symbols correspond to
different Gaussians shown in Figure 1B).

where 1, is the number of all possible states of z, and y is the probability of persisting in
one context. When y is close to 1, as is the case in the example of Figure 1B, the context
tends to remain the same for a long time. When y is close to 0, the context tends to switch
among the different states of z rapidly and randomly. The state of the second hidden layer,
 is generated from z with the mapping O;,,,, which specifies P[y;|z:], and controls which
of a set of circular two dimensional Gaussians is used to generate the observations x; via the
densities p[x|y]. The y; that was actually involved in generating x; is also called the model’s
(true) representation of x;. The means of the Gaussians p[x|y] are at the corners of the unit
square, as shown in Figure 1B, and the variances of these Gaussians are o?I. The parameters
in the model are the prior distribution of z, its temporal dynamics 77, ,-,, the conditional
distributions O;,, and the emission densities p[x|y]. It is assumed that all the parameters
have already been correctly learned at the outset of the inference problem.

Figure 2 shows an example of a sequence of 400 states generated from the model. The state in
the z layer stays the same for an average of about 30 time steps, and then switches to one of
the other states, chosen with equal probability. The key inference problem is to determine the
posterior distribution over y;, that best explains the observation x;, given the past experiences
thl = {Xl, . ;thl}-

Inference of the true posterior distribution, P[y;|x:, Di-1] = ply:|D:], uses temporal contex-
tual information, consisting of existing knowledge built up from past observations, as well as
the new observation x;. Figure 3A shows the structure of the standard HMM inference model,
where the posterior distributions P[y;|D;] and P[z;|D;] can be computed using a procedure
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Figure 3: Recognition models. A) Exact recognition model. P[z;_1|D;-1] is propagated to
provide the prior P[z:|D¢_1] (shown by the lengths of the thick vertical bars), and thus the
prior P[y;|D¢-11. This is combined with the likelihood term from the data x; to give the true
P[y;|D:]. B) Bottom-up recognition model uses only a generic prior over y;, which conveys
no information, so the likelihood term dominates. C) ACh model. A single estimated state
Zt—1 is used, in conjunction with its certainty «;_1, reported by cholinergic activity, to pro-
duce an approximate prior P[24|2;_1] over z; (which is a mixture of a delta function and a
uniform), and thus an approximate prior over y;. This is combined with the likelihood to give
an approximate P[y;|D;], and a new cholinergic signal «; is calculated.

that is equivalent to the forward part of the forwards-backwards algorithm (Rabiner, 1989).
The adaptation to include the 7y layer is straightforward.

In each time step t, the top-down information is communicated by z;, while the bottom-up
information is carried by x;. The prior distribution over z;

P(zt|Dt-11= 3, Plzt-11Dt-11T2,_ 2z, (2)

distills the contextual information from past experiences D; ;. This information is propagated
to the representational units y by

P[Ztsytlﬂt—l] = P[Zt|Dt—1]OZtyt - (3)

The bottom-up information, P[y;|x;], is proportional to the likelihood, p[x;|y:], and interacts
with the top-down information, P[z;, y¢|D: 1] in the conditioning step:

Plzt, yt|D¢] oc Pz¢, Yt D1 1p[Xe |yt ] 4)

where the constant of proportionality normalizes the full conditional distribution. From the
joint posterior distribution over z and y, we can then compute the marginalized posterior
distribution of 7y;, which gives the relative belief in each of the states of y; having generated
the current observation X, in the context of past experiences:

P[yt|D¢] = 2.2, Plzt, yt|Di] )

This distribution, henceforth referred to as the exact posterior, is the fullest possible repre-
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Figure 4: Contextual representation in exact inference. A) Actual z. B) Highest probability z
state from the exact posterior distribution. C) Single Z state from the ACh-mediated approxi-
mate inference model.

sentation of x;. One can also create the updated contextual information:

P[z:|D¢] = 3, Plze, 21D ] . (6)

Figures 4 and 5 show various aspects of inference in the HMM for a particular run. The “true”
contextual states {z],zJ,...}, the true representational states {y*,y,,...}, and the observa-
tions {x1,Xp,...} are generated from the model with the parameters given in figure 1B. The
posterior distributions over z; and y; given Dy, that is all the observations up to, and includ-
ing time ¢, are computed at each time step using the algorithm detailed above. If the algorithm
is working properly, then we would expect to see a high correspondence between the “true”
contextual state z/ and the inferred, most likely state z; = argmax;,P[z:|D;]. Figure 4A;B
shows that z; mostly replicates z; faithfully. One quirk of inference in HMMs is that these
individually most likely states z; do not form a most likely state sequence as, for instance,
found by the Viterbi algorithm.

Figure 5 shows normalized histograms of the representational posterior probabilities of the
true states y;* (figure 5A) and the other states 3] (figure 5B). As one might hope, the former
are generally large, and the latter generally small.

The exact inference algorithm that we have described achieves good performance. However,
one may well ask whether it is computational feasible for the brain to perform the complete,
exact inference in all its mathematical complexity. Viewed abstractly, the most critical prob-
lem seems that of maintaining and manipulating simultaneously the information about all
possible contexts (P[z;|D¢]). This is particularly difficult in the face of population coding, for
which the activity pattern of one or a few populations of units in relevant cortical areas are
used to represent all possible contexts. Of course, in our simple example, there are only four
possible contexts. However, in general, there are potentially as many contexts as known visual
environments, a huge number.

A “naive” solution to the complexity problem is to use only the likelihood term, p[x;|y:], in
the inference about the current representational states y;, and ignore the top-down contextual
information altogether. This is actually the traditional model of inference for unsupervised
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Figure 5: Quality of exact representational inference. Normalized histograms of A) the exact
posterior distribution P[y:|D] over the actual state y;* (upper) and B) the other possible states
Vi # _'yt* (lower, written P[?;" 1). The x-axis is divided into bins of P[y;|D] ranging from 0 to
1, and the y-axis refers to the relative frequency of a particular state of y; being in each of the
binned probability intervals in the posterior distribution. This is an indication of the quality
of exact representational inference.

analysis-by synthesis models (eg Hinton & Ghahramani, 1997). Figure 3B shows the structure
of a purely bottom-up model, where the approximate posterior is computed by P[y;|x:] =
p[x¢1v:]/Z, where Z is a normalization factor. Purely bottom-up inference solves the problem
of high computational costs: there is no need to carry any information from one time step
to the next. However, the performance of this algorithm is likely to be poor, whenever the
probability distribution of generating x for the different values of y overlap substantially, as
is the case in our example. This is just the ambiguity problem described above.

Figure 6A shows the representational performance of this model, through a scatter-plot of
Ply:1x¢] against the exact posterior P[y;|D;]. If bottom-up inference was perfectly correct,
then all the points would lie on the diagonal line of equality. The bow-shape shows that purely
bottom-up inference is relatively poor. The particularly concentrated upper and lower bound-
aries indicate that when the true posterior distribution assigns a very high or very low prob-
ability to a state of 7y, the corresponding distribution inferred from bottom-up information
alone tends to assign a much more neutral probability to that state. This tendency highlights
the loss of the contribution of the disambiguating top-down signal in the bottom-up model.
With only the bottom-up information, it rarely happens that one can say with confidence that
a state of y; is either definitely the one, or definitely not the one, that generated x;. The exact
shape of the envelope is determined by the extent of overlap in the densities p[x|y] for the
various values of y, though we have yet to analyze this relationship in detail.
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Figure 6: Representational performance. Comparison of (A) the purely bottom-up P[y|D] and
(B) the ACh-based approximation P[y|D] with the true P[y|D] across all values of y. The
ACh-based approximation is substantially more accurate.

3 ACh-Mediated Approximate Inference

A natural compromise between the exact inference model, which is representationally and
computationally expensive, and the naive inference model, which has poor performance, is to
use a model that captures useful top-down information at a realistic computational cost. The
intuition we gain from exact inference is that top-down expectations can resolve bottom-up
ambiguities, permitting better processing. However, in the face of contextual uncertainty, top-
down information is just generic. Thus, we consider a model in which just a single contextual
state is represented in the activity of contextual units (presumably in pre-frontal areas), and
ACh is used to report on the uncertainty of this contextual state and to control the balance
between bottom-up and top-down inference. In exact inference, the notion of uncertainty is
captured in the (entropy of) the posterior distribution of the contextual state P[z;|D;-1] in
equation 2. This uncertainty determines the relative strength of the top-down information,
Plzi, yv¢|D¢-1], compared with the information from the likelihood p[x:|y:], in equation 4.

More formally, in our ACh-mediated approximate inference model, only two quantities of in-
formation about the context are maintained over time: Z;_1, the most likely contextual state
having seen D; 1, and &;_1, the measure of uncertainty associated with that state. The idea is
that o;—1 is reported by the level of ACh, and is used to control the extent to which top-down
information based on Z; ; is used to influence inference about ;.

Figure 3C shows a schematic diagram of the proposed approximate inference model. If we were
given the full, exact posterior distribution P[z¢_1, ¥¢—1|D¢-1], then one natural definition for
this ACh signal would be the uncertainty in the most likely contextual state

&1 =1-max; P[z; 1 =z|Dt 11 =1-Plz; 1|D¢ 1] (7)

Figure 7B shows the resulting ACh signal for one run with the actual sequence of contextual
states shown in Figure 7A. As expected, ACh level is generally high at times when the true state
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Figure 7: ACh model. A) Actual sequence of contextual states z for one run. B) ACh level from
the exact posterior in the same run. C) ACh level &; from the approximate model. Note the
coarse similarity between A and B.

z{ is changing, and decreases during the periods that z; is constant. During times of change,
top-down information is confusing or potentially incorrect, and so the current context should
be abandoned while a new context is gradually built up from a period of perception that is
mainly dominated by bottom-up input. This switch in inferential strategy is just the putative
inferential effect of ACh.

The ACh signal of Figure 7B was calculated assuming knowledge of the true posterior. This
is, of course, unreasonable. The model of figure 3C includes the key approximation that the
only information from D¢_; about the state of z, besides uncertainty signaled by ACh, is in the
single choice of context variable Z; ;. As in the full inference model, the first computation at
each time step t is to compute the prior distribution over z;. However, since the full posterior
distribution of z; 1 is no longer available, it has to be reconstructed from what is believed to
be the most likely contextual state Z;_, together with its associated uncertainty o;_1:

-1, ifZ2¢1 =27 4

Pz 1;0-1] = _ .
[Ze-1; 011 —7‘1"2‘711, otherwise

(8)

The approximation made is that all the non-explicitly modeled states of z;_; equally share
a fraction of the probability that Z; ; was not the “true” context. As before, the contextual
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information is then propagated to z; and y;:

Plzoe-11=2,  PlZ-150¢-11T 212, 9)
Plye, 2t;00-11 = P[2t12¢-1; 0¢¢-1103,y, (10)

and the new observation is incorporated into the inference in the conditioning step:
Py, 2¢|De] oc Plye, 21 2t-1; ce-11p[Xe | e ] (11)

The new posterior distributions are computed, as before, by marginalizing the joint posterior
distribution:

Plyt|Del = 3, Plyt, 2t1Dt] (12)
P[Z|D¢] = Xy, Plyt, 2t1D:] (13)

In addition, we compute the contextual information that is to be propagated to the next time
step:

27 = argmax;, P[2;|D;] most likely contextual state (14)
or=1-— P[Z;’Il)t] ACh level (15)

The crucial differences between this approximate inferential algorithm and the exact one de-
tailed before are the use of ACh as a scalar measure of uncertainty (equation 15) and the recon-
struction of an estimate of the posterior distribution from this scalar estimate (equation 8). If
o1 (ie the ACh level) is high, then the input stimulus-bound likelihood term dominates in the
conditioning process (equation 11); if o; 1 (ie the ACh level) is low, then the temporal context
(Z¢—1) and likelihood terms are appropriately balanced. These computations are all local and
straightforward, except for the representation and normalization of the joint distribution over
y: and Zt.

One potentially dangerous aspect of this inference procedure is that it might get unreasonably
committed to a single state: Z;_1 = Z; =.... Because the probabilities accorded to the other
possible values of z;_1 given D;_; are not explicitly represented from one time step to the
next, there is little chance for uncertainties about a context to build up, a condition necessary
for inducing a context switch. A natural way to avoid this is to bound the ACh level from
below by a constant, ¢, making approximate inference slightly more stimulus-bound than
exact inference. Thus, in practice, rather than using equation 15, we use

ot =@+ (1 -@)(1-P[Z;|D:]) (16)

Larger values of @ lead to larger guaranteed contribution of the bottom-up, stimulus-bound
likelihood term to inference.

Figure 7C shows the approximate ACh level for the same case as in Figure 7A;B, using @ = 0.1.
Although the detailed value of this signal over time is clearly different from that arising from
an exact knowledge of the posterior probabilities in Figure 7B, the gross movements are quite
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Figure 8: Representational cost. Solid: the mean extra representational cost for the true state
¥ over that in the exact posterior using the ACh model as a function of the minimum allowed
ACh level @. Dashed: the same quantity for the pure bottom-up model (which is equivalent to
the approximate model for ¢ = 1), denoted A{log P[y*]) here. Errorbars show standard errors
of the means over 1000 trials.

similar. Note the effect of @ in preventing the ACh level from dropping to 0. Figure 6B shows
that the ACh-based approximate posterior values P[y|D] are much closer to the true values
than for the purely bottom-up model, particularly for values of P[y;|D;] near O and 1, where
most data lie. Figure 4C shows that inference about z; is noisy, but the pattern of true values
is certainly visible.

Figure 8 shows the effects of different @ on the quality of inference about the true states y;".
What is plotted is the difference between approximate and exact log probabilities of the true
states y;", averaged over 1000 cases. The average log likelihood for the exact model is —210.
If @ =1, then inference is completely stimulus-bound, just like the purely bottom-up model.
Note the poor performance for this case. For values of @ slightly less than 0.2, the approximate
inference model does well, both for the particular setting of parameters described in Figure 1B
and for a range of other values (not shown here). An upper bound on the performance of
approximate inference can be calculated in three steps by: i) using the exact posterior to work
out Z; and o, ii) using these values to approximate P[Z;; &;] as in equation 8, and iii) using this
approximate distribution in equation 10 and the remaining equations. The average resulting
cost (ie the average resulting difference from the log probability under exact inference) is —3.5
log units. Thus, the ACh-based approximation performs well, and much better than purely
bottom-up inference.
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4 Experimental Data

We have argued that accurate reporting of top-down uncertainty, signaled by ACh level, is
important for achieving an optimal balance between top-down and bottom-up processing in
perceptual inference. To validate this statement, two main properties of cholinergic modula-
tion need to be verified. One is the modulatory effect of ACh on the relative processing of
top-down and bottom-up information. The other is that it is uncertainty that controls ACh
release in relevant areas of the cortex. We know of no experiment that directly tests our the-
ory - however, data from various behavioral and physiological studies lend some support to
its elements. For example, abnormal ACh levels, due to either pharmacological manipulations
or neurological diseases, lead to characteristic deficits in attentional perceptual tasks (Sarter
& Bruno, 1998) and general behavioral symptoms such as hallucination (Perry & Perry, 1995).
Also, physiological data indicate that the cellular and network effects of ACh activation on the
processing of sensory stimuli are facilitatory, as we would expect, although there is not yet
data showing what specific effects ACh has on top-down information. There is also a scarcity
of data on the drive underlying ACh activation. After summarizing the relevant, existing data,
we will propose some experiments to investigate aspects of ACh-mediated perception that are
less well understood.

4.1 General Behavioral Effects of ACh

Tasks involving sustained attention appear to involve ACh. Sustained attention refers to a
prolonged state of readiness to respond to rarely and unpredictably occurring signals (Sarter,
Givens, & Bruno, 2001). Uncertainty associated with contextual information in these tasks
can be induced by introducing variability in stimulus presentation time, location, stimulus lu-
minance or duration, or alternating between signal and non-signal trials (Parasuraman, 1986;
Parasuraman, Warm, & Dember, 1987). Manipulations of ACh release pattern or downstream
effects, according to our theory, would lead to performance impairment. In particular, stimuli
typically occur rarely in these tasks, so there is a strong top-down expectation of detecting
nothing. Thus, an abnormally low level of cortical ACh might lead to excessive confidence
in not detecting a stimulus when one is present, but only a small effect when no stimulus is
present. Correspondingly, when ACh level is abnormally high, bottom-up information is exces-
sively processed, perhaps lending undue credibility to signals that arise from irrelevant noise.
Thus, we might expect to see an increase in false alarms with no effects on hits. Data from
experiments in which cortical ACh levels are pharmacologically manipulated (Holley, Turchi,
Apple, & Sarter, 1995; Turchi & Sarter, 2001; McGaughy, Kaiser, & Sarter, 1996) corroborate
these hypotheses.

Weaker evidence comes from tasks involving selective spatial attention (see Kramer, Coles, &
Logan, 1996). In a version that has been used to study neuromodulatory effects, one of two
stimulus locations is cued and then a delay period introduced, before the target stimulus ap-
pears and the subject is required to respond (Muir, Dunnett, Robbins, & Everitt, 1992; Jackson,
Marrocco, & Posner, 1994). The spatial cue provides the obvious source of top-down infor-
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mation, and uncertainty associated with that information can be induced by presenting the
target stimulus at the unexpected location. Abnormal ACh levels, induced by pharmacological
manipulations (Muir et al., 1992), basal forebrain lesions (Muir, Everitt, & Robbins, 1994), or
neurological diseases (Parasuraman, Greenwood, Haxby, & Grady, 1992), result in longer re-
action times and, in more severe cases, lower accuracy. In addition, cortical administration
of physostigmine, an ACh re-uptake inhibitor, can eliminate behavioral deficits in the basal
forebrain-lesioned animals at the appropriate dosage, indicating the deficit is cholinergic in
nature (Muir et al., 1992). Moreover, dosages greater or less than optimal both lead to worsen-
ing in performance, indicating that it is not merely the presence of ACh in the cortex, but the
appropriate level of ACh that enables optimal perceptual inference.

Data from a third type of attentional task, divided attention with modality uncertainty, also
implicate ACh in modulating perceptual processes (Turchi & Sarter, 1997). In one version
of a divided attention task, the subject is trained to respond with different sets of response
rules depending on the modality of the stimulus (eg visual versus auditory). Compared to the
unimodal trials, the bimodal condition imposes an additional source of uncertainty. When ACh
level is kept abnormally low due to a basal forebrain lesion (Turchi & Sarter, 1997), rats are
observed to have longer reaction times than controls in the bimodal case, but not the unimodal
case. On the basis of our theory, we might indeed expect that excessive processing of the
top-down information (coming from a uniform distribution across modalities) would harm the
integration of helpful bottom-up, modality information, potentially resulting in longer reaction
times.

A further source of behavioral data on cholinergic modulation comes from patients with neu-
rological diseases. Cortical cholinergic deficit is common among patients diagnosed with Lewy
Body Dementia, Parkinson’s Disease, and Alzheimer’s Disease. A symptom common among
these patients is hallucinations, or the imagined or distorted perception of sensory stimuli. In
our model, such hallucinations might reflect an incorrect over-reliance on top-down informa-
tion because of inadequate ACh. In such patients, the severity of the hallucinations appears to
be correlated with cholinergic depletion. In Lewy Body Dementia patients, for instance, cholin-
ergic enzyme activity in temporal and parietal cortex is reduced to below 20% of the normal
in hallucinating patients, compared with around 50% in those not experiencing hallucinations
(Perry et al., 1993). It is interesting to note that the majority of plants with identified hallucino-
genic chemicals contain anti-muscarinic agents such as scopolamine and atropine (Schultes &
Hofmann, 1992). Hallucinatory experiences induced by these chemicals are enhanced during
eye closure and suppressed by visual input (Fisher, 1991). Many patients with Lewy Body De-
mentia and Alzheimer’s Disease also exhibit pereidolias, or the discernment of images such
as faces or animals in wallpaper, curtains, or clouds (Perry & Perry, 1995), a condition amelio-
rated by the administration of physostigmine, an ACh reuptake-inhibitor (Cummings, Gorman,
& Shapira, 1993). Of course, patient data must be interpreted cautiously, in particular in this
case, since there are many different forms of hallucinations, various of which are induced by
non-cholinergic pharamacological factors.
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4.2 Physiological effects of ACh

Physiological studies, though traditionally focusing only on the effects of ACh on bottom-up,
stimulus-bound processing, have suggested a much more specific set of cholinergic effects
than behavioral studies. There exists a large body of physiological data from both anes-
thetized and awake animals supporting the notion that basal forebrain ACh activation en-
hances stimulus processing across sensory cortices (Sillito & Murphy, 1987; Metherate, Asche,
& Weinberger, 1990; Tremblay, Warren, & Dykes, 1990). For example, tetanic stimulation in
the nucleus basalis increases cortical responsiveness by facilitating the ability of synaptic po-
tentials in thalamocortical connections to elicit action potentials in the rat auditory cortex
(Metherate, Asche, & Weinberger, 1993; Hars, Maho, Edeline, & Hennevin, 1993). This effect is
blocked by the application of atropine, a muscarinic receptor antagonist. In the rat somatosen-
sory cortex, iontophoretic application of ACh enhances sensory stimulus-evoked discharges
(Donoghue & Carroll, 1987). In the cat visual cortex, iontophoretic injection of ACh induces a
striking increase in stimulus-specific responses without concomitant loss in selectivity (Sillito
& Kemp, 1983). In the cat somatosensory cortex, simultaneous iontophoretic application of
ACh in single cells and tactile stimulation induce short-term potentiation in the majority of
cells (Metherate, Tremblay, & Dykes, 1987).

At the network level, ACh seems selectively to promote the flow of information in the feed-
forward pathway over that in the top-down feedback pathway. Via nicotinic receptors, ACh
appears selectively to enhance thalamocortical synapses without affecting the other synapses
(Gil, Conners, & Amitai, 1997). In addition, it has been observed that ACh strongly suppresses
intracortical connectivity in the visual cortex through presynaptic muscarinic receptors, but
has a much reduced effect on thalamocortical afferents that arise from white matter (Kimura
et al., 1999). Similarly, experiments in brain slice preparations of the rat somatosensory cor-
tex indicate that ACh selectively suppresses synaptic potentials elicited by the stimulation
of layer I, which contains a high percentage of feedback synapses, while having no effect on
synaptic potentials elicited by the stimulation of layer IV, which has a high percentage of what
we would consider as feedforward synapses (Hasselmo & Cekic, 1996). The overall effect of
ACh activation appears to enable the stimulus-bound input to have a dominant effect in the
sensory cortices.

4.3 Drive of ACh activation

Unfortunately, there is little detailed information on what drives ACh activation. It is known
that endogenous, task-related release of ACh occurs shortly before the presentation of stim-
uli, as measured by microdialysis (Fadel, Sarter, & Bruno, 2001) and single-cell recordings
(Richardson & DelLong, 1991), indicating at a minimum that ACh release cannot be a simple
consequence of ongoing perceptual processing.
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4.4 New Experiments

From the perspective of our model, the two areas in which data on cortical cholinergic modula-
tion are particular lacking are the effects of ACh on top-down processing relative to bottom-up
processing and the control of ACh activation. Investigating these issues requires a perceptual
task in which the contextual and sensory inputs are clearly distinct, and both they and their
inferential implications can be carefully controlled.

One possible paradigm is that described in Ress et al (Ress, Backus, & Heeger, 2000), which uses
fMRI techniques to measure visual cortical activity during a stimulus detection task. Their data
show a strong, stimulus-independent, spatially selective (for the region in which the stimulus
is likely to appear), and putatively top-down signal correlated with detection performance. In
terms of our model, this top-down signal would correspond to something like P[y;, Z¢; ox¢—1]
or P[y;; o¢—1]. To ascertain the effects of top-down uncertainty on this signal, it is possible
to manipulate uncertainty by changing the average ratio of signal to non-signal trials in a
given session. Or, more radically, something closer to the selective spatial attention tasks as
described above could be introduced in the task. When uncertainty is high, the signal should
be weak; when uncertainty is low, the signal should be strong. If this signal indeed varies as a
function of uncertainty as expected, then a next step would be to investigate the relationship
between ACh level, this fMRI signal, and the subject’s behavioral performance. The ACh level
can be manipulated with the administration of ACh receptor agonists/antagonists, ACh re-
uptake inhibitors, or other drugs with known effects on cortical ACh. We predict that elevated
ACh levels would lead to a strong top-down signal, and a selectively impaired performance
with increased false alarms but not misses. In contrast, lowered ACh level would lead to a
weaker top-down signal and an impairment in performance reflected mainly in the lengthening
of reaction time.

A direct relationship between top-down uncertainty and ACh level is difficult to establish using
the Ress paradigm, as the available techniques for measuring ACh level - single-cell recordings
and microdialysis - are inappropriate for fMRI studies. However, this relationship can be sepa-
rately investigated by adapting the same task to animal models. The top-down signal, presum-
ably similar to that for humans, would no longer be monitored. However, it would be possible
to measure the level of ACh using either single-cell recordings in the nucleus basalis, the main
source of cortical ACh, or microdialysis in the visual cortex itself. Top-down uncertainty could
again be manipulated by varying the average frequency of signal trials relative to non-signal
trials. Note that, due to the lack of data, it is difficult to hypothesize a priori what the precise
relationship is between uncertainty and the concentration of ACh. In our mathematical model,
we implicitly assumed a linear relationship and ignored the fact that ACh release and effects
have various components at different time scales (Sarter & Bruno, 1997; Hasselmo, 1995). It
will be very interesting to find out the exact relationship between uncertainty and ACh level,
and how this relationship differs for the tonic and phasic components of ACh signal.
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5 Discussion

We have suggested that one role for ACh in cortical processing is to report contextual un-
certainty in order to control the balance between stimulus-bound, bottom-up processing, and
context-bound, top-down processing. This is an extension of computational and mechanistic
ideas about the involvement of cholinergic modulation in learning in attractor networks. We
used the example of a hierarchical HMM, in which representational inference for a middle layer
correctly reflects such a balance, and showed that a simple model of the drive and effects of
ACh leads to competent inference.

The mathematical model we have used to illustrate our general theory on ACh is overly simple
in several respects. For example, it uses a localist representation for the state z, so that exact
inference is feasible. Also, only a two-level hierarchy was modeled, whereas sensory systems
in the brain are known to involve many levels of processing. It would be more biologically
realistic to consider distributed representations at each of many levels in a hierarchy, and
in which only one or a very few contexts, presumably stored in the prefrontal cortex, could
be entertained at once. Also, it is necessary to modify the steps in Equations 10 and 11,
since it would be difficult to represent the joint uncertainty over representations at multiple
levels in the hierarchy. Further, despite the limited physiological evidence mentioned above,
exactly which sets of cortical connections should be modulated by ACh is not completely clear
(see also Dayan, 1999). For instance, to what extent should recurrent connections within a
cortical column, or within a cortical hypercolumn be influenced in the same way as long range
horizontal connections between hypercolumns, or top-down connections from cortical areas
higher in the cortical hierarchy?

A strong assumption made in using a hidden Markov model is that the sequence of contextual
states obeys the Markov property: the context at any particular time step only depends on
the context in the preceding step and not on any of the previous ones. However, perceptual
inference in real systems has the potential of using top-down information from arbitrarily
distant past, stored in long-term memory. A more sophisticated mathematical model would
be needed to capture the contribution of multiple and longer term temporal dependencies.

In the HMM example, we also did not consider sources of top-down information that are dis-
tinct from temporal context. Clearly, processes such as inter-modality interactions and spa-
tial contextual integration could also exert a top-down influence on perceptual inference. By
comparison with multiple timescales, it would be relatively straightforward to build a more
complete mathematical model that captures these other sources of information too.

In this work, we have discussed ACh in the context of perceptual inference in isolation, inde-
pendent of other processes modulated by ACh. However, ample data at both the systems (eg
Hasselmo & Bower, 1993) and cellular (e g Sillito & Kemp, 1983) levels indicate ACh plays an im-
portant role in cortical learning (Hasselmo & Bower, 1993). Studies of cholinergic modulation
in conditioning (Holland, 1997; Holland & Gallagher, 1999; Dayan et al., 2000) suggest there
are strong interactions between learning and inference, both of which are modulated by ACh.
As in the work that inspired ours, the association of ACh with uncertainty or unfamiliarity
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makes it an ideal signal for controlling learning.

We took from the animal conditioning studies that ACh might report uncertainty. However,
we have not modeled a particularly interesting aspect of those studies, namely that cholinergic
modulation might differentially affect learning for different stimuli that are present simulta-
neously. If the same applies for different possible contexts, this could significantly enrich the
model.

Another important aspect of cholinergic modulation we have omitted is non-basal forebrain
cholinergic modulation, ie mainly subcortical innervation by the pedunculopontine nucleus,
the cuneiform nucleus, and the laterodorsal tegmental nucleus. ACh released by these nuclei
has been implicated in modulating REM sleep (Jewett & Nortan, 1986; Velazquez-Moctezuma,
Shiromani, & Gillin, 1990; Lavie, Pratt, Scharf, Peled, & Brown, 1984) and saccadic eye move-
ment (Aizawa, Kobayashi, Yamamoto, & Isa, 1999), among other processes. It is not yet clear
what, if any, similarities or interactions exist in the drive and effects of cortical ACh released
by the basal forebrain and by the other sources.

A final important aspect of cholinergic modulation that we have not yet addressed is the inter-
action between ACh and other neuromodulators. For example, there is evidence that dopamin-
ergic afferents from the nucleus accumbens modulates the activity of cholinergic neurons in
the basal forebrain, and furthermore, that this dopaminergic modulation underlies the cholin-
ergic impairments in schizophrenics (Sarter & Bruno, 1998). It has also been suggested that
ACh and norepinephrine play complementary roles in cortical developmental plasticity (Bear
& Singer, 1986; Kirkwood, Rozas, Kirkwood, & Perez, 1999).
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