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Abstract

Acetylcholine (ACh) plays an important role in a wide variety of cognitive tasks, such as perception, selective attention, associative

learning, and memory. Extensive experimental and theoretical work in tasks involving learning and memory has suggested that ACh reports

on unfamiliarity and controls plasticity and effective network connectivity. Based on these computational and implementational insights, we

develop a theory of cholinergic modulation in perceptual inference. We propose that ACh levels reflect the uncertainty associated with top-

down information, and have the effect of modulating the interaction between top-down and bottom-up processing in determining the

appropriate neural representations for inputs. We illustrate our proposal by means of an hierarchical hidden Markov model, showing that

cholinergic modulation of contextual information leads to appropriate perceptual inference. q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Acetylcholine; Perception; Neuromodulation; Representational inference; Hidden Markov model; Attention

1. Introduction

Neuromodulators such as acetylcholine (ACh), sero-

tonine, dopamine, norepinephrine, and histamine play two

characteristic roles. One, most studied in vertebrate systems,

concerns the control of plasticity. The other, most studied in

invertebrate systems, concerns the control of network

responses. For instance, a single, recurrently connected

assembly of neurons can exhibit multiple dynamical modes

(Pflüger, 1999), as neuromodulators alter the excitabilities

of individual neurons and the amplitudes of synaptic

potentials (Marder, 1998). These two roles have also been

brought together, notably in the theoretical and experi-

mental studies of Hasselmo and his colleagues, into the

neuromodulatory control of plasticity in recurrently con-

nected neural networks (Hasselmo, 1995; Hasselmo &

Bower, 1993). This work sits with that on dopamine (e.g.

Schultz, Dayan and Montague, 1997) in proposing compu-

tationally specific roles for neuromodulation.

Hasselmo and his colleagues (Hasselmo, 1995; Hasselmo

& Bower, 1993) focused on cholinergic neuromodulatory

influences over learning and memory in the hippocampus

and cortex. ACh is delivered to the cortex and hippocampus

from a small number of nuclei in the basal forebrain (BF):

medial septum (MS), diagonal band of Broca (DBB), and

nucleus basalis (NBM). Physiological studies on ACh

indicate that its neuromodulatory effects at the cellular

level are diverse, causing synaptic facilitation and suppres-

sion as well as direct hyperpolarization and depolarization,

all within the same cortical area (Kimura, Fukuda, &

Tsumoto, 1999). Behavioral experiments indicate that

ACh is involved in a wide variety of cognitive functions

such as perception, selective attention, associative learning,

and memory (Everitt & Robbins, 1997; Hasselmo, 1995;

Holland, 1997).

Hasselmo and colleagues proposed that cholinergic (and

perhaps other) neuromodulation controls read-in to, and

read-out from, recurrently-connected, attractor-like mem-

ories, such as that in area CA3 of the hippocampus. Such

attractor networks (Amit, 1989) fail if the recurrent

connections are operational during storage, since new

memories lose their specific identity by being forced to

map onto existing memories retrieved through the recurrent

dynamics. Hasselmo and colleagues suggested, and col-

lected direct experimental evidence, that cholinergic

neuromodulation during storage could selectively suppress

but plasticize the recurrent connections (and perhaps the

perforant path connections) onto CA3 cells and selectively

boost the feedforward mossy fiber inputs from the dentate

gyrus. During recall, the recurrent connections should play a

fuller part, being comparatively boosted through a lower

level of ACh, allowing associative retrieval. The degree of
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ACh release would reflect the unfamiliarity of the input, and

thereby act as a gate to learning. This mechanism has been

widely adopted, for instance in our own work (Káli and

Dayan, 2000) to help understand how spatial place cells in

CA3 might result from a learned surface attractor network.

Hasselmo and his colleagues have also demonstrated that

ACh has similar physiological and functional effects in the

piriform cortex (Linster & Hasselmo, 2001), which is

important for olfactory memory.

Lesions studies in classical conditioning tasks provide

additional insight into ACh’s role in the cortex. Animals are

known to learn faster about stimuli whose consequences

remain uncertain (Pearce & Hall, 1980). Through an

extensive series of selective lesion experiments in rats,

Holland and his colleagues have demonstrated that the

cholinergic projection from the nucleus basalis magno-

cellularis (nucleus basalis of Meynert in primates) to the

parietal cortex is essential for this sort of faster learning

(Holland, 1997; Holland & Gallagher, 1999). These data

have been interpreted, using the theoretical viewpoint of

statistical learning models, as implying that the ACh signal

reports the unfamiliarity of the stimuli, or the uncertainty in

its predictions (Dayan, Kakade, & Montague, 2000).

In this paper, we present a theory of cortical cholinergic

function in perceptual inference based on combining the

physiological evidence that ACh can differentially modulate

synaptic transmission to control states of cortical dynamics,

with theoretical ideas about the information carried by the

ACh signal. Crudely speaking, perception involves inferring

the most appropriate representation for sensory inputs. This

inference is influenced by both top-down inputs, providing

contextual information, and bottom-up inputs from sensory

processing. We propose that ACh reports on the uncertainty

associated with top-down information, and has the effect of

modulating the relative strengths of these two input sources.

Many cognitive functions affected by ACh levels can be

recast in the conceptual framework of representational

inference.

In Section 2, we present a simple hierarchical hidden

Markov model that casts sensory perception in the

theoretical framework of representational inference. As we

demonstrate in Section 3, approximate inference in such a

model could be mediated by cortical cholinergic inner-

vation. A summary of relevant experimental data and

proposals for new experiments is presented in Section 4.

2. Hidden Markov models and perceptual inference

Inferring appropriate representations for the constant

stream of sensory inputs is a formidable task, largely

because of the inherent ambiguity and noise in the sensory

input. A vital source of information that helps resolve

ambiguities comes from temporal and spatial context, and

thus a key issue for perceptual inference is updating

and maintaining this top-down contextual information, and

using it correctly in concert with bottom-up information

from the sensory input (Grenander, 1995; Helmholtz, 1896;

Neisser, 1967).

For simplicity, we only consider one of the most basic

forms of top-down contextual information, namely that

coming from the recent past. That is, we consider a series of

sensory inputs whose internal representations are individu-

ally ambiguous. Disambiguation comes via top-down

information based on a slowly changing overall state of

the environment. Here, only temporal context is relevant;

there is no spatial context. The resulting model (see also

Becker, 1999) is a form of Hidden Markov Model (HMM).

The HMM captures the way that sensory inputs are

generated or synthesized. We consider the inferential task

of recognition or analysis in which the representation for

each input is determined. We compare an approximate

recognition model based on cholinergic neuromodulation,

with the exact recognition model (Rabiner, 1989), in a case

chosen so that the exact model is computationally tractable.

Our HMM (Fig. 1(A) and (B)) consists of three pieces.

One, zt; is the overall state of the environment at time t,

which we also call the context. Changes to zt are

stochastically controlled by a transition matrix Tzt21zt
;

whose entries ensure that the context changes rarely. The

second piece is yt; which is determined stochastically on

each time-step, in a way that depends on the current state of

the environment. The third piece, the observed input xt,

depends stochastically on yt: The inferential task is to

represent inputs x in terms of the y values that were

responsible for them. However, the relationship between yt

and xt is such that this is ambiguous, so top-down

information from the likely states of zt; i.e. the likely

context, is important to find the correct representation for xt.

Fig. 1(A) shows the probabilistic contingencies among the

variables. Fig. 1(B) shows the same contingencies in a

different way, and specifies the particular setting of

parameters used to generate the examples found in the

remainder of the paper.

More formally, the context is a discrete, hidden, random

variable zt, whose stochastic temporal dynamics are

described by a Markov chain with transition matrix Tzt21zt
as

P½ztlzt21� ; Tzt21zt
¼

g if zt ¼ zt21;

1 2 g

nz 2 1
otherwise;

8><
>:

ð1Þ

where nz is the number of all possible states of z, and g is the

probability of persisting in one text. When g is close to 1, as

is the case in the example of Fig. 1(B), the context tends to

remain the same for a long time. When g is close to 0, the

context tends to switch among the different states of z
rapidly and randomly. The state of the second hidden layer,

y is generated from z with the mapping Oztyt
; which specifies

P½ytlzt�; and controls which of a set of circular two

dimensional Gaussians is used to generate the observations

xt via the densities p[xly]. The yt that was actually involved
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in generating xt is also called the model’s (true) represen-

tation of xt. The means of the Gaussians p[xly] are at

the corners of the unit square, as shown in Fig. 1(B), and the

variances of these Gaussians are s 2I. The parameters in the

model are the prior distribution of z, its temporal dynamics

Tzt21zt
; the conditional distributions Ozy, and the emission

densities p[xly]. It is assumed that all the parameters have

already been correctly learned at the outset of the inference

problem.

Fig. 2 shows an example of a sequence of 400 states

generated from the model. The state in the z layer stays the

same for an average of about 30 time steps, and then

switches to one of the other states, chosen with equal

probability. The key inference problem is to determine the

posterior distribution over yt, that best explains the

observation xt, given the past experiences

Dt21 ¼ {x1;…; xt21}:

Inference of the ‘true’ posterior distribution,

P½ytlxt;Dt21� ¼ P½ytlDt�; uses temporal contextual infor-

mation, consisting of existing knowledge built up from past

observations, as well as the new observation xt. Fig. 3(A)

shows the structure of the standard HMM inference model,

where the posterior distributions P[ytlDt] and P[ztlDt] can be

computed using a procedure that is equivalent to the

forwards part of the forwards–backwards algorithm (Rabiner,

1989). The adaptation to include the y layer is

straightforward.

In each time step t, the top-down information is

communicated by zt, while the bottom-up information is

carried by xt. The prior distribution over zt

P½ztlDt21� ¼
X
zt21

P½zt21lDt21�Tzt21zt
; ð2Þ

distills the contextual information from past experiences

Dt21. This information is propagated to the representational

units y by

P½zt; ytlDt21� ¼ P½ztlDt21�Oztyt
: ð3Þ

The bottom-up information, P[ytlxt], is proportional to the

likelihood, p[xtlyt], and interacts with the top-down

information, P½zt; ytlDt21� in the conditioning step

P½zt; ytlDt� / P½zt; ytlDt21�p½xtlyt�; ð4Þ

where the constant of proportionality normalizes the full

conditional distribution. From the joint posterior distri-

bution over z and y, we can then compute the marginalized

posterior distribution of yt, which gives the relative belief in

each of the states of yt having generated the current

Fig. 1. Hierarchical HMM. (A) Three-layer model, with two hidden layers, z and y, and one observed layer, x. The temporal dynamics are captured by

the transition matrix Tzt21zt
in the z layer, and the observations x are generated from y and, indirectly, from z. (B) Example parameter settings: z [

{1 2 4} ) y [ {1 2 4} ) x [ R2 with dynamics (T) in the z layer ðP½zt ¼ zt21� ¼ 0:97Þ; a probabilistic mapping (O) from z ! y ðP½yt ¼ ztlzt� ¼ 0:75Þ; and

a Gaussian model p[xly] with means at the corners of the unit square and standard deviation s ¼ 0:5 in each direction. Only some of the links are shown to

reduce clutter.

Fig. 2. Generative model. A sample sequence involving 400 time steps,

generated from the model shown in Fig. 1(B). Note the slow dynamics in z,

the stochastic mapping into y, and substantial overlap in xs generated from

the different ys (different symbols correspond to different Gaussians shown

in Fig. 1(B)).
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observation xt, in the context of past experiences:

P½ytlDt� ¼
X
zt

P½zt; ytlDt�: ð5Þ

This distribution, henceforth referred to as the exact

posterior, is the fullest possible representation of xt. One

can also create the updated contextual information

P½ztlDt� ¼
X
yt

P½zt; ytlDt�; ð6Þ

which is propagated forward to the next time step (t þ 1) as

in Eq. (2).

Figs. 4 and 5 show various aspects of inference in the

HMM for a particular run. The true contextual states

{zp1; zp2;…}; the true representational states {yp1; yp2;…}; and

the observations {x1; x2;…}; are generated from the model

with the parameters given in Fig. 1(B). The posterior

distributions over zt and yt given Dt, that is all the

observations up to, and including time t, are computed at

each time step using the algorithm detailed earlier. If the

algorithm is working properly, then we would expect to see

a high correspondence between the true contextual state zt
p

and the inferred, most likely state z0
t ¼ argmaxzt

P½ztlDt�:
Fig. 4(A) and (B) shows that z0

t mostly replicates zt
p

faithfully. One quirk of inference in HMMs is that these

individually most likely states z0
t do not form a most likely

state sequence as, for instance, found by the Viterbi

algorithm.

Fig. 5(A) and (B) show histograms of the represen-

tational posterior probabilities of the true states yt
p and all the

other possible states �ypt ; respectively, computed by the exact

inference algorithm. As one might hope, the former are

generally large and cluster around 1, while the latter are

generally small and cluster around 0.

The exact inference algorithm that we have described

achieves good performance. However, one may well ask

whether it is computational feasible for the brain to perform

the complete, exact inference in all its mathematical

complexity. Viewed abstractly, the most critical problem

seems that of maintaining and manipulating simultaneously

the information about all possible contexts (P[ztlDt]). This is

particularly difficult in the face of population coding, for

which the activity patterns of one or a few populations of

units in relevant cortical areas are used to represent all

possible contexts. Of course, in our simple example, there

are only four possible contexts. However, in general, there

are potentially as many contexts as known environments, a

huge number.

A ‘naive’ solution to the complexity problem is to

use only the likelihood term, p½xtlytl�; in the inference

about the current representational states yt, and ignore the

top-down contextual information altogether. This is actually

one traditional model of inference for unsupervised

Fig. 3. Recognition models. (A) Exact recognition model. P[zt21lDt21] is propagated to provide the prior P[ztlDt21] (shown by the lengths of the thick vertical

bars), and thus the prior P[ytlDt21]. This is combined with the likelihood term from the data xt to give the true P[ytlDt]. (B) Bottom-up recognition model uses

only a generic prior over yt, which conveys no information, so the likelihood term dominates. (C) ACh model. A single estimated state ~zt21 is used, in

conjunction with its uncertainty at21, reported by cholinergic activity, to produce an approximate prior ~P½~zt;at21� over zt (which is a mixture of a delta function

and a uniform), and thus an approximate prior over yt. This is combined with the likelihood to give an approximate ~P½ytlDt�; and a new cholinergic signal at is

calculated.

Fig. 4. Contextual representation in exact inference. (A) Actual zt states. (B) Highest probability zt states from the exact posterior distribution. (C) Most likely ~zt

states from the ACh-mediated approximate inference model.
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analysis-by-synthesis models (e.g. Hinton & Ghahramani,

1997). Fig. 3(B) shows the structure of a purely bottom-up

model, where the approximate posterior is computed by

P̂½ytlxt� ¼ p½xtlyt�=Z; where Z is a normalization factor.

Purely bottom-up inference solves the problem of high

computational costs: there is no need to carry any

information from one time step to the next. However, the

performance of this algorithm is likely to be poor, whenever

the probability distribution of generating x for the different

values of y overlap substantially, as is the case in our

example. This is just the ambiguity problem described

earlier.

Fig. 6(A) shows the representational performance of

this model, through a scatter-plot of P̂½ytlxt� against the

exact posterior P[ytlDt]. If bottom-up inference were

perfectly correct, then all the points would lie on the

diagonal line of equality. The bow-shape shows that

purely bottom-up inference is relatively poor. The

particularly concentrated upper and lower boundaries

indicate that when the true posterior distribution assigns

a very high or very low probability to a state of y, the

corresponding distribution inferred from bottom-up

information alone tends to assign a much more neutral

probability to that state. This tendency highlights the

loss of the contribution of the disambiguating top-down

signal in the bottom-up model. With only the bottom-up

information, it rarely happens that one can say with

confidence that a state of yt is either definitely the one,

or definitely not the one, that generated xt. The exact

shape of the envelope is determined by the extent of

overlap in the densities p[xly] for the various values of

y, but we do not analyze this relationship in detail here.

3. ACh-mediated approximate inference

A natural compromise between the exact inference

model, which is representationally and computationally

expensive, and the naive inference model, which has poor

performance, is to use a model that captures useful top-

down information at a realistic computational cost. The

intuition we gain from exact inference is that top-down

expectations can resolve bottom-up ambiguities, permitting

better processing. However, in the face of contextual

uncertainty, top-down information is just generic. Thus,

we consider a model in which just a single contextual state is

represented in the activity of contextual units (presumably

in pre-frontal areas), and ACh is used to report on the

uncertainty of this contextual state and to control the

balance between bottom-up and top-down inference. In

exact inference, the notion of uncertainty is captured in the

(entropy of) the posterior distribution of the contextual state

Fig. 5. Quality of exact inference. Histograms of the posterior distributions of the true state yt
p (A, C, and E) and all other possible states yt – ypt (B, D, and F),

tallied over 1000 time steps of a run. A and B are based on the exact inference algorithm, C and D on the ACh-mediated inference algorithm, and E and F on the

bottm-up inference algorithm. The x-axis is divided into bins of P[ytlDt] ranging from 0 to 1, and the y-axis refers to the number of occurrences that probability

accorded to yt
p or �ypt falls into each of the binned probability intervals in the posterior distributions. Note that the histograms in the right column have larger

entries than those in the left, because at each time steps, only the true state contributes to the histogram on the left, while the other three contribute to the right.

The differential degrees of similarity between the histograms produced by the ACh algorithm compared to the exact algorithm, and by the bottom-up algorithm

compared to the exact algorithm, are an indication of their respective quality of representational inference.
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P½zt21lDt21� in Eq. (2). This uncertainty determines the

relative strength of the top-down information, P½zt; ytlDt21�;
compared with the information from the likelihood p[xtlyt],

in Eq. (4).

More formally, in our ACh-mediated approximate

inference model, only two pieces of information about the

context are maintained over time: ~zt21; the most likely

contextual state having seen Dt21, and at21, the amount of

uncertainty associated with that state. The idea is that at21 is

reported by the level of ACh, and is used to control the

extent to which top-down information based on ~zt21 is used

to influence inference about yt.

Fig. 3(C) shows a schematic diagram of the proposed

approximate inference model. If we were given the full,

exact posterior distribution P½zt21; yt21lDt21�; then one

natural definition for this ACh signal would be the

uncertainty in the most likely contextual state

at21 ¼ 1 2 maxzP½zt21 ¼ zlDt21� ¼ 1 2 P z8t21lDt21

� �
: ð7Þ

Fig. 7(B) shows the resulting ACh signal for one run with

the actual sequence of contextual states shown in Fig. 7(A).

As expected, the ACh level is generally high at times when

the true state zt
p is changing, and decreases during the

periods that zpt is constant. During times of change, top-

down information is confusing or potentially incorrect, and

so the current context should be abandoned while a new

context is gradually built up from a period of perception that

is mainly dominated by bottom-up input. This switch in

inferential strategy is just the putative inferential effect of

ACh.

The ACh signal of Fig. 7(B) was calculated assuming

knowledge of the true posterior. This is, of course,

unreasonable. The model of Fig. 3(C) includes the key

approximation that the only information from Dt21 about

the state of z, besides uncertainty signaled by ACh, is in the

single choice of context variable ~zt21: As in the full

inference model, the first computation at each time step t is

to compute the prior distribution over zt. However, since the

full posterior distribution of zt21 is no longer available, it

has to be reconstructed from what is believed to be the most

Fig. 6. Representational performance. Comparison of (A) the purely bottom-up P̂½ytlDt� and (B) the ACh-based approximation ~P½ytlDt�, with the true P[ytlDt]

across all values of yt. The ACh-based approximation is substantially more accurate.

Fig. 7. ACh model. (A) Actual sequence of contextual states zt for one run. (B) ACh level from the exact posterior in the same run. (C) ACh level at from the

approximate model. Note the coarse similarity between A and B.
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likely contextual state ~z0
t21; together with its associated

uncertainty at21 :

~P½~zt21;at21� ¼

ð1 2 at21Þ þ
at21

nz
if ~zt21 ¼ ~z8t21;

at21

nz
otherwise:

8>><
>>:

ð8Þ

The approximation made is that all the non-explicitly

modeled states of zt21 equally share a fraction of the

probability that ~zt21 was not the true context. As before, the

contextual information is then propagated to zt and yt

~P½~zt;at21� ¼
X
zt21

~P½~zt21;at21�Tzt21zt
; ð9Þ

~P½yt; ~zt;at21� ¼ ~P½~zt;at21�O~ztyt
; ð10Þ

and the new observation is incorporated into the inference in

the conditioning step:

~P½yt; ~ztlDt� / ~P½yt; ~zt;at21�p½xtlyt�: ð11Þ

The new posterior distributions are computed, as before, by

marginalizing the joint posterior distribution:

~P½ytlDt� ¼
X
zt

~P½yt; ~ztlDt�; ð12Þ

~P½~zlDt� ¼
X
yt

~P½yt; ~ztlDt�: ð13Þ

In addition, we compute the contextual information that is to

be propagated to the next time step:

~z0
t ¼ argmaxzt

~P½~ztlDt� most likely contextual state; ð14Þ

at ¼ 1 2 ~P ~z0
t lDt

h i
Ach level: ð15Þ

The crucial differences between this approximate inferential

algorithm and the exact one detailed before are the use of

ACh as a scalar measure of uncertainty (Eq. (15)) and the

reconstruction of an estimate of the posterior distribution

from this scalar estimate (Eq. (8)). In general, we would not

expect to be able to represent this distribution either. Rather,

ACh would control the way that information about just ~zt21

would be used to make inferences at time t. If at21 (i.e. the

ACh level) is high, then the input stimulus-bound likelihood

term dominates in the conditioning process (Eq. (11)); if

at21 (i.e. the ACh level) is low, then the temporal context

ð~zt21Þ and likelihood terms are appropriately balanced.

These computations are local and straight forward, except

for the representation and normalization of the joint

distribution over yt and ~zt:
One potentially dangerous aspect of this inference

procedure is that it might get unreasonably committed to a

single state: ~zt21 ¼ ~zt ¼ · · ·: Because the probabilities

accorded to the other possible values of zt21 given Dt21

are not explicitly represented from one time step to the next,

there is little chance for uncertainties about a context to

build up, a condition necessary for inducing a context

switch. A natural way to avoid this is to bound the ACh level

from below by a constant, w, making approximate inference

slightly more stimulus-bound than exact inference. Thus, in

practice, rather than using Eq. (15), we use

at ¼ wþ ð1 2 wÞ 1 2 ~P ~z0
t lDt

h i
 �
: ð16Þ

Larger values of w lead to a larger guaranteed contribution

of the bottom-up, stimulus-bound likelihood term to

inference.

Fig. 7(C) shows the approximate ACh level for the same

case as in Fig. 7(A) and (B), using w ¼ 0:1: Although the

detailed value of this signal over time is clearly different

from that arising from an exact knowledge of the posterior

probabilities in Fig. 7(B), the gross movements are quite

similar. Note the effect of preventing the ACh level from

dropping to 0. Fig. 5(C) and (D) show that the ACh-

mediated approximate inferences has the same tendency as

the exact algorithm (Fig. 5(A) and (B)) to accord high

probabilities to the true sequence of states, yt
p, and low

probabilities to all the other states, �ypt : In comparison, the

bottom-up model performs much worse (Fig. 5(E) and (F)),

tending in general to give the true states, yt
p, lower

probabilities. Fig. 6(B) shows that the ACh-based approxi-

mate posterior values ~P½ylD� are much loser to the true

values than for the purely bottom-up model, particularly for

values of P[ytlDt] near 0 and 1, where most data lie. Fig.

4(C) shows that inference about zt
p is noisy, but the pattern

of true values is certainly visible.

Fig. 8 shows the effects of different w on the quality of

inference about the true states yt
p. What is plotted is the

difference between approximate and exact log probabilities

of the true states yt
p, averaged over 1000 cases. The average

log likelihood for the exact model is 2210. If w ¼ 1; then

Fig. 8. Representational cost. Solid: the mean extra representational cost for

the true state yt
p over that in the exact posterior using the ACh model as a

function of the minimum allowed ACh level w. Dashed: the same quantity

for the pure bottom-up model (which is equivalent to the approximate

model for w ¼ 1), denoted Dklog P̂½ypt �l here. Errorbars show standard

errors of the means over 1000 trials.

A.J. Yu, P. Dayan / Neural Networks 15 (2002) 719–730 725



inference is completely stimulus-bound, just like the purely

bottom-up model.

Note the poor performance for this case. For values of w

slightly less than 0.2, the approximate inference model does

well, both for the particular setting of parameters described

in Fig. 1(B) and for a range of other values (not shown here).

An upper bound on the performance of approximate

inference can be calculated in three steps by: (i) using the

exact posterior to work out ~zt and at, (ii) using these values

to approximate P½~zt;at� as in Eq. (8), and (iii) using this

approximate distribution in Eq. (10) and the remaining

equations. The average resulting cost (i.e. the average

resulting difference from the log probability under exact

inference) is 23.5 log units. Thus, the ACh-based

approximation performs well, and much better than purely

bottom-up inference.

4. Experimental data

We have argued that accurate reporting of top-down

uncertainty, signaled by ACh level, is important for

achieving an appropriate balance between top-down and

bottom-up processing in perceptual inference. To validate

this statement, two main properties of cholinergic modu-

lation need to be verified. One is the modulatory effect of

ACh on the relative processing of top-down and bottom-up

information. The other is that it is uncertainty that controls

ACh release in relevant areas of the cortex. We know of no

experiment that directly tests our theory. However, data

from various behavioral and physiological studies lend

some support to its elements. For example, abnormal ACh

levels, due to either pharmacological manipulations or

neurological diseases, lead to characteristic deficits in

attentional perceptual tasks (Sarter & Bruno, 1998) and

general behavioral symptoms such as hallucination (Perry &

Perry, 1995). Also, physiological data indicate that the

cellular and network effects of ACh activation on the

processing of sensory stimuli are facilitatory, as we would

expect, although there is not yet data showing what specific

effects ACh has on top-down information.

Unfortunately, there is little detailed information on what

drives the activity of the cholinergic cells. It is known that

endogenous, task-related release of ACh occurs shortly

before the presentation of stimuli, as measured by

microdialysis (Fadel, Sarter, & Bruno, 2001) and single-

cell recordings (Richardson & DeLong, 1991), indicating at

a minimum that ACh release cannot be a simple

consequence of ongoing perceptual processing. Further,

some candidate anatomical pathways have been identified

(such as from the central nucleus of the amygdala, Bucci,

Holland and Gallagher, 1998), but not at the level of detail

required to refute or support the theory.

After summarizing the relevant, existing data, we will

propose some experiments to investigate aspects of ACh-

mediated perception that are less well understood.

4.1. General behavioral effects of Ach

ACh involvement has been found in a variety of

attentional tasks, such as versions of sustained attention,

selective spatial attention, and divided attention. The

attentional tasks studied in association with ACh can

generally be viewed as top-down/bottom-up inferential

tasks with elements of uncertainty. First, in the case of

sustained attention in signal detection (Sarter, Givens, &

Bruno, 2001), the rare occurrence of signals may lead to a

top-down bias of not detecting a signal. Thus, abnormally

low levels of cortical ACh, according to our theory, would

lead to undue confidence in non-detection when signal does

appear, and excessive ACh release would result in over-

processing of sensory information, leading to higher rates of

false alarms but not misses. Pharmacological manipulations

of ACh in monkeys induce behavioral deficits consistent

with this view (Holley, Turchi, Apple, & Sarter, 1995;

McGaughy, Kaiser, & Sarter, 1996; Turchi & Sarter, 2001).

Second, in Posner’s task, a version of selective spatial

attention, the cue provides top-down information about the

location of the stimulus (Jackson, Marrocco, & Posner,

1994; Muir, Dunnett, Robbins, & Everitt, 1992), and

uncertainty can be induced by presenting the stimulus at

the unexpected location. As would be consistent with the

theory, abnormal ACh levels, induced by pharmacological

manipulations (Muir et al., 1992), BF lesions (Muir, Everitt,

& Robbins, 1994), and neurological diseases (Parasuraman,

Greenwood, Haxby, & Grady, 1992), result in longer

reaction times and sometimes lower accuracy. Third, in a

version of a divided attention task with modality uncer-

tainty, each session of signal detection is either bimodal

(mixed auditory and visual cues) or unimodal (only auditory

or only visual) (Turchi & Sarter, 1997). The session serves

as an implicit source of contextual information about the

modality of the signal, thus the uncertainty level is

inherently higher in the bimodal session than the unimodal

one. After a BF lesion (Turchi & Sarter, 1997), rats have

longer reaction time than controls in the bimodal case, as

they are no longer capable of giving bottom-up information

higher priority in the face of top-down uncertainty.

A further source of behavioral data on cholinergic

modulation comes from patients with neurological diseases.

Hallucination is common among patients diagnosed with

Lewy Body Dementia, Parkinson’s disease, and Alzheimer’s

disease, all of which are accompanied by some degree of

cortical cholinergic deficit. In the context of our model, this

route to hallucination might reflect over-processing of top-

down information due to an ACh deficit. The cholinergic

nature of hallucination is supported by the observed

correlation between the severity of hallucination and the

extent of cholinergic depletion (Perry et al., 1993).

Consistent with the notion that hallucination is antagonistic

to sensory processing, hallucinatory experiences induced by

plant chemicals containing anti-muscarinic agents such as

scopolamine and atropine (Schultes & Hofmann, 1992) are
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enhanced during eye closure and suppressed by visual input

(Fisher, 1991). Many patients with Lewy Body Dementia

and Alzheimer’s disease also exhibit pereidolias, or the

discernment of images such as faces or animals in

wallpaper, curtains, or clouds (Perry & Perry, 1995), a

condition ameliorated by the administration of physo-

stigmine, an ACh reuptake-inhibitor (Cummings, Gorman,

& Shapira, 1993). Of course, there are also other routes

to hallucinations, notably due to hyperactivities of cholin-

ergic neurons in the pedunculopontine nucleus and

dorsolateral tegmental nucleus (Perry & Perry, 1995), as

well as via serotonin receptors (e.g. Jacobs, 1978).

4.2. Physiological effects of ACh

Physiological studies, though traditionally focusing only

on the effects of ACh on bottom-up, stimulus-bound

processing, have suggested a much more specific set of

cholinergic effects than behavioral studies. A large body of

physiological data from both anesthetized and awake

animals supports the notion that BF ACh activation

enhances stimulus processing across sensory cortices

(Metherate, Asche, & Weinberger, 1990; Sillito & Murphy,

1987; Tremblay, Warren, & Dykes, 1990). For example,

tetanic stimulation in the NBM increases cortical respon-

siveness by facilitating the ability of synaptic potentials in

thalamo-cortical connections to elicit action potentials in

the rat auditory cortex (Hars, Maho, Edeline, & Hennevin,

1993; Metherate, Asche, & Weinberger, 1993), an effect

blocked by the application of atropine. Similarly, ionto-

phoretic application of ACh in somatosensory cortex

(Donoghue & Carroll, 1987; Metherate, Tremblay, &

Dykes, 1987) and visual cortex (Sillito & Kemp, 1983)

enhances stimulus-evoked discharges and short-term poten-

tiation without concomitant loss in selectivity.

At the network level, ACh seems selectively to promote

the flow of information in the feed-forward pathway over

that in the top-down feedback pathway. Existent data

suggest that ACh selectively enhances thalamo-cortical

synapses via nicotinic receptors (Gil, Conners, & Amitai,

1997) and strongly suppresses intracortical synaptic trans-

mission in the visual cortex through pre-synaptic muscarinic

receptors (Kimura et al., 1999). In separate studies, ACh has

been shown selectively to suppress synaptic potentials

elicited by the stimulation of layer I, which contains a high

percentage of feedback synapses, while having no effect on

synaptic potentials elicited by the stimulation of layer IV,

which has a high percentage of what we would consider as

feed-forward synapses (Hasselmo & Cekic, 1996). Collec-

tively, these data suggest ACh activation enables the

stimulus-bound input to have a dominant effect in sensory

processing.

4.3. New experiments

From the perspective of our model, the two areas in

which data on cortical cholinergic modulation are particular

lacking are the effects of ACh on top-down processing

relative to bottom-up processing and the control of ACh

activation. Investigating these issues requires a perceptual

task in which the contextual and sensory inputs are clearly

distinct, and both they and their inferential implications can

be carefully controlled.

One possible paradigm would be a modification of that

described in Ress et al. (Ress, Backus, & Heeger, 2000),

which uses fMRI techniques to measure visual cortical

activity during a stimulus detection task. Their data show a

strong, stimulus-independent, spatially selective (for the

region in which the stimulus is likely to appear), and

putatively top-down signal correlated with detection

performance. In terms of our model, this top-down signal

would correspond to something like ~P½yt; ~zt;at21� or
~P½yt;at21�: To ascertain the effects of top-down uncertainty

on this signal, it is possible to manipulate uncertainty by

changing the average ratio of signal to non-signal trials in a

given session. Or, more radically, something closer to the

selective spatial attention tasks as described earlier could be

introduced in the task. When uncertainty is high, the signal

should be weak; when uncertainty is low, the signal should

be strong. If this signal indeed varies as a function of

uncertainty as expected, then the next step would be to

investigate the relationship between ACh level, this fMRI

signal, and the subject’s behavioral performance. The ACh

level can be manipulated with the administration of ACh

receptor agonists/antagonists, ACh re-uptake inhibitors, or

other drugs with known effects on cortical ACh. We predict

that elevated ACh levels would lead to a weak top-down

signal, and selectively impaired performance with increased

false alarms but not misses. In contrast, lowered ACh level

would lead to a stronger top-down signal and impairment in

performance reflected mainly in the lengthening of reaction

time.

A direct relationship between top-down uncertainty and

ACh level is difficult to establish using the Ress paradigm,

as the available techniques for measuring ACh level—

single-cell recordings and microdialysis—are inappropriate

for fMRI studies. However, this relationship can be

separately investigated by adapting the same task to animal

models. The top-down signal, presumably similar to that for

humans, would no longer be monitored. However, it would

be possible to measure the level of ACh using either single-

cell recordings in the NBM, the main source of cortical

ACh, or microdialysis in the visual cortex itself. Top-down

uncertainty could again be manipulated by varying the

average frequency of signal trials relative to non-signal

trials. Note that, due to the lack of data, it is difficult to

hypothesize a priori the precise relationship between

uncertainty and the concentration of ACh. In our mathe-

matical model, we implicitly assumed a linear relationship

and ignored the fact that ACh release and effects have

various components at different time scales (Hasselmo,

1995; Sarter & Bruno, 1997). It will be very interesting to
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find out the exact relationship between uncertainty and ACh

level, and how this relationship differs for the tonic and

phasic components of ACh signal.

5. Discussion

We have suggested that one role for ACh in cortical

processing is to report contextual uncertainty in order to

control the balance between stimulus-bound, bottom-up

processing, and context-bound, top-down processing. This

is an extension of computational and implementational

ideas about the involvement of cholinergic modulation in

learning in attractor networks. We used the example of a

hierarchical HMM, in which representational inference for a

middle layer correctly reflects such a balance, and showed

that a simple model of the drive and effects of ACh leads to

competent inference.

Our suggestion bears an interesting relationship to a

crucial mechanism in adaptive resonance theory (ART;

Carpenter & Grossberg, 1991). In ART, a representation of

an input is chosen via pattern matching, and its appro-

priateness is assessed using top-down signals. If the

representation is found to be wanting, then a neuromodu-

latory mechanism is used to reset the units in the

representational layer, thus allowing a different represen-

tation to be selected. The models have in common the idea

that neuromodulation should alter network state or

dynamics based on information associated with top-down

processing. However, the nature of the information that

controls the neuromodulatory signal, and the effect of

neuromodulation on cortical inference are quite different in

the two models.

The mathematical model we have used to illustrate our

general theory on ACh is overly simple in several respects.

For example, it uses a localist representation for the state z,

so that exact inference is feasible. Also, only a two-level

hierarchy was modeled, whereas sensory systems in the

brain are known to involve many levels of processing. It

would be more biologically realistic to consider distributed

representations at each of many levels in a hierarchy, and in

which only one or a very few contexts, presumably stored in

the pre-frontal cortex, could be entertained at once. Also, it

is necessary to modify the steps in Eqs. (10) and (11), since

it would be difficult to represent the joint uncertainty over

representations at multiple levels in the hierarchy. Further,

despite the limited physiological evidence mentioned

above, exactly which sets of cortical connections should

be modulated by ACh is not completely clear (see also

Dayan, 1999). For instance, to what extent should recurrent

connections within a cortical column, or within a cortical

hypercolumn be influenced in the same way as long-range

horizontal connections between hypercolumns, or top-down

connections from cortical areas higher in the cortical

hierarchy?

A strong assumption made in using a HMM is that the

sequence of contextual states obeys the Markov property:

the context at any particular time step only depends on the

context in the preceding step and not on any of the previous

ones. However, perceptual inference in real systems has

the potential of using top-down information from arbitrarily

distant past, stored in long-term memory. A more

sophisticated mathematical model would be needed to

capture the contribution of multiple and longer term

temporal dependencies.

In the HMM example, we also did not consider sources

of top-down information that are distinct from temporal

context. Clearly, processes such as inter-modality inter-

actions and spatial contextual integration could also exert a

top-down influence on perceptual inference. By comparison

with multiple timescales, it would be relatively straight-

forward to build a more complete mathematical model that

captures these other sources of information too.

In this work, we have discussed ACh in the context of

perceptual inference in isolation, independent of other

processes modulated by ACh. However, ample data at both

the systems (e.g. Hasselmo & Bower, 1993) and cellular

(e.g. Sillito & Kemp, 1983) levels indicate ACh plays an

important role in cortical plasticity and learning (Dimyan &

Weinberger, 1999; Hasselmo & Bower, 1993; Kilgard &

Merzenich, 1998; Weinberger, 1998). Studies of cholinergic

modulation in conditioning (Dayan et al., 2000; Holland,

1997; Holland & Gallagher, 1999) suggest there are strong

interactions between learning and inference, both of which

are modulated by ACh. As in the work that inspired ours, the

association of ACh with uncertainty or unfamiliarity makes

it an ideal signal for controlling learning.

We took from the animal conditioning studies that ACh

might report uncertainty. However, we have not modeled a

particularly interesting aspect of those studies, namely that

cholinergic modulation might differentially affect learning

for different stimuli that are present simultaneously. If the

same applies for different possible contexts, this could

significantly enrich the model.

Another important aspect of cholinergic modulation we

have omitted is non-BF cholinergic modulation, i.e. mainly

subcortical innervation by the pedunculopontine nucleus,

the cuneiform nucleus, and the laterodorsal tegmental

nucleus. ACh released by these nuclei has been implicated

in modulating REM sleep (Jewett & Nortan, 1986; Lavie,

Pratt, Scharf, Peled, & Brown, 1984; Velazquez-Moctezuma,

Shiromani, & Gillin, 1990) and saccadic eye movement

(Aizawa, Kobayashi, Yamamoto, & Isa, 1999), among other

processes. It is not yet clear what, if any, similarities or

interactions exist in the drive and effects of cortical ACh

released by the BF and by the other sources.

A final important aspect of cholinergic modulation that

we have not yet addressed is the interaction between ACh

and other neuromodulators. For example, there is evidence

that dopaminergic afferents from the nucleus accumbens

modulates the activity of cholinergic neurons in the BF, and

furthermore, that this dopaminergic modulation could be
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associated with the cholinergic impairments in schizo-

phrenics (Sarter & Bruno, 1998). It has also been suggested

that ACh and norepinephrine play complementary roles in

cortical developmental plasticity (Bear & Singer, 1986;

Kirkwood, Rozas, Kirkwood, & Perez, 1999).
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