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Abstract

Most theoretical and empirical studies of population codes make
the assumption that underlying neuronal activities is a unique and
unambiguous value of an encoded quantity. However, population
activities can contain additional information about such things as
multiple values of or uncertainty about the quantity. We have pre-
viously suggested a method to recover extra information by treat-
ing the activities of the population of cells as coding for a com-
plete distribution over the coded quantity rather than just a single
value. We now show how this approach bears on psychophys-
ical and neurophysiological studies of population codes for mo-
tion direction in tasks involving transparent motion stimuli. We
show that, unlike standard approaches, it is able to recover mul-
tiple motions from population responses, and also that its output
is consistent with both correct and erroneous human performance
on psychophysical tasks.

A population code can be defined as a set of units whose activities collectively
encode some underlying variable (or variables). The standard view is that popu-
lation codes are useful for accurately encoding the underlying variable when the
individual units are noisy. Current statistical approaches to interpreting popula-
tion activity reflect this view, in that they determine the optimal single value that
explains the observed activity pattern given a particular model of the noise (and
possibly a loss function).

In our work, we have pursued an alternative hypothesis, that the population en-
codes additional information about the underlying variable, including multiple
values and uncertainty. The Distributional Population Coding (DPC) framework
finds the best probability distribution across values that fits the population activity
(Zemel, Dayan, & Pouget, 1998).

The DPC framework is appealing since it makes clear how extra information can
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Figure 1: Each of the four plots depicts a single MT cell response (spikes per sec-
ond) to a transparent motion stimulus of a fixed directional difference (��) be-
tween the two motion directions. The x-axis gives the average direction of stim-
ulus motion relative to the cell’s preferred direction (0�). From Treue, personal
communication.

be conveyed in a population code. In this paper, we use it to address a particu-
lar body of experimental data on transparent motion perception, due to Treue and
colleagues (Hol & Treue, 1997; Rauber & Treue, 1997). These transparent motion
experiments provide an ideal test of the DPC framework, in that the neurophysio-
logical data reveal how the population responds to multiple values in the stimuli,
and the psychophysical data describe how these values are actually decoded, pu-
tatively from the population response. We investigate how standard methods fare
on these data, and compare their performance to that of DPC.

1 RESPONSES TO MULTIPLE MOTIONS

Many investigators have examined neural and behavioral responses to stimuli
composed of two patterns sliding across each other. These often create the im-
pression of two separate surfaces moving in different directions. The general neu-
rophysiological finding is that an MT cell’s response to these stimuli can be char-
acterized as the average of its responses to the individual components (van Wezel
et al., 1996; Recanzone et al., 1997). As an example, Figure 1 shows data obtained
from single-cell recordings in MT to random dot patterns consisting of two distinct
motion directions (Treue, personal communication). Each plot is for a different rel-
ative angle (��) between the two directions. A plot can equivalently be viewed
as the response of an population of MT cells having different preferred directions
to a single presentation of a stimulus containing two directions. If �� is large, the
activity profile is bimodal, but as the directional difference shrinks, the profile be-
comes unimodal. The population response to a ��=30� motion stimulus is merely
a wider version of the response to a stimulus containing a single direction of mo-
tion. However, this transition from a bimodal to unimodal profiles in MT does not
apparently correspond to subjects’ percepts; subjects can reliably perceive both
motions in superimposed transparent random patterns down to an angle of 10�
(Mather & Moulden, 1983). If these MT activities play a determining role in mo-
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Figure 2: (A) The standard Bayesian population coding framework assumes that
a single value is encoded in a set of noisy neural activities. (B) The distributional
population coding framework shows how a distribution over � can be encoded
and then decoded from noisy population activities. From Zemel et al. (1998).

tion perception, the challenge is to understand how the visual system can extract
both motions from such unimodal (and bimodal) response profiles.

2 ENCODING & DECODING

Statistical population code decoding methods begin with the knowledge, collected
over many experimental trials, of the tuning function fi(�) for each cell i, deter-
mined using simple stimuli (e.g., ones containing uni-directional motion). Fig-
ure 2A cartoons the framework used for standard decoding. Starting on the bot-
tom left, encoding consists of taking a value � to be coded and representing it by
the noisy activities ri of the elements of a population code. In the simulations de-
scribed here, we have used a population of 200 model MT cells, with tuning func-
tions defined by random sampling within physiologically-determined ranges for
the parameters: baseline b, amplitude a and width �. The encoding model comes
from the MT data: for a single motion, hrij�i = fi(�) = bi+ai�exp[�(���i)

2=2�2
i
],

while for two motions, hrij�1; �2i = 1

2
[fi(�1) + fi(�2)]. The noise is taken to be in-

dependent and Poisson.

Standard Bayesian decoding starts with the activities r=frig and generates a dis-
tribution P [�jr]. Under the model with Poisson noise,

P [�jr] � log

(
P [�]

Y
i

P [rij�]

)
�
X
i

ri log fi(�)

This method thus provides a multiplicative kernel density estimate, tending to
produce a sharp distribution for a single motion direction �. A single estimate �̂
can be extracted from P [�jr] using a loss function.

For this method to decode successfully when there are two motions in the input
(�1 and �2), the extracted distribution must at least have two modes. Standard
Bayesian decoding fails to satisfy this requirement. First, if the response profile
r is unimodal (cf. the 30� plot in Figure 1), convolution with unimodal kernels
flog fi(�)g produces a unimodal logP [�jr], peaked about the average of the two



directions. The additive kernel density estimate, an alternative distributional de-
coding method proposed by Anderson (1995), suffers from the same problem, and
also fails to be adequately sharp for single value inputs.

Surprisingly, the standard Bayesian decoding method also fails on bimodal re-
sponse profiles. If the baseline response bi = 0, then P [�jr] is Gaussian, with
mean

P
i
ri�i=

P
i0
ri0 and variance 1=

P
i
ri=�

2

i
(Snippe, 1996; Zemel et al., 1998).

If bi > 0, then, for the extracted distribution to have two modes in the appropriate
positions, log[P [�1jr]=P [�2jr]] must be small. However, the variance of this quan-
tity is

P
i
hrii (log[fi(�1)=fi(�2)])

2, which is much greater than 0 unless the tuning
curves are so flat as to be able to convey only little information about the stimuli.
Intuitively, the noise in the rates causes

P
ri log fi(�) to be greater around one of

the two values, and exponentiating to form P [�jr] selects out this one value. Thus
the standard method can only extract one of the two motion components from the
population responses to transparent motion.

The distributional population coding method (Figure 2B) extends the standard en-
coding model to allow r to depend on general P [�]:

hrii =

Z
�

P [�]fi(�)d� (1)

Bayesian decoding takes the observed activities r and produces probability distri-
butions over probability distributions over �;P [P(�)jr]. For simplicity, we decode
using an approximate form of maximum likelihood in distributions over �, finding
the P̂r(�) that maximizes L [P(�)jr] �

P
i
ri log [fi(�) � P(�)]��g [P(�)] where the

smoothness term g[] acts as a regularizer.

The distributional encoding operation in Equation 1 is quite straightforward – by
design, since this represents an assumption about what neural processing prior to
(in this case) MT performs. However, the distributional decoding operation that
we have used (Zemel et al., 1998) involves complicated and non-neural opera-
tions. The idea is to understand what information in principle may be conveyed
by a population code under this interpretation, and then to judge actual neural
operations in the light of this theoretical optimum. DPC is a statistical cousin of
so-called line-element models, which attempt to account for subjects’ performance
in cases like transparency using the output of some fixed number of direction-
selective mechanisms (Williams et al., 1991).

3 DECODING MULTIPLE MOTIONS

We have applied our model to simulated MT response patterns r generated via
the DPC encoding model (Equation 1). For multiple motion stimuli, with P(�) =
(�(�� �1)+ �(�� �2))=2, this encoding model produces the observed neurophysio-
logical response: each unit’s expected activity is the average of its responses to the
component motions. For bimodal response patterns, DPC matches the generating
distribution (Figure 3). For unimodal response patterns, such as those generated
by double motion stimuli with �� = 30�, DPC also consistently recovers the gen-
erating distribution. The bimodality of the reconstructed distribution begins to
break down around �� = 10�, which is also the point at which subjects are unable
distinguish two motions from a single broader band of motion directions (Mather
& Moulden, 1983).

It has been reported (Treue, personal communication) that for angles �� < 10�,
subjects can tell that all points are not moving in parallel, but are uncertain whether
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Figure 3: (A) On a single simulated trial, the population response forms a bi-
modal activity profile when �� = 120�. (B) The reconstructed (darker) distribution
closely matches the true input distribution for this trial. (C) As �� ! 10�, the pop-
ulation response is no longer bimodal, instead has a noisy unimodal profile, and
(D) the reconstructed distribution no longer has two clear modes.

they are moving in two discrete directions or within a directional band. Our model
qualitatively captures this uncertainty, reconstructing a broad distribution with
two small peaks for directional differences between 7� and 10�.

DPC also matches psychophysical performance on metameric stimuli. Rauber and
Treue (1997) asked human subjects to report the directions in moving dot patterns
consisting of 2, 3 or 5 directions of motion. The motion directions were -40� and
+40�; -50�, 0� and +50�; and -50�, -30�, 0�, +30�, and +50�, respectively, but the
proportions of dots moving in each direction were adjusted so that the population
responses produced by an encoding model similar to Equation 1 would all be the
same. Subjects reported the same two motion directions, at -40� and 40�, to all
three types of stimuli.

DPC, like any reasonably deterministic decoding model, takes these (essentially
identical) patterns of activity and, metamerically, reports the same answer for each
case. Unlike most models, its answer—that there are two motions at roughly
�40�—matches human responses. The fact of metamerization is not due to any
kind of prior in the model as to the number of directions to be recovered. How-
ever, that the actual report in each case includes just two motions (when clearly
three or five motions would be equally consistent with the input) is a consequence
of the smoothness prior. We can go further with DPC and predict how chang-
ing the proportion of dots moving in the central of three directions would lead to
different percepts – from a single motion to two as this proportion decreases.

We can further evaluate the performance of DPC by comparing the quality of its
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Figure 4: The average relative error E in direction judgments (Equation 2) for the
DPC model (top curve) and for a model with the correct prior for this particular
input set.

reconstruction to that obtained by fitting the correct model of the input distribu-
tion, a mixture of delta functions. We simulated MT responses to motion stimuli
composed of two evenly-weighted directions, with 100 examples for each value of
�� in a range from 5� to 60�. We fit a mixture of two delta functions to each pop-
ulation response, and measured the average relative error in direction judgments
based on this fitted distribution versus the two true directions, �1 and �2 on that
example t:

E =
j�̂t
1
� �1j+ j�̂t

2
� �2j

2��
(2)

We then applied the DPC model to the same population codes. To measure the
average error, we first fit the general distribution P̂r(�) produced by DPC with a
pair of equal-weighted Gaussians, and determined �̂t

1
and �̂t

2
from the appropriate

mean and variance. As can be seen in Figure 4, the DPC model, which only has
a general smoothness prior over the form of the input distribution, preserves the
information in the observed rates nearly as well as the model with the correct prior.

4 CONCLUSIONS

Transparent motion provides an ideal test of distributional population coding,
since the encoding model is determined by neural activity and the decoding model
by the behavioral data. Two existing kernel density estimate models, involving ad-
ditive (Anderson, 1995) and multiplicative (standard Bayesian decoding) combina-
tion, perform poorly in this paradigm. DPC, a model in which neuronal responses
and the animal’s judgments are treated as being sensitive to the entire distribu-
tion of an encoded value, has been shown to be consistent with both single-cell
responses and behavioral decisions, even matching subjects’ threshold behavior.

We are currently applying this same model to several other motion experiments,
including one in which subjects had to determine whether a motion stimulus con-
sisted of a number of discrete directions or a uniform distribution (Williams et
al., 1991). We are investigating whether our model can explain the nonmonotonic
relationship between the number of directions and the judgments. We have also
applied DPC to a notorious puzzle for population coding: that single MT cells are



just as accurate as the whole monkey – one cell’s output could directly support
inference of the same quality as the monkeys. Our approach provides an alterna-
tive explanation for part of this apparent inefficiency to that of the noisy pooling
model of Shadlen et al. (1996). Finally, experiments showing the effect of target
uncertainty on population responses (Basso & Wurtz, 1998; Bastian et al,. 1998) are
also handled naturally by the DPC approach.

The current model is intended to describe the information available at one stage
in the processing stream. It does not address the precise mechanism of motion
encoding, i.e., how responses in MT arise. We also have not considered the neural
decoding and decision mechanisms. These could likely involve a layer of units that
reaches decisions through a pattern of feedforward and lateral connections, as in
the model proposed by Grunewald (1996) for the detection of transparent motion.

One critical issue that remains is normalization. It is not clear how to distinguish
ambiguity about a single value for the encoded variable from the existence of mul-
tiple values of that variable (as in transparency for motion). Various factors are
likely to be important, including the degree of separation of the modes and also
prior expectations about the possibility of equivalents of transparency.
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