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Abstract

As animals interact with their environments, they must constantly update
estimates about their states. Bayesian models combine prior probabil-
ities, a dynamical model and sensory evidence to update estimates op-
timally. These models are consistent with the results of many diverse
psychophysical studies. However, little is known about the neural rep-
resentation and manipulation of such Bayesian information, particularly
in populations of spiking neurons. We consider this issue, suggesting a
model based on standard neural architecture and activations. We illus-
trate the approach on a simple random walk example, and apply it to
a sensorimotor integration task that provides a particularly compelling
example of dynamic probabilistic computation.

Bayesian models have been used to explain a gamut of experimental results in tasks which
require estimates to be derived from multiple sensory cues. These include a wide range
of psychophysical studies of perception;13 motor action;7 and decision-making.3, 5 Central
to Bayesian inference is that computations are sensitive to uncertainties about afferent and
efferent quantities, arising from ignorance, noise, or inherent ambiguity (e.g., the aperture
problem), and that these uncertainties change over time as information accumulates and
dissipates. Understanding how neurons represent and manipulate uncertain quantities is
therefore key to understanding the neural instantiation of these Bayesian inferences.

Most previous work on representing probabilistic inference in neural populations has fo-
cused on the representation of static information.1, 12, 15 These encompass various strategies
for encoding and decoding uncertain quantities, but do not readily generalize to real-world
dynamic information processing tasks, particularly the most interesting cases with stim-
uli changing over the same timescale as spiking itself.11 Notable exceptions are the re-
cent, seminal, but, as we argue, representationally restricted, models proposed by Gold and
Shadlen,5 Rao,10 and Deneve.4

In this paper, we first show how probabilistic information varying over time can be repre-
sented in a spiking population code. Second, we present a method for producing spiking
codes that facilitate further processing of the probabilistic information. Finally, we show
the utility of this method by applying it to a temporal sensorimotor integration task.

1 TRAJECTORY ENCODING AND DECODING

We assume that population spikesR(t) arise stochastically in relation to the trajectoryX(t)
of an underlying (but hidden) variable. We use RT and XT for the whole trajectory and



spike trains respectively from time 0 to T . The spikes RT constitute the observations and
are assumed to be probabilistically related to the signal by a tuning function f(X, θi):

P (R(i, T )|X(T )) ∝ f(X, θi) (1)

for the spike train of the ith neuron, with parameters θi. Therefore, via standard Bayesian
inference, RT determines a distribution over the hidden variable at time T , P (X(T )|RT ).

We first consider a version of the dynamics and input coding that permits an analytical
examination of the impact of spikes. Let X(t) follow a stationary Gaussian process such
that the joint distribution P (X(t1), X(t2), . . . , X(tm)) is Gaussian for any finite collection
of times, with a covariance matrix which depends on time differences: Ctt′ = c(|t − t′|).
Function c(|∆t|) controls the smoothness of the resulting random walks. Then,

P (X(T )|RT ) ∝ p(X(T ))
∫

X(T )
dX(T )P (RT |X(T ))P (X(T )|X(T )) (2)

where P (X(T )|X(T )) is the distribution over the whole trajectory X(T ) conditional on
the value of X(T ) at its end point. If RT are a set of conditionally independent inhomoge-
neous Poisson processes, we have

P (RT |X(T )) ∝
∏

iτ f(X(tiτ ), θi) exp
(

−
∑

i

∫

τ
dτ f(X(τ), θi)

)

, (3)

where tiτ∀τ are the spike times τ of neuron i in RT . Let χ = [X(tiτ )] be the vector of
stimulus positions at the times at which we observed a spike and Θ = [θ(tiτ )] be the vector
of spike positions. If the tuning functions are Gaussian f(X, θi) ∝ exp(−(X − θi)

2/2σ2)
and sufficiently dense that

∑

i

∫

τ
dτ f(X, θi) is independent of X (a standard assumption

in population coding), then P (RT |X(T )) ∝ exp(−‖χ−Θ‖2/2σ2) and in Equation 2, we
can marginalize out X(T ) except at the spike times tiτ :

P (X(T )|RT ) ∝ p(X(T ))
∫

χ
dχ exp

(

−[χ, X(T )]T C−1

2 [χ, X(T )] − ‖χ−Θ‖2

2σ2

)

(4)

and C is the block covariance matrix between X(tiτ ), x(T ) at the spike times [ttτ ] and the
final time T . This Gaussian integral has P (X(T )|RT ) ∼ N (µ(T ), ν(T )), with

µ(T ) = CTt(Ctt + Iσ2)−1
Θ = kΘ ν(T ) = CTT − kCtT (5)

CTT is the T, T th element of the covariance matrix and CTt is similarly a row vector. The
dependence in µ on past spike times is specified chiefly by the inverse covariance matrix,
and acts as an effective kernel (k). This kernel is not stationary, since it depends on factors
such as the local density of spiking in the spike train RT .

For example, consider where X(t) evolves according to a diffusion process with drift:

dX = −αXdt+ σεdN(t) (6)

where α prevents it from wandering too far, N(t) is white Gaussian noise with mean zero
and σ2

ε variance. Figure 1A shows sample kernels for this process.

Inspection of Figure 1A reveals some important traits. First, the monotonically decreasing
kernel magnitude as the time span between the spike and the current time T grows matches
the intuition that recent spikes play a more significant role in determining the posterior over
X(T ). Second, the kernel is nearly exponential, with a time constant that depends on the
time constant of the covariance function and the density of the spikes; two settings of these
parameters produced the two groupings of kernels in the figure. Finally, the fully adaptive
kernel k can be locally well approximated by a metronomic kernel k<R> (shown in red in
Figure 1A) that assumes regular spiking. This takes advantage of the general fact, indicated
by the grouping of kernels, that the kernel depends weakly on the actual spike pattern, but
strongly on the average rate. The merits of the metronomic kernel are that it is stationary
and only depends on a single mean rate rather than the full spike train RT . It also justifies
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Figure 1: Exact and approximate spike decoding with the Gaussian process prior. Spikes
are shown in yellow, the true stimulus in green, and P (X(T )|RT ) in gray. Blue: exact
inference with nonstationary and red: approximate inference with regular spiking. A Ker-
nel samples for a diffusion process as defined by equations 5, 6. B, C: Mean and variance
of the inference. D: Exact inference with full kernel k and E: approximation based on
metronomic kernel k<R>. (Equation 7).

the form of decoder used for the network model in the next section.6 Figure 1D shows an
example of how well Equation 5 specifies a distribution overX(t) through very few spikes.

Finally, 1E shows a factorized approximation with the stationary kernel similar to that used
by Hinton and Brown6 and in our recurrent network:

P̂ (X(t)|R(t)) ∝
∏

i f(X, θi)
∑

t
j=0

ks
j tij = exp(−E(X(t),R(t), t)), (7)

By design, the mean is captured very well, but not the variance, which in this example
grows too rapidly for long interspike intervals (Figure 1B, C). Using a slower kernel im-
proves performance on the variance, but at the expense of the mean. We thus turn to the net-
work model with recurrent connections that are available to reinstate the spike-conditional
characteristics of the full kernel.

2 NETWORK MODEL FORMULATION

Above we considered how population spikes RT specify a distribution overX(T ). We now
extend this to consider how interconnected populations of neurons can specify distributions
over time-varying variables. We frame the problem and our approach in terms of a two-level
network, connecting one population of neurons to another; this construction is intended to
apply to any level of processing. The network maps input population spikes R(t) to output
population spikes S(t), where input and output evolve over time. As with the input spikes,
ST indicates the output spike trains from time 0 to T , and these output spikes are assumed
to determine a distribution over a related hidden variable.

For the recurrent and feedforward computation in the network, we start with the de-
ceptively simple goal9 of producing output spikes in such a way that the distribution
Q(X(T )|ST ) they imply over the same hidden variable X(T ) as the input, faithfully
matches P (X(T )|RT ). This might seem a strange goal, since one could surely just lis-
ten to the input spikes. However, in order for the output spikes to track the hidden variable,
the dynamics of the interactions between the neurons must explicitly capture the dynamics



of the process X(T ). Once this ‘identity mapping’ problem has been solved, more general,
complex computations can be performed with ease. We illustrate this on a multisensory
integration task, tracking a hidden variable that depends on multiple sensory cues.

The aim of the recurrent network is to take the spikes R(t) as inputs, and produce output
spikes that capture the probabilistic dynamics. We proceed in two steps. We first consider
the probabilistic decoding process which turns ST into Q(X(t)|ST ). Then we discuss the
recurrent and feedforward processing that produce appropriate ST given this decoder. Note
that this decoding process is not required for the network processing; it instead provides a
computational objective for the spiking dynamics in the system.

We use a simple log-linear decoder based on a spatiotemporal kernel:6

Q(X(T )|ST ) ∝ exp(−E(X(T ),ST , T )) ,where (8)

E(X,ST , T ) =
∑

j

∑T

τ=0 S(j, T − τ)φj(X, τ) (9)

is an energy function, and the spatiotemporal kernels are assumed separable: φj(X, τ) =
gj(X)ψ(τ). The spatial kernel gj(X) is related to the receptive field f(X, θj) of neuron j
and the temporal kernel φj(X, τ) to k

<RT >.

The dynamics of processing in the network follows a standard recurrent neural architecture
for modeling cortical responses, in the case that network inputs R(t) and outputs S(t) are
spikes. The effect of a spike on other neurons in the network is assumed to have some
simple temporal dynamics, described here again by the temporal kernel ψ(τ):

ri(t) =
∑T

τ=0R(i, T − τ)ψ(τ) sj(t) =
∑T

τ=0 S(j, T − τ)ψ(τ)

where T is the extent of the kernel. The response of an output neuron is governed by a
stochastic spiking rule, where the probability that neuron j spikes at time t is given by:

P (S(j, t) = 1) = σ(uj(t)) = σ (
∑

i wijri(t) +
∑

k vkjsk(t− 1)) (10)

where σ() is the logistic function, and W and V are the feedforward and recurrent weights.
If ψ(τ) = exp(−κτ), then uj(T ) = ψ(0)(Wj ·R(T ) + Vj · S(T )) + ψ(1)uj(T − 1); this
corresponds to a discretization of the standard dynamics for the membrane potential of a
leaky integrate-and-fire neuron: τ duj

dt
= −γuj+WR+VS, where the leak γ is determined

by the temporal kernel.

The task of the network is to make Q(X(T )|ST ) of Equation 8 match P (X(T )|RT ) com-
ing from one of the two models above (exact dynamic or approximate stationary kernel).
We measure the discrepancy using the Kullback-Leibler (KL) divergence:

J =
∑

tKL [P (X(T )|RT )||Q(X(T )|ST )] (11)

and, as a proof of principle in the experiments below, find optimal W and V by
minimizing the KL divergence J using back-propagation through time (BPTT). In or-
der to implement this in the most straightforward way, we convert the stochastic spik-
ing rule (Equation 10) to a deterministic rule via the mean-field assumption: Sj(t) =
σ (

∑

i wijri(t) +
∑

k vkjsk(t− 1)). The gradients are tedious, but can be neatly ex-
pressed in a temporally recursive form. Note that our current focus in the system is on
the representational capability of the system, rather than its learning. Our results establish
that the system can faithfully represent the posterior distribution. We return to the issue of
more plausible learning rules below.

The resulting network can be seen as a dynamic spiking analogue of the recurrent network
scheme of Pouget et al.:9 both methods formulate feedforward and recurrent connections so
that a simple decoding of the output can match optimal but complex decoding applied to the
inputs. A further advantage of the scheme proposed here is that it facilitates downstream
processing of the probabilistic information, as the objective encourages the formation of
distributions at the output that factorize across the units.



3 RELATED MODELS

Ideas about the representation of probabilistic information in spiking neurons are in vogue.
One treatment considers Poisson spiking in populations with regular tuning functions, as-
suming that stimuli change slowly compared with the inter-spike intervals.8 This leads
to a Kalman filter account with much formal similarity to the models of P (X(T )|RT ).
However, because of the slow timescale, recurrent dynamics can be allowed to settle to an
underlying attractor. In another approach, the spiking activity of either a single neuron4 or
a pair of neurons5 is considered as reporting (logarithmic) probabilistic information about
an underlying binary hypothesis. A third treatment proposes that a population of neurons
directly represents the (logarithmic) probability over the state of a hidden Markov model.10

Our method is closely related to the latter two models. Like Deneve’s4 we consider the
transformation of input spikes to output spikes with a fixed assumed decoding scheme so
that the dynamics of an underlying process is captured. Our decoding mechanism produces
something like the predictive coding apparent in Deneve’s scheme, except that here, a neu-
ron may not need to spike not only if it itself has recently spiked and thereby conveyed
the appropriate information; but also if one of its population neighbors has recently spiked.
This is explicitly captured by the recurrent interactions among the population. Our scheme
also resembles Rao’s10 approach in that it involves population codes. Our representational
scheme is more general, however, in that the spatiotemporal decoder defines the relation-
ship between output spikes and Q(X(T )|ST ), whereas his method assumes a direct en-
coding, with each output neuron’s activity proportional to logQ(X(T )|ST ). Our decoder
can produce such a direct encoding if the spatial and temporal kernels are delta functions,
but other kernels permit coordination amongst the population to take into account temporal
effects, and to produce higher fidelity in the output distribution.

4 EXPERIMENTS

1. Random walk. We describe two experiments. For ease of presentation and compar-
ison, these simulations treat X(t) as a discrete variable, so that the encoding model is a
hidden Markov model (HMM) rather than the Gaussian process defined above. The first
is a random walk, as in Equation 6 and Figure 1, which allows us to make comparisons
with the exact statistics. In a discrete setting, the walk parameters α and σε determine the
entries in the transition matrix of the corresponding HMM; in a continuous one, the covari-
ance function C of the Gaussian process. Input spikes are generated according to Gaussian
tuning functions (Equation 1). In the recurrent network model, the spatiotemporal ker-
nels are fixed: the spatial kernels are based on the regular locations of the output units j,
gj(X) = |X − Xj |

2/(1 + |X − Xj |
2) and the temporal kernel is ψ(τ) = exp(−κτ),

where κ = 2 is set to match the walk dynamics. In the following simulations, the network
contained 20 inputs, 60 states, and 20 outputs.

Results on two walk trajectories with different dynamics are shown in Figure 2. The net-
work is trained on walks with parameters (α = 0.2, σε = 2) that force the state to move to
and remain near the center. Figures 2A & B show that in intervals without input spikes, the
inferred mean quickly shifts towards the center and remains there until evidence is received
in the form of input spikes. The feedforward weights (Fig. 2F) show strong connections
between an input unit and its corresponding output, while the learned recurrent weights
(Fig. 2E) reflect the transition probabilities: units coding for extreme values have strong
connections to those nearer the center, and units with preferred values near the center have
strong self-connections. Fig. 2C&D) shows the results of testing this trained network on
walks with different dynamics (α = 0.8, σε = 7). The resulting mismatch between the
mean approximated trajectory (yellow line) and true stimulus (dashed line) (Fig. 2D), and
the variance (Fig. 2H), shows that the learned weights capture the input dynamics.
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Figure 2: Comparison between full inference using hidden Markov model and approxima-
tion using network model. Top Row: Full Inference (A,C) and approximation (B,D) results
from two walks. Input spikes (RT ) are shown as green circles; output spikes (ST > .9) as
magenta stars; true stimulus as dashed line; mean inferred trajectory as red line; mean ap-
proximated trajectory as yellow line; distributions P (X(t)|RT ) and Q(X(t)|ST ) at each
timestep in gray. Bottom Row: Feedfoward (E); recurrent weights (F); variance of exact
and approximate inference from walks 1 (G) and 2 (H).

2. Sensorimotor task. We next applied our framework to a recent experiment on proba-
bilistic computation during sensorimotor processing.7 Here, human subjects tried to move
a cursor on a display to a target by moving a (hidden) finger. The cursor was shown before
the start of the movement, it was then hidden, except for one point of blurry visual feedback
in the middle of the movement (with variances 0 = σ0 < σL < σM < σ∞ = ∞). Unbe-
knownst to them, on the onset of movement, the cursor was displaced by ∆X , drawn from
a prior distribution P (∆X). The subjects must estimate ∆X in order to compensate for the
displacement and land the cursor on the target. The key result is that subjects learned and
used the prior information P (∆X), and indeed integrated it with the visual information
in a way that was appropriately sensitive to the amount of blur (figure 3A). The authors
showed that a simple Bayesian model could account for these data.

We model a population representation of the 2D cursor position X(t) on the screen.
Two spiking input codes—from vision (RT

v) and proprioception (RT
p), present also

in the absence of visual feedback—are mapped into an output code ST representing
P (X(t)|RT

v,RT
p). This is a neural instantiation of Bayesian cue combination, and also

an extension of the previous model to the dynamic case.

The first experiment involved a Gaussian prior distribution: P (∆X) ∼ N (1, .5). During
initial experience subjects learn about this prior from trajectories; we determine the param-
eters of the HMM. We use BPTT to learn feedforward weights for the input spikes from
the different modalities, and recurrent weights between the output units. The input popu-
lation had 64 units per modality, while the state space and output population each had 100
units. Input spikes were Poisson based on tuning functions centered on a grid within the
2D space; spatiotemporal kernels were based on the (gridded) output units j. The model
was tested in conditions directly matching the experiment, with the cursor and finger mov-
ing along a straight line trajectory from the current model’s estimate of the cursor position,
< X(t) >Q(X(t)|ST ), to the target location. The model captures the main effects of the
experiment (see Figure 3) with respect to visual blur. The prior was ignored when the sen-
sory evidence was precise (σ0), it dominated on trials without feedback (σ∞), and the two
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Figure 4: (a) Bimodal prior P (∆X) ∼ N (±2, 0.5) for cursor displacement in second
Körding-Wolpert experiment.7 (b) Results from human subjects. (c) Model results.

factors combined on intermediate degrees of blurriness.

In the second experiment the prior was bimodal (Fig. 4A) and feedback was blurred (σL).
For this prior, the final cursor location should be based on the more prevalent displace-
ments, so responses based on optimal inference should be non-linear. may modify the
posterior estimate of cursor location. Finally, its 2DIndeed, this is the case (Fig. 4B;C). In-
tuitively, the blurry visual feedback inadequately defines the true finger position, and thus
the posterior P (X(t)|RT ) is influenced by the learned bimodal prior; the network model
accurately reconstructs this optimal posterior.

Our model generalizes the simple Bayesian account, and suggests new avenues for predic-
tions. The dynamic nature of the system permits modeling the integration of several visual
cues during the trial, as well as differential effects of the timing of visual feedback. The in-
tegration of cues in our model also allows it to capture interactions between them. Finally,
its 2D nature allows our system to model other aspects of combining visual and proprio-
ceptive cues, such as their varying and contrasting degrees of certainty across space.14

5 DISCUSSION

We proposed a spiking population coding scheme for representing and propagating uncer-
tainty which operates at the fine-grained timescale of individual inter-spike intervals. We
motivated the key spatio-temporal spike kernels in the model from analytical results in a



Gaussian process, and suggested two approximations to the exact decoding provided by
these adaptive spatiotemporal kernels. The first is a regular stationary kernel while the
second is a recurrent network model. We showed how gradient descent can set model pa-
rameters to match the requirements on the output distribution and capture the dynamics
underlying a hidden variable. This is a dynamic and spiking extension of DPC,15 and a
population extension of Deneve.4 We showed its proficiency by comparison with exact
inference in a random walk, and a neural model that does not use a population code.

The most important direction concerns biologically plausible learning in the full spiking
form of the model. One possibility is to view spikes as a primitive action chosen by a
neuron. In this case, we can use the analog of direct policy methods in partially observable
Markov decision processes,2 with faithful tracking of X(t) leading to reward. It is also
possible that simpler, Hebbian rules will suffice. A second future direction concerns infer-
ence of one variable from another using our spiking population code model. This problem
involves marginalizing over intermediate variables, which is difficult in direct representa-
tions of distributions over these variables, due to approximating logs of sums with sums of
logs;10 we are investigating how well our scheme can approximate this computation.

We applied the model to a challenging sensorimotor integration task which has been used to
demonstrate Bayesian inference. Since it offers a dynamic account, we can make a number
of predictions about the consequences of variations to the experiment. Most interesting
would be the case in which a bimodal likelihood is combined with a unimodal (or bimodal)
prior (rather than vice-versa), or indeed two instances of visual feedback during the task.
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