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Abstract
Residual micro-saccades, tremor and fixation errors imply that, on different
trials in visual tasks, stimulus arrays are inevitably presented at different
positions on the retina. Positional variation is likely to be specially important
for tasks involving visual hyperacuity, because of the severe demands that
these tasks impose on spatial resolution. In this paper, we show that small
positional variations lead to a structural change in the nature of the ideal
observer’s solution to a hyperacuity-like visual discrimination task such that
the optimal discriminator depends quadratically rather than linearly on noisy
neural activities. Motivated by recurrent models of early visual processing, we
show how a recurrent preprocessor of the noisy activities can produce outputs
which, when passed through a linear discriminator, lead to better discrimination
even when the positional variations are much larger than the threshold acuity of
the task. Since, psychophysically, hyperacuity typically improves greatly over
the course of perceptual learning, we discuss our model in the light of results
on the speed and nature of learning.

1. Introduction

At first blush, our ability to solve high precision visual discrimination tasks seems quite
amazing. However, computational studies have shown that such optimal discrimination can
be achieved in a straightforward manner, using a linear feedforward network acting on the
noisy outputs of neural population codes (e.g. Snippe and Koenderink 1992, Seung and
Sompolinsky 1993, see Dayan and Abbot 2001 for a review). These linear algorithms make a
crucial assumption, that the position of the stimulus array on the retina is known or fixed. This
assumption is hard to justify in the light of small fixation errors, eye tremor and also micro-
saccades, which happen continually and involuntarily, even when the subjects are instructed
to fixate (Alpern 1972). Furthermore, these fixation errors are often much larger than the
hyperacuity spatial discriminations that subjects can achieve in the tasks concerned.
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Figure 1. The bisection task. (A) Three bars are presented at x−, x0 and x+. The task is to report to
which of the outer bars the central bar is closer. y represents the variable placement of the stimulus
array dependent, for example on eye tremor or micro-saccades. (B) Population activities in cortical
cells evoked by the stimulus bars—the activities (firing rates ai ) are plotted against the preferred
locations xi of the cells. Here, the spatial tuning curves are Gaussian, with peak firing rate 20 Hz
and a width of τ = 0.1. The activities are corrupted by Poisson noise. There are 81 units whose
preferred values are placed at regular intervals of �x = 0.05 between x = −2 and 2.

We therefore set out to consider discrimination in the light of positional variation. Using
a bisection task as an example (although the results are more general), we first consider in
section 3 the effect of this variation on the structure and quality of the optimal estimator.
We show analytically that optimal discrimination under small positional variations is actually
quadratic rather than linear in the activities of the neural population that codes the input
stimuli. We show the good performance of the quadratic discriminator for moderate positional
variations, by comparison with a correctly trained linear discriminator. In appendix A, we
consider the impact of prior information on the discrimination. In section 4, we further consider
how the good performance of this estimator can be approached by a non-linear network model of
recurrent interactions, possibly located in V1, acting as a preprocessor of the input population
activities. This network actually generalizes to a substantially greater range of positional
variance than the quadratic discriminator.

In psychophysical practice, good performance in problems like the bisection task is only
achieved after a period of perceptual learning. We thus end by discussing the recurrent network
in the light of psychological results on the time course and nature of perceptual learning.

2. The bisection task

Figure 1(A) shows one form of the bisection task. Three bars are presented at horizontal
positions x0 = ε + y, x− = −1 + y and x+ = 1 + y, where −1 � ε � 1. The subject
has to report whether the central bar is closer to the left outer bar (ε < 0) or the right outer
bar (ε > 0). Here, we have included the possibility that the whole stimulus array might be
presented at different points on the retina, through the variable y. This is a nuisance parameter
in that, since all the bars are affected by it, it has no impact on the answer to the bisection task.
However, inference algorithms have to take its effects into account, lest they be led astray.

We consider the case where the bars create a population-coded representation in those
cells possibly located in primary visual cortex that are tuned for vertical bars (for simplicity,
we restrict ourselves to this class, and also consider only a horizontal slice of the visual input).
In figure 1(B), we show the activity of, or neural response from, cell i (called ai ) as a function
of the position xi of the centre of its receptive field. Note three activity bumps in the plot, each
evoked by one of the bars.

We assume an underlying additive model for cortical responses. That is, the mean response
of cell i is

āi(ε, y) = f (xi − x0) + f (xi − x−) + f (xi − x+). (1)
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We often drop the dependence on ε, y and write āi , or, for all the components, ā. Here, f is,
for concreteness, a Gaussian tuning curve with height k and tuning width τ

f (x) = ke−x2/2τ 2
. (2)

Usually, we have τ � 1. Further, we make the standard assumption that the cells are
sufficiently dense that the total mean activity

∑
i āi(ε, y) is a constant, independent of ε

and y.
The actual activity is corrupted by noise

ai = āi + ni (3)

where we assume that the noise terms ni are independent across units, and such that ai comes
from a Poisson distribution of mean āi . Further, we assume that y and ε have mean zero. In
some cases, we will consider posterior distributions for ε and/or y given the recorded activities.
We will do this using (improper) prior distributions for these quantities, assuming that we have
no prior knowledge other than that the means are zero.

The task is to report whether ε is greater or less than zero on the basis of the activities
a = {ai}. One result of this paper is that the optimal solution to this task, for infinitesimal ε,
turns out to have a different character in the case where y is known (we will take it to be zero)
versus the case where y is unknown.

2.1. Fixed position stimulus array

When the stimulus array is in a fixed position y = 0, analysis is very similar to that carried
out by Seung and Sompolinsky (1993). We proceed by calculating the probability density
P[ε|a] of the shift ε of the central bar given the activities a, and reporting by maximum
likelihood (ML) that ε > 0 if

∫
ε>0 dε P[ε|a] > 0.5. By Bayes’ rule,

P[ε|a] = P[a|ε]P[ε]

P(a)
(4)

where P[ε] is the prior probability of ε, P(a) is the prior probability of neural activities a and
P[a|ε] is the conditional probability of neural responses a given ε. Without prior information
about ε (we treat the case of prior information in appendix A), we have

P[ε|a] ∝ P[a|ε] (5)

since the prior P(a) does not depend on ε. Let us approximate P[a|ε] by Taylor expanding
it about ε = 0 to second order in ε,

log P[a|ε] ∼ constant + ε
∂

∂ε
log P[a|ε]

∣∣∣∣
ε=0

+
ε2

2

∂2

∂ε2
log P[a|ε]

∣∣∣∣
ε=0

. (6)

Provided that the last term is negative (which it indeed is, almost surely), we derive an
approximately Gaussian distribution

P[ε|a] ∝ exp[−(ε − ε̄)2/(2σ 2
ε )] (7)

with variance σ 2
ε ≡ [− ∂2

∂ε2 log P[a|ε]
]−1

and mean ε̄ ≡ σ 2
ε

∂
∂ε

log P[a|ε]. Thus the subject
should report that ε > 0 or ε < 0 if the test

tF (a) = ∂

∂ε
log P[a|ε] (8)

which is proportional to the posterior mean of ε, is greater or less than zero respectively.
Assuming Poisson noise ni = ai − āi , such that the probability of neural activity ai given
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a mean (expectation) response āi is P(ai ) = e−āi (āi)
ai , and assuming that noise in different

neurons is independent, we have

P[a|ε] ∝
∏

i

P[ai |ε] =
∏

i

e−āi (ε)(āi(ε))
ai . (9)

Hence, log P[a|ε] = constant +
∑

i ai log āi(ε) since
∑

i āi(ε) is a constant, independent of
ε. Thus,

tF (a) =
∑

i

ai
∂

∂ε
log āi(ε). (10)

Therefore, ML discrimination can be implemented by a linear feedforward network mapping
inputs ai through feedforward weights wi = ∂

∂ε
log āi to calculate the output tF (a) = ∑

i wi ai .
The task therefore has an essentially linear character. Note that if the noise corrupting the
activities is Gaussian, the weights should instead be wi = ∂

∂ε
āi .

The quality of discrimination in this case is determined by the Fisher information

Iε =
〈
− ∂2

∂ε2
log P[a|ε]

〉
a

= 〈1/σ 2
ε 〉a, (11)

averaging over the random activities. Thus, for instance, the usual psychophysical
discriminability measure is

d ′
ε = 2ε

√
Iε (12)

(the factor of two coming from testing −ε against +ε), and the probability of error is

pε = 1

2
erfc

(
d ′

ε

2
√

2

)
(13)

where erfc is the standard complementary error function.
Alternatively, instead of going through the route of finding the posterior distribution for

ε to the optimal test, it is known that the likelihood ratio test for testing ε against the value
zero is the score function, namely d

dε
log P[a|ε], which is exactly the test tF (a) (see Dayan

and Abbott 2001).
Figure 2(A) shows the optimal discrimination weights as a function of the preferred

positions of the cells. They are essentially linear in xi (i.e., wi ∼ xi ) for the central neural
activity bump when −0.5 < xi < 0.5, and are 0 otherwise. This is because

wi = ∂

∂ε
log āi(ε) = 1

ai

∂ai

∂ε
= − f ′(xi)

f (xi) + f (xi + 1) + f (xi − 1)

∝ xi f (xi)

f (xi) + f (xi + 1) + f (xi − 1)

≈
{

xi if |xi | < |xi − x−| and |xi | < |xi − x+|
0 otherwise.

If the noise were Gaussian with a fixed variance rather than Poisson, then wi = ∂ai
∂ε

∝ xi f (xi).
This is also near zero outside the central activity bump, but lacks the linear structure of the
case of Poisson noise. The nature of the neural noise, whether Poisson or Gaussian, does not
affect our general conclusions throughout this paper (see appendix A).

The lower solid curve in figure 2(C) shows performance as a function of ε. The error rate
drops precipitately from 50% for very small (and thus difficult) ε to almost zero, long before
ε approaches the tuning width τ . The performance predicted from the Fisher information is
shown as the circles, which lie almost exactly on the curve. Note that the Taylor expansion
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Figure 2. (A) The ML optimal discrimination weights w = ∂
∂ε

log ā (plotted as wi versus xi )
for deciding whether ε > 0 when y = 0. (B) The learned discrimination weights w for the
same decision. During on-line learning, random examples were selected with ε ∈ [−2τ, 2τ ]
uniformly, τ = 0.1, and the weights were adjusted online to maximize the log probability of
generating the correct discrimination under a model in which the probability of declaring that
ε > 0 is 1/(1 + exp(− ∑

i wi ai )). (C) Performance of the networks with ML (lower solid curve)
and learned (lower dashed curve; almost indistinguishable) weights as a function of ε. Performance
is measured by drawing a randomly given ε and y, and assessing the percentage of trials the answer
is incorrect. The circles show points from the theoretical probability of error based on equation (13).
The upper dotted curve shows the effect of drawing y ∈ [−0.2, 0.2] uniformly, yet using the ML
weights in (B) that assume y = 0.

(and equivalently the Fisher information) depends on the assumption that ε is small. That the
inference is as good as expected shows that this assumption holds.

It is also possible to learn weights in a variety of ways (e.g. Poggio et al 1992, Weiss
et al 1993, Fahle et al 1995). Figure 2(B) shows discrimination weights learned using a
version of the perceptron learning rule (Rosenblatt 1958). These are almost the same as the
optimal weights and lead to performance that is essentially optimal (the lower dashed curve in
figure 2(C)).

3. Moveable stimulus array

If the stimulus array can move around, i.e., if y is not necessarily zero, then the discrimination
task gets considerably harder. We consider the case where the array is at a different position
from trial to trial. Tremor will induce shifts at an even finer timescale. The upper dotted curve
in figure 2(C) shows the (rather unfair) test of using the learned weights in figure 2(B) when
y ∈ [−0.2, 0.2] varies uniformly in a range much larger than the discrimination threshold for
ε. Clearly this has a highly detrimental effect on the quality of discrimination. This is obvious
from the weight structure in figures 2(A) and (B)—the central bump provides information only
about ε + y, which is not enough to solve the problem. The outer neural activity bumps provide
information about the value of y independent of the value of ε, but the optimal and learned
weight patterns are such that no notice is taken of these bumps.

Since y is now unknown, the uncertainty associated with it should make discrimination
worse. One conceptual way to think about discrimination in this case is indicated in figure 3.
This shows how one might apply the tests that would pertain for each individual values of y,
say ty(a), and then integrate the results according to the posterior probability of the values
of y. We can derive a simple approximation to the result of this that shows what happens in
the true case. Looking at figure 2(A), we can approximate test

ty(a) =
∑

i

aiwi(y) ∼
0∑
i

ai(xi − y)
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–1 –0.5 0 0.5 1

Figure 3. Sliding template. The test allowing for unknown y can be thought of as a weighted sum
of the tests for known y (the forms from figure 2(A) shifted according to y), where the weights are
the posterior probabilities P[y|a]. This is reminiscent of a neocognitron-like scheme (Fukushima
1980, see also the MAX model of Riesenhuber and Poggio 1999) with a linear stage (the template)
and a non-linear integration stage (here involving multiplication).

(This figure is in colour only in the electronic version)

where wi (y) is the weight that is learned or derived at a fixed value y, and
∑0 (and similarly∑− and

∑+) indicates that the sum is only over the central (outer) activity bump. Provided
that the tests are equally weighted (i.e. the scale of their answers does not favour one value of
y over another), this makes the final test∫

dy P[y|a]
0∑
i

ai(xi − y) =
0∑
i

ai xi −
0∑
i

ai E[y|a].

Now, if we make the further approximation of using only the outer two bumps to work out the
value of y, ignoring the information coming from the middle bump, then, remembering that
x+ − 1 and x− + 1 are both estimates of y,

E[y|a] =
∑+

i ai(xi − 1) +
∑−

i ai(xi + 1)∑+
i ai +

∑−
i ai

making the final test

0∑
i

ai xi −
( 0∑

i

ai

)∑+
i ai(xi − 1) +

∑−
i ai(xi + 1)∑+

i ai +
∑−

i ai

which has the same sign as, and so is equivalent to

t̃ ′(a) =
( 0∑

i

ai xi

)( +∑
i

ai +
−∑
i

ai

)
−

( +∑
i

ai(xi − 1) +
−∑
i

ai(xi + 1)

)( 0∑
ai

)
(14)

which is a quadratic function of a and takes a form that we will recognize below.
The more formal derivation of the test comes from expanding the log probability in the

Taylor series as in equation (6), but without assuming a priori that y = 0 (again, a fuller
treatment of prior information is presented in appendix A). This gives, with all the derivatives
taken at ε, y = 0,

log P[ε, y|a] ∼ constant +

(
ε

∂

∂ε
+ y

∂

∂y
+

ε2

2

∂2

∂ε2
+

y2

2

∂2

∂y2
+ εy

∂2

∂y∂ε

)
log P[a|ε, y].
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Thus, to second order, a Gaussian distribution can still approximate the joint distribution
P[ε, y|a]. Figure 4(A) shows the high quality of this approximation when y is not too
large. Here, as we mentioned, ε and y are anti-correlated given activities a, because the
information from the centre stimulus bar only constrains their sum ε + y. Of interest is the
probability P[ε|a] = ∫

dy P[ε, y|a], which, using a quadratic approximation to its logarithm,
is approximately Gaussian with mean βρ2

ε and variance ρ2
ε , where

β = ∂

∂ε
log P[a|ε, y] +

(
∂

∂y
log P[a|ε, y]

)

×
(

∂2

∂ε∂y
log P[a|ε, y]

)/(
− ∂2

∂y2
log P[a|ε, y]

)
(15)

ρ−2
ε = − ∂2

∂ε2
log P[a|ε, y] −

(
∂2

∂ε∂y
log P[a|ε, y]

)2/(
− ∂2

∂y2
log P[a|ε, y]

)
. (16)

The inverse variance of the Gaussian distribution of y that we integrated out is
− ∂2

∂y2 log P[a|ε, y], and is almost surely positive. This makes the appropriate test for the
sign of ε

tM (a) =
(

∂

∂ε
log P[a|ε, y]

)(
− ∂2

∂y2
log P[a|ε, y]

)

−
(

∂

∂y
log P[a|ε, y]

)(
− ∂2

∂ε∂y
log P[a|ε, y]

)
. (17)

In the case of Poisson noise, this reduces to

tM (a) =
[(

a ·
∂ log ā

∂ε

)(
−a ·

∂2 log ā

∂y2

)
−

(
a ·

∂ log ā

∂y

)(
−a ·

∂2 log ā

∂y∂ε

)]
(18)

which is the full version of the approximate form in equation (14), matched term by term.
If tM(a) > 0 then we should report ε > 0, and conversely. In fact, tM(a) is a very simple
quadratic form

tM (a) = a · Q · a ≡
∑

i j

ai a j

[(
∂2 log āi

∂y∂ε

)(
∂ log ā j

∂y

)
−

(
∂ log āi

∂ε

)(
∂2 log ā j

∂y2

)]
. (19)

Therefore, the discrimination problem in the face of positional variance has a quantifiable non-
linear character. The quadratic test tM(a) cannot be implemented by a linear feedforward
architecture only, since the optimal boundary tM (a) = 0 to separate the state space a

for a decision is now curved. Writing tM(a) = a · Q · a where the symmetric form
Qi j = (Q′

i j + Q′
j i )/2, we find Q only has four non-zero eigenvalues, for the four-dimensional

sub-space spanned by four vectors (where the derivatives are taken at the point ε, y = 0) ∂2 log ā
∂y∂ε

,
∂ log ā

∂y , ∂ log ā
∂ε

and ∂2 log ā
∂y2 . The form of Q is shown in figure 4(B). Note that if Gaussian rather

than Poisson noise is used for ni = ai − āi , the test tM(a) will still be quadratic.
In appendix A, we consider the effect of imposing a Gaussian prior distribution for y, with

variance σ̃ 2
y . In this case, the correct test turns out to be

tB(a) = tF (a)/σ̃ 2
y + tM (a) (20)

which weights the linear test for fixed eye position (tF(a)) according to the prior certainty that
y is zero. For eye movements of a size that is the same order of magnitude as that of a receptive
field, the poor discrimination shown by the dotted line of figure 2(C) indicates that the linear
test is significantly outweighed by the quadratic test.
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Figure 4. Varying y. (A) Posterior distribution P[ε, y|a]. Exact (left) P[ε, y|a] for a particular
a with true values ε = 0.2τ, y = 1.5τ (with τ = 0.1) and its bivariate Gaussian approximation
(right). Only the relevant region of (ε, y) space is shown—outside this, the probability mass is
essentially zero (and the contour values are the same). (B) The quadratic form Q, Qij versus xi
and x j . Note that Q links activity values ai evoked by one stimulus bar to those of a j evoked by
another. The absolute scale of Q is arbitrary.

Figure 5. y �= 0. (A) Performance of the approximate inference based on the quadratic form of
figure 4(B) in terms of percentage error as a function of |y| and |ε| (τ = 0.1). (B) Feedforward
weights, wi versus xi , learned using the same procedure as in figure 2(B), but with y ∈ [−0.2, 0.2]
chosen uniformly at random. (C) Ratio of error rates for the linear (weights from (B)) to the
quadratic discrimination.

Of course, tM(a), like tF (a), is based on an expansion, assuming that y and ε are small.
Figure 5(A) shows that using tM (a) to infer ε is sound for y up to two standard deviations
(τ ) of the tuning curve f (x) away from zero. By comparison, a feedforward network, of
weights shown in figure 5(B) which were learned using the same error-correcting learning
procedure as above, only based on values of y drawn uniformly at random from [−0.2, 0.2],
performs substantially worse. Nevertheless, this trained linear network is substantially better
than the feedforward net of figures 2(A) and (B), for which training was done using fixed
y = 0. Figure 5(C) shows the ratio of the error rates for the linear to the quadratic decisions.
The linear network is often dramatically worse, because it fails to take proper account of y.
The pattern of weights in figure 5(B) can be understood as comprising a similar, nearly linear,
central component (with a contribution

∑0
i wi ai to the test), coupled with flanks for the outer

bumps that have a net positive effect (i.e.,
∑±

i wi ai > 0) on the test if y < 0 and a net negative
effect if y > 0. This flanking effect is an attempt to compensate for the way that the central
bump also shifts with y.
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4. Recurrent preprocessing

In the previous section, we suggested using a simple quadratic non-linearity to perform ML
discrimination, at least over a small range of ε and y. Such a nonlinearity could be implemented
by one of a number of biophysical mechanisms (Koch 1999). However, there are reasons to
believe (Crist et al 2001, Gilbert et al 2001) that recurrent network processing, based on
horizontal long range connections in the primary visual cortex (Rockland and Lund 1983,
Gilbert and Wiesel 1983), can play a significant role.

There has been substantial interest in the statistical processing power of recurrent non-
linear networks, acting as pre-processors for noisy population activity. They can give rise to
regularized activities which are suitable inputs for further feedforward stages of processing
(Pouget et al 1998, Deneve et al 1999, 2001). The idea has been applied most forcefully to
recurrent processing within hypercolumns to arrive at a noise insensitive coding of the receptive
field features such as orientation of the input. In the bisection task, however, this way of looking
at recurrent processing cannot be the whole story, since the main task for regularization here
is actually eliminating the effect of y, rather than cleaning up the noise in the activities. We
know, from the previous sections, that if y = 0, then the optimal test, even in the face of
noise, is still linear. Thus, merely cleaning up the bumps, whilst leaving them where they are,
would not make linear feedforward inference that much more accurate. Instead, computations
linking neural activities in separate hypercolumns are needed, as is apparent in our test tM (a),
for which activities ai and a j from different (separate) bars, one central and one outer, have to
be associated (multiplied) with each other.

Figure 6 demonstrates the plausibility of this idea. Input activity (as in figure 1(B)) is
used to initialize the state u at time t = 0 of a recurrent network. The recurrent weights are
symmetric, as shown in figure 6(B). The network firing rates evolve according to

dui/dt = −ui +
∑

j

Ji j g(u j) + ai (21)

where Ji j is the recurrent weight from unit j to i , and function g is a threshold nonlinearity
(g(u) = u if u > 0 and g(u) = 0 for u � 0). The network evolves according to
ui → ui + 0.5 dui/dt for 150 steps, and the resulting near-equilibrium activities are fed
into the linear, feedforward, decision-making stage.

Starting from noisy input a, the activities of the neurons settle to an equilibrium u(t → ∞)

(figure 6(C), note that ui(t → ∞) = ai when J = 0). The activity values u(t → ∞) at this
equilibrium are fed through feedforward weights w, that are trained for this recurrent network
just as they were for the pure feedforward case, to reach a decision

∑
i wi ui(t → ∞). The

recurrent weight matrix (figure 6(B)) emerges from three influences:

(1) a short range interaction Ji j for |xi − x j | � τ to stabilize activities ai induced by a single
bar in the input;

(2) a longer range interaction Ji j for |xi −x j | ∼ 1 to mediate interaction between neighbouring
stimulus bars, amplifying the effects of the displacement signal ε, and

(3) a slight local interaction Ji j for |xi |, |x j | � τ .

The first two interaction components are translation invariant in the spatial range of xi , x j ∈
[−2, 2] where the stimulus array appears, in order to accommodate the positional variance in y.
The last component is not translation invariant and counters variations in y. The quantitative
details of the recurrent weight matrix are given in the appendix.
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Figure 6. (A) The recurrent network (with weights J ) is treated as a non-linear preprocessor of the population activity. (B) The weight matrix, whose quantitative
details are presented in the appendix. (C) The effect of the recurrent processing on the neural activities for an example when y = 0.37 and ε = −0.013. The recurrent
interaction shifts the central bump of the neural activities to the left, towards x = 0, without shifting the left-hand bump left, and at the same time shifts the centre of
the right-hand bump right. This corrects for y �= 0 and amplifies the effect of ε �= 0. With increasing y, the discrimination performance deteriorates significantly for
the linear net, shown in (D), but deteriorates much more slowly with y for the nonlinear net, shown in (E). Feedforward weights in both nets are trained with trials
of ε ∈ (−0.05, 0.05) and y ∈ (−0.6, 0.6). (F) The quadratic test performs very well for small y but fails disastrously for larger y. (G) The observed error rates in a
hypothetical experiment in which the experimenter does not explicitly observe y, but only measures error rates as a function of ε. Note that the threshold acuity in the
recurrent net, measured as the value of ε when error rate = 25%, is half that of the linear net.
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Figure 6(E) shows that this network gives results that are less susceptible to variations of
y than those of the linear network (figure 6(D)). Meanwhile, the quadratic test (figure 6(F))
is the most invariant with respect to y for small y among the three alternatives, but fails
catastrophically for larger y > 2τ , when the Taylor approximation is no longer valid. In a
typical psychophysical experiment, the variation in y is not measured, and the experimenter
simply measures the error rate in the performance for a given ε. This experimental error rate
is the error rate averaged over y. Figure 6(G) shows that the nonlinear net has by far the best
performance, having a threshold acuity of about half that of the linear net.

5. Discussion

The problem of position invariant discrimination is common to many high precision visual
tasks, including hyperacuity tasks such as the standard line vernier, three-dot vernier,
curvature vernier and orientation vernier tasks (e.g. Westheimer and McKee 1977, McKee
and Westheimer 1978, Watt et al 1983, Levi et al 1985, Fahle et al 1995, Fahle 1997).

Formally, the essential problem that we have discussed is discriminating a stimulus variable
ε that depends only on the relative positions between the stimulus features, while the absolute
position y of the whole stimulus array can vary between trials by an amount that is much
larger than the discrimination threshold (or acuity) on ε. The positional variable y may not
have to correspond to the absolute position of the stimulus array, but merely to the error in
the estimation of the absolute position of the stimulus by other neural areas. When y = 0 is
fixed, the discrimination is easy and soluble by a linear, feedforward network, whose weights
can be learnt in a straightforward manner. However, our study shows that when y is not fixed,
but is known to be small, optimal discrimination of ε is based on an quadratic function of the
input activities, and cannot be implemented using a linear feedforward net. Note that since the
essential parts of our mathematical derivation do not depend on the specificities of the bisection
task, our conclusions hold for general hyperacuity tasks for which positional variation is larger
than performance acuity.

We also showed that a non-linear recurrent network can perform much better than a pure
feedforward network on the bisection task in the face of position variance. In fact, it performs
almost as well as the quadratic form within the range of y where the latter works well, and
continues to perform well for substantially greater positional variation than the quadratic form
is able to handle. The precise recurrent interactions in our network are very specific to the task
and its parameters. In particular, the range of the interactions is completely determined by the
scale of spacing between stimulus bars; and the distance-dependent excitation and inhibition
in the recurrent weights is determined by the nature of the bisection task. This may be why
there is little transfer of learning between tasks, when the nature and the spatial scale of the
task change, even if the same input units are involved (e.g. Fahle et al 1995, Fahle 1994, 1997).
The model predicts that negative transfer of performance will occur for small changes of the
distance between the outer bars since the weight matrix depends heavily on this distance, and
the strength of the weight varies quickly from being positive to negative as the distance between
the linked neurons varies (figure 6(B)).

To clarify the respective relevances of our analytical results and our recurrent network
model, and the relationships between them, we note the following. A perfect ideal observer
should solve the perceptual task by carrying out the ML decision on ε, a task specific stimulus
variable, given neural responses a, based on the conditional probability P[ε|a] of ε given
a, for the bisection task or any generic task of such nature. Our analytical results show
that, in the presence of significant eye movements, this ML decision has to be a nonlinear
function of the neural responses a (even before the final simple thresholding). The quadratic
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decision rule was only an approximation of the ML decision rule for sufficiently small eye
movements and ε. These analytical results do not address how the non-linear decision rules,
whether general or approximate (quadratic),should be implemented. Meanwhile, our recurrent
network model uses an example to show that it is feasible to achieve better performance in
a nonlinear network than a best possible linear network (which by definition performs a best
possible linear computation for the task). Our recurrent network is not an implementation of
the quadratic decision rule, but could be viewed as a first and rough attempt to implement the
general ML decision rule.

It is important to ask which connections might comprise this recurrent network. The
specificity of learning to such things as the eye of origin and spatial location strongly suggests
that lower visual areas such as V1 are directly involved in learning. Indeed, it is becoming
clear that V1 is a visual processor of quite some computational power (performing tasks such
as segmentation, contour integration, pop-out and noise removal) rather than being just a
feedforward, linear, processing stage (e.g. Deneve et al 1999, 2001, Li 1999, 2002). Further,
Crist et al (2001), Gilbert et al (2001) have collected specific evidence that recurrent processing
in V1 changes over the course of perceptual learning in cases such as the bisection task. The
recurrent connections are designed to counter the variabilities of the eye positions and are not
dedicated to processing higher order aspects such as attention or error feedback computation
as used in hierarchical network architectures (e.g. Ahissar and Hochstein 1993, 1997, Herzog
and Fahle 1998). The recurrent connections in our model do not serve either to better encode
the stimulus; they merely serve to modify the neural responses in a task specific manner that is
unlikely to improve the coding or representation of the stimulus for other tasks. The learning
of the feedforward weights is responsible for the learning of decision making for the task, even
though the recurrent weights help to improve the quality of the decisions by modifying the
neural responses to the stimulus and thus the resulting feedforward weights.

One interesting facet of perceptual learning is its time-course. A core of psychophysical
results is that there are two stages of learning, one fast, which happens over the first few
trials, and another slow, which happens over multiple sessions and can last for months or even
years (Fahle 1994, Karni and Sagi 1993, Fahle et al 1995). Part of the fast component may
come from factors like accommodation and other non-specific aspects of learning. We suggest
another part comes from learning the feedforward weights. Although we have yet to construct
an appropriate learning rule, we suggest that learning the weights to implement the nonlinear
transform corresponds to the slow component. This learning rule is delicate, because of the
nonlinearity of the transform and the readily destabilized recurrent dynamics. Further, the
feedforward weights need to be adjusted further as the recurrent weights change the activities
on which they operate.
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Appendix A. Derivation of P (ε|a) and the tests

Let ā(ε, y) be the mean neural activities induced by offset ε and eye position y, and the actual
neural activities a = ā + n include noise n. Bayes’ theorem (the extension of equation (4))



Nonlinear ideal observation and recurrent preprocessing in perceptual learning 245

implies

P[ε, y|a] = P[a|ε, y]P[ε]P[y]

P(a)
∝ P[a|ε, y]P[ε]P[y] (22)

since P(a) does not depend on ε. Here P[ε] and P[y] are the prior probabilities of ε and y.
For explicit illustration, we take these to be Gaussians P[ε] ∝ e−ε2/(2σ̃ 2

ε ) and P[y] ∝ e−y2/(2σ̃ 2
y )

centred at zero and with variances σ̃ 2
ε and σ̃ 2

y respectively. Thus we have

log P[ε, y|a] = constant − ε2/(2σ̃ 2
ε ) − y2/(2σ̃ 2

y ) + log P[a|ε, y]. (23)

Taylor expanding log P[a|ε, y] to second order about ε = 0; y = 0:

log P[a|ε, y] ∼ constant +

(
ε

∂

∂ε
+ y

∂

∂y
+

ε2

2

∂2

∂ε2
+

y2

2

∂2

∂y2
+ εy

∂2

∂y∂ε

)
log P[a|ε, y]|ε,y=0.

(24)

This leads to a Gaussian approximation for P[ε, y|a] whose logarithm is approximated as
a second order polynomial in ε and y (from here on we omit |ε,y=0 to avoid clutter in the
expressions):

log P[ε, y|a] ≈ constant − ε2

2σ̃ 2
ε

− y2

2σ̃ 2
y

+

(
ε

∂

∂ε
+ y

∂

∂y
+

ε2

2

∂2

∂ε2
+

y2

2

∂2

∂y2
+ εy

∂2

∂y∂ε

)
log P[a|ε, y]. (25)

The distribution of ε, P[ε|a], comes from marginalizing out y, P[ε|a] = ∫
dy P[ε, y|a].

This involves an integration
∫

dy exp(− y2

2 A + yB) ∝ exp( B2

2A ) where

A = 1

σ̃ 2
y

− ∂2

∂y2
log P[a|ε, y] (26)

B =
(

ε
∂2

∂y∂ε
+

∂

∂y

)
log P[a|ε, y]. (27)

Hence,

P[ε|a] ∝ exp

(
− ε2

2ρ2
ε

+ βε

)
∝ exp

(
− (ε − βρ2

ε )
2

2ρ2
ε

)
(28)

is approximately a Gaussian with a variance ρ2
ε and mean βρ2

ε , where

β = ∂

∂ε
log P[a|ε, y] +

(
∂

∂y
log P[a|ε, y]

)

×
(

∂2

∂ε∂y
log P[a|ε, y]

)/(
1

σ̃ 2
y

− ∂2

∂y2
log P[a|ε, y]

)
(29)

ρ−2
ε = 1

σ̃ 2
ε

− ∂2

∂ε2
log P[a|ε, y] −

(
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∂ε∂y
log P[a|ε, y]

)2/(
1

σ̃ 2
y

− ∂2

∂y2
log P[a|ε, y]

)
.

(30)

Consequently, the test is simply tB(a) ∝ β or

tB(a) =
(

∂

∂ε
log P[a|ε, y]

)(
1

σ̃ 2
y

− ∂2

∂y2
log P[a|ε, y]

)

+

(
∂

∂y
log P[a|ε, y]

)(
∂2

∂ε∂y
log P[a|ε, y]

)
(31)

= tF (a)/σ̃ 2
y + tM (a) (32)

using the forms of the individual tests in equations (8) and (17).
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For Poisson noise, P[a|ε, y] = P[a|ā] = �i e−āi (ε,y)(āi(ε, y))ai . Then

log P[a|ε, y] = constant −
∑

i

āi (ε, y) +
∑

i

ai log āi(ε, y) ≈ constant +
∑

i

ai log āi(ε, y)

(33)

since
∑

i āi(ε, y) is roughly independent of ε and y, and(
∂

∂ε
,

∂

∂y
,

∂2

∂ε2
,

∂2

∂y2
,

∂2

∂y∂ε

)
log P[a|ε, y] = a ·

(
∂

∂ε
,

∂

∂y
,

∂2

∂ε2
,

∂2

∂y2
,

∂2

∂y∂ε

)
ā(ε, y) (34)

in which case the decomposition in equation (32) involves the explicit linear and quadratic
forms of the tests tF (a) and tM (a) in equations (10) and (19), respectively.

This decomposition acutely indicates the importance of the linear and quadratic terms. If
the prior standard deviation of y is small, then the linear term dominates; as σ̃y gets bigger,
so does the importance of the quadratic term. Usually, the extent of eye movements is much
greater than the vernier positional discrimination threshold. Comparing with equation (11),
we note that ∂2

∂y2 log P[a|ε, y] is roughly the Fisher information in a hypothetical task when
one discriminates the stimulus position y from y = 0 when ε = 0. Such discrimination
performance should have a threshold no larger than that for discriminating ε given y = 0
shown in figure 2(C). This threshold is apparently much smaller than a single receptive field size
(τ = 0.1), and thus much smaller than σ̃y . Hence, we conclude that 1

σ̃ 2
y

� ∂2

∂y2 log P[a|ε, y],

and hence, from equations (31) and (32), the quadratic term in the test should dominate.
If the neural noise n has a Gaussian rather than Poisson distribution, with fixed variance

(and no correlations), then the same analysis leads to similar conclusions. The equivalent of
test tM(a) involves both linear and quadratic terms, but again, taking proper account of the
latter is critical in the face of movement of the stimulus array. Hence, our general conclusion
regarding the nonlinear nature of the computation given positional variance does not depend
on whether the neural noise is Poisson or Gaussian.

Appendix B. Recurrent weights

The recurrent weights J are shown in figure 6(B), and include translation invariant
components associated with the average distance between the bumps (the four sub- and super-
diagonal parallel sidelobes in the weight matrix), and translation invariant and non-invariant
regularization terms.

Formally, define the distance functions

di j = |xi − x j | ei j = di j − 0.75 fi j = di j − 1.25

and the step function

H (x) =
{

1 if x > 0

0 otherwise.

Then,

Ji j = −0.03 + 0.06e−(x2
i +x2

j ) + H (5τ − di j)
[
0.06e−d2

i j /6τ 2 − 0.035e−d2
i j /40τ 2

]
+ 0.15 ×

[
e−e2

i j /2d2
H (5τ − ei j) + e− f 2

i j /2d2
H (5τ − fi j )

]
where d = 0.5τ .
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