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SUMMARY

Concepts lie at the very heart of intelligence, pro-
viding organizing principles with which to compre-
hend the world. Surprisingly little, however, is under-
stood about how we acquire and deploy concepts.
Here, we show that a functionally coupled circuit
involving the hippocampus and ventromedial pre-
frontal cortex (vMPFC) underpins the emergence of
conceptual knowledge and its effect on choice be-
havior. Critically, the hippocampus alone supported
the efficient transfer of knowledge to a perceptually
novel setting. These findings provide compelling
evidence that the hippocampus supports conceptual
learning through the networking of discrete memo-
ries and reveal the nature of its interaction with
downstream valuation modules such as the vMPFC.
Our study offers neurobiological insights into the
remarkable capacity of humans to discover the con-
ceptual structure of related experiences and use this
knowledge to solve exacting decision problems.

INTRODUCTION

The capacity to bring prior knowledge to bear in novel situations

is a defining characteristic of human intelligence. A powerful way

in which humans achieve this is through the use of concepts,

which are formed through abstraction, and capture the shared

meaning of similar entities through an organizing principle that

explains their relatedness. For instance, although an Alsatian

and a Chihuahua look perceptually very different, we can easily

appreciate that they have similar attributes (e.g., they bark)

because they can be recognized as instances of a particular

concept, in this case a dog (Locke, 1690; Martin, 2007; Murphy,

2004; Rogers and McClelland, 2004). While the devastating

consequences of the degradation of well-established concep-

tual representations are all too apparent in neurological condi-

tions like semantic dementia (Patterson et al., 2007), little is

known about the neural mechanisms underpinning the emer-

gence of conceptual knowledge, its application in novel settings,

and its influence on human decision making (Shea et al., 2008).

Empirical research to date in the fields of memory and decision

making has tended to focus on discovering the neural mecha-
nisms mediating memory for our unique experiences from our

past (i.e., episodic memory; Davachi, 2006; Eichenbaum, 2004;

Eichenbaum et al., 2007) and for the reward value of individual

stimuli and actions, the latter captured successfully by reinforce-

ment learning (RL) algorithms (e.g., Montague et al., 2006; Ran-

gel et al., 2008). While a collection of isolated memories or

reward associations may allow simple inferences to be made

through the operation of logical reasoning processes at retrieval

(e.g., transitive inferences; Greene, 2007; Preston et al., 2004),

the capacity for efficient generalization in novel situations is

limited. What is needed, therefore, is a neural system that

abstracts the commonalities across multiple related experi-

ences, thereby creating a network of conceptual knowledge

that captures the higher-order structure of the environment.

While the hippocampus has often been cast as a key player in

the emergence of conceptual knowledge (Cohen and Eichen-

baum, 1993; Eichenbaum, 2004) and the broader notion of

semantic memory, empirical data have provided only equivocal

support for this idea (e.g., Duff et al., 2006; Eichenbaum, 2004;

Vargha-Khadem et al., 1997). As such, whether the hippo-

campus, or instead neocortical areas within the medial temporal

lobe (MTL) or prefrontal cortex (PFC) (Cohen and Eichenbaum,

1993; Eichenbaum, 2004; McClelland et al., 1995; Miller et al.,

2002; Norman and O’Reilly, 2003; Vargha-Khadem et al.,

1997), are critical to conceptual learning remains an unresolved

question in neuroscience.

To address these questions, we constructed a paradigm

based on a task known to be dependent on the hippocampus

from a previous neuropsychological study (Kumaran et al.,

2007). In our task, participants were instructed to play the role

of a weather forecaster and learn over multiple trials how each

of eight patterns was (deterministically) associated with one of

two outcomes (i.e., sun or rain) (Figure 1). During ‘‘learning’’ trials,

participants viewed a pattern on the screen, entered their predic-

tion (using index/middle finger), and received feedback concern-

ing actual outcome (sun or rain), their correctness (correct/incor-

rect), and reward (i.e., whether they had won or lost money)

(Figure 2A). Since all eight patterns were constructed from the

same four fractals, successful performance required partici-

pants to use associative information consisting of shape-loca-

tion and shape-shape conjunctions rather than elemental infor-

mation (e.g., single shape) as studied previously (Montague

et al., 2006; Toni et al., 2001).

Critically, while participants could simply learn the correct

response associated with a given pattern in isolation (e.g.,
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Figure 1. Experimental Design
Subjects were instructed to play the role of a weather forecaster and try to learn over the course of the experiment how each one of eight ‘‘patterns’’ of shapes on

the screen (P1–P8) were deterministically associated with one of two outcomes: sun or rain (see Experimental Procedures). Since all eight patterns were made up

of the same four fractals (F1–F4), subjects were required to use associative information (i.e., shape-location, shape-shape conjunctions) to perform successfully.

Importantly, while participants could simply learn the correct response associated with a given pattern in isolation (e.g., P1 = sun; P2 = rain), they could also

acquire spatial and nonspatial conceptual knowledge. In this way, participants could recognize that individual patterns (e.g., P1, P3) constitute instances of

a particular concept (i.e., F1 = left), allowing them to disregard unimportant differences between them (i.e., the identity of the central fractal) and appreciate their

shared meaning (i.e., outcome: sun). Subjects were not explicitly told about the spatial and nonspatial structure of the task and had to acquire this through

learning. There were two experimental sessions, Initial and New, which shared a similar underlying conceptual structure but differed in terms of the set of fractals

used. Fractals were used as stimuli, rather than real-life objects, to investigate the learning of new concepts without contamination from previous exposure (see

Experimental Procedures).
pattern 1 = sun, pattern 2 = rain), there was also the opportunity

for them to acquire spatial and nonspatial conceptual knowl-

edge, which was assessed in probe trials at the end of each

learning block and using a debriefing protocol (Figure 2C).

Specifically, participants could learn that fractal 1 predicts sun

when on the left, and rain when on the right, irrespective of the

identity of the central shape (i.e., fractal 3 or 4), by abstracting

the commonalities across the relevant patterns, therefore

termed ‘‘spatial’’ (i.e., P1–P4) (Figure 1). In a similar vein, partic-

ipants could learn that the shape-shape combination of fractals 2

and 3 predicts sun, and 2 and 4 rain, regardless of the position of

fractal 2, by appreciating the relationship between the relevant

‘‘nonspatial’’ patterns (i.e., P5–P8). In this way, participants

could recognize that individual patterns (e.g., P1, P3) constitute

instances of a particular concept (i.e., F1left), allowing them to

disregard unimportant differences between them (i.e., the iden-

tity of the central fractal) and appreciate their shared meaning

(i.e., outcome: sun). By understanding the task structure in this
890 Neuron 63, 889–901, September 24, 2009 ª2009 Elsevier Inc.
fashion, participants could generalize successfully when con-

fronted with partial patterns during probe trials (e.g., F1left:

Figure 2C), which provided us with an online measure of the level

of conceptual knowledge acquired throughout the experiment.

Furthermore, participants could use knowledge of this sort as

an effective guiding framework (i.e., schema) for accelerating

learning in a New session, where the stimuli were perceptually

novel but the underlying conceptual structure similar.

Our experimental design, therefore, incorporated three key

aspects: the learning of individual associations (i.e., between

patterns and outcomes), the emergence of conceptual knowl-

edge through the abstraction of common features between

patterns related through shared meaning, and a transfer test

where participants’ ability to use this knowledge as a schema

(Bartlett, 1932; Tse et al., 2007) in a perceptually novel setting

(i.e., the New session) was assessed. In contrast, previous studies

have investigated how participants classify stimuli based on their

physical resemblance (Ashby and Maddox, 2005), elemental
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value (e.g., the ‘‘standard’’ weather prediction task [Knowlton

and Squire, 1994; Poldrack et al., 2001]), or simple unidimensional

rules (e.g., color) (Ashby and Maddox, 2005) rather than a higher-

order conceptual structure. Of note, learning in such perceptual

categorization tasks, and also artificial grammar paradigms,

proceeds largely independently of the hippocampus and wider

MTL, often being predominantly implicit in nature and involving

regions such as the striatum and lateral PFC (Ashby and Maddox,

2005; Knowlton and Squire, 1993; Knowlton et al., 1994; Poldrack

et al., 2001; Reber, 1967; Strange et al., 1999).

RESULTS AND DISCUSSION

Behavioral Data
At a behavioral level, the improvement in participants’ perfor-

mance on learning trials during the Initial session (Figure 2B)

was paralleled by the emergence of spatial and nonspatial con-

ceptual knowledge indexed by probe trials (Figure 2D). Impor-

tantly, conceptual knowledge exerted a significant influence on

participants’ choices during learning trials, with probe trial

performance correlating significantly with participants’ choices

on a given learning trial (p < 0.01: see below). Further, perfor-

mance on learning trials involving an individual pattern (e.g.,

P1) showed a greater correlation with performance on other

patterns within a domain (i.e., spatial: P2–P4), as compared to

across domains (i.e., nonspatial: P5–P8) (t = 2.2, p = 0.05), as

would be expected if participants integrated information across

relevant patterns (see Experimental Procedures).

The assertion that probe trial performance is guided primarily

by conceptual knowledge (e.g., F1left means sun regardless of

the identity of the central fractal) rather than the retrieval of

multiple individual associative pairings (i.e., P1 = sun, P3 = sun)

receives support from several features of the behavioral data.

First, probe trial performance showed a robust correlation with

a composite score obtained from a debriefing protocol (r =

0.65, p < 0.001: see Supplemental Experimental Procedures),

which assessed participants’ ability to express and deploy

conceptual knowledge in a context quite different from the orig-

inal learning situation. Importantly, in a separate follow-up be-

havioral experiment, where participants provided verbal descrip-

tions of the conceptual structure of the task after each learning

block (see Supplemental Results and Supplemental Experi-

mental Procedures), the correlation between probe performance

and task structure descriptions was highly significant (r = 0.71,

p < 0.001) and remained significant (p < 0.05) after the effect

of learning trial performance had been partialled out (r = 0.55,

p < 0.001). Second, the magnitude of difference in reaction times

between probe trials and learning trials in the fMRI experiment

was small, though significant (1.52 versus 1.38 s; t = 3.8, p =

0.001), arguing against the notion that probe performance is

supported by the retrieval of multiple individual associative pair-

ings (e.g., see Shohamy and Wagner, 2008). Finally, probe trial

performance during the Initial session also showed a significant

correlation with participants’ performance in the new session,

after initial session performance had been covaried out (r =

0.41, p = 0.03: see below), in line with the assertion that probe

trials index conceptual knowledge which mediates transfer to

a perceptually novel setting.
Neuroimaging Data
Initial Session: Brain Areas Associated with Proficient

Performance during Learning Trials

Given behavioral evidence that participants had acquired

conceptual knowledge, we next turned to the fMRI data acquired

during the Initial session. Since we did not observe any signifi-

cant differences as a function of domain (i.e., spatial versus

nonspatial), even at liberal thresholds (i.e., p < 0.01 uncorrected),

we collapsed across this factor for all subsequent analyses (see

Supplemental Results). We first conducted an analysis designed

to identify the overall brain network associated with proficient

performance on learning trials. As a first step, we set out to

convert participants’ binary performance data, where 1 indexed

a correct response and 0 an incorrect response, into trial-by-trial

estimates of the probability of a correct response for each

pattern (i.e., a learning curve). To achieve this, we employed

a dynamic estimation technique that has previously been used

to correlate neural activity with binary performance data during

learning experiments in monkeys (Wirth et al., 2003) and during

human fMRI (Law et al., 2005), termed the state-space model

(Smith et al., 2004) (see Supplemental Experimental Proce-

dures). A significant advantage of this technique, in comparison

to related approaches (e.g., reinforcement learning [RL] models),

is that it allows variations in the shape of individual learning

curves to be effectively captured. For instance, it is well recog-

nized that individual learning curves often show an abrupt

transition from low to asymptotic levels of performance (e.g., Fig-

ure 2B, upper panel) (Gallistel et al., 2004), even though group-

averaged curves show gradually increasing performance (e.g.,

Figure 2B, lower panel).

To verify that the state-space model provided a better fit to the

binary choice data observed in our experiment, we performed

comparisons with a standard RL model (Q-learning; Watkins

and Dayan, 1992) and the moving average method (see Supple-

mental Experimental Procedures; Smith et al., 2004) using a stan-

dard approach (i.e., by calculating mean squared errors for each

model). For our data set, the state-space model generated

closer fits to the observed data compared to these two other ap-

proaches (see Supplemental Experimental Procedures), which

accords with previous validations in the context of associative

learning tasks (Smith et al., 2004).

The state-space model, therefore, allowed us to create partic-

ipant-specific trial-by-trial parametric regressors (‘‘probability_

success’’: see Experimental Procedures) that we used to regress

against the learning trial fMRI data. Our results show that activity

in brain regions including parahippocampal cortex, amygdala,

posterior cingulate cortex (PCC), ventral striatum, and ventrome-

dial prefrontal cortex (vMPFC) was significantly correlated with

the probability of success (Table S1 and Figure 3). Given that

participants were rewarded for a correct prediction on each trial

in our paradigm, both with positive feedback and money, these

findings are consistent with previous work suggesting that these

brain regions form part of a neural system coding value predic-

tions that guide choice behavior (Montague et al., 2006). We

also conducted a number of supplemental analyses, which

effectively excluded alternative explanations for the activation

of this brain network (see Supplemental Results). Our results,

therefore, provide insights into how brain regions traditionally
Neuron 63, 889–901, September 24, 2009 ª2009 Elsevier Inc. 891



Neuron

Tracking the Emergence of Conceptual Knowledge
Figure 2. Learning and Probe Trials: Timeline and Behavioral Data

(A) Learning trial. Participants viewed a pattern on the screen (3 s), entered their prediction (using index/middle finger), and received feedback concerning actual

outcome (sun or rain: 2 s), their correctness (correct/incorrect), and reward (i.e., whether they had won or lost money). Presentation of all eight patterns (P1–P8)

was pseudorandomly intermixed during learning trials.

(B) Learning trial behavioral data. Upper panel: an example of an individual participant’s learning curve estimated by the state-space model (Smith et al., 2004),

which shows the probability of a correct response for an individual pattern as a function of trial number. Binary performance is shown above (green circle =

correct, red circle = wrong). Lower panel: block-by-block performance (percent correct responses) of the entire group (n = 25) during the Initial session. Perfor-

mance on spatial patterns (P1–P4) is shown in green, nonspatial patterns (P5–P8) in blue, and averaged performance in red. Error bars denote standard deviation.
892 Neuron 63, 889–901, September 24, 2009 ª2009 Elsevier Inc.
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associated with memory in the medial temporal lobe (MTL), such

as the parahippocampal cortex, become engaged in a decision-

making context when value predictions must be based on asso-

ciative (i.e., shape-shape, shape-location) rather than more

simple elemental information as studied previously (Montague

et al., 2006).

Initial Session: Functionally Coupled Activity in

Hippocampus and vMPFC during Learning Trials Tracks

the Emergence of Conceptual Knowledge

While this analysis reveals the overall network engaged when

participants perform proficiently on learning trials, it does not

dissociate between brain regions involved in memory for indi-

vidual associative pairings and those supporting conceptual rep-

resentations. To identify the neural circuitry specifically under-

Figure 3. Brain Areas Associated with Proficient Performance

during Learning Trials in the Initial Session

Brain areas whose activity during learning trials shows a significant positive

correlation with a participant-specific index of performance (probability_suc-

cess). The probability_success parametric regressor was created by convert-

ing participants’ binary choice data into estimated learning curves (Figure 2B)

using the state-space model (see Supplemental Experimental Procedures).

Activations are shown on the averaged structural MRI scan of the 25 partici-

pants, with the color bar indicating the t statistic associated with each voxel

and the z score equivalent. Activations in vMPFC and PCC are shown in sagittal

section (upper left panel). Upper right panel: coronal section showing activation

in bilateral ventral striatum. Lower left panel: sagittal section showing activation

in the left parahippocampal cortex extending into hippocampus. Lower right

panel: coronal section showing activation in PCC, bilateral parahippocampal

cortex extending into hippocampus. See Table S1 for a full list of activations.

Activations in left parahippocampal cortex, amygdala, vMPFC, and PCC

were significant at p < 0.05 FWE corrected (see Experimental Procedures).

Activations are shown at p < 0.005 (uncorrected) for display purposes.
pinning the emergence of conceptual knowledge and its

influence on choice behavior, we used participants’ perfor-

mance on probe trials as leverage with which to interrogate the

learning trial fMRI data (see Experimental Procedures; Fig-

ure 2D). We therefore created a vector, termed ‘‘probe_perform-

ance,’’ which was entered as a second parametric regressor

against the relevant learning trials during the preceding learning

block (see Experimental Procedures). Importantly, this trial-by-

trial probe_performance vector was a robust indicator at a

behavioral level of whether a participant’s response on a given

trial was correct or incorrect (r = 0.42, p < 0.001), even once

the (highly significant: r = 0.49, p < 0.001) effect of the probabili-

ty_success vector had been covaried out (p < 0.01).

We next sought to identify brain regions where neural activity

on a given trial selectively tracked the emergence of conceptual

knowledge, above and beyond any correlation with probability of

success. To effect this analysis, we entered both probability_

success and probe_performance vectors as parametric regres-

sors modulating neural activity during learning trials within the

same general linear model (see Experimental Procedures). Strik-

ingly, activation within the left hippocampus, vMPFC, and PCC

showed a robust positive correlation with probe performance,

even after any effect of probability of success had been covaried

out (Figure 4 and Table S2). In marked contrast, no significant

activation was observed in other areas previously identified to

show a correlation with the probability of success, including

the parahippocampal cortex, even at liberal thresholds (i.e.,

p < 0.01 uncorrected). Indeed, activity in bilateral parahippocam-

pal cortex (anatomical region-of-interest [ROI] analysis: see

Experimental Procedures) showed a significantly greater corre-

lation with the probability of success, as compared to probe

performance (p < 0.05). As such, our findings are consistent

with the notion that areas such as the parahippocampal cortex

play a greater role in memory for individual associative pairings,

perhaps involving the formation of configural or unitized repre-

sentations, as has previously been hypothesized (Cohen and

Eichenbaum, 1993; Haskins et al., 2008; Mayes et al., 2007;

Rudy and Sutherland, 1989). In this way, the parahippocampal

cortex may support the capacity of patients with amnesia and

hippocampal damage to perform relatively well (i.e., 75% correct

responses), though not normally, on a similar task, without devel-

oping conceptual knowledge of the task structure (Kumaran

et al., 2007).

Thus far, our findings provide behavioral evidence that

conceptual knowledge is acquired gradually during learning,

plays a significant role in guiding participants’ choices, and is

underpinned by neural activity in hippocampus, posterior cingu-

late cortex (PCC), and vMPFC. We next set out to test the
(C) Probe trial. Participants were required to make a prediction (index/middle finger) based on partial patterns (3 s). No feedback was provided, but participants

were rewarded for correct predictions at the end of the experiment. Participants also provided confidence ratings (2 s) by indicating whether they were ‘‘sure’’ or

‘‘not-sure’’ by button press. In spatial probe trials (upper panel), one fractal (i.e., either F1 [illustrated] or F2) was presented on either the left (illustrated) or the right.

A question mark displayed in the central position indicated that the identity of the central fractal was not known. In nonspatial probe trials (lower panel), one fractal

was presented in the central position (F3 or F4 [illustrated]), with another above (F1 or F2 [illustrated]). The question mark indicated that the position of the periph-

eral fractal was not known. Two varieties of probe trials were included: ‘‘outcome determined’’ and ‘‘outcome undetermined’’ (Figure 5). In outcome-determined

trials, the main trials of interest, participants could deploy conceptual knowledge to make accurate predictions: e.g., the presence of F1 on the left in a spatial

probe trial is predictive of sun, regardless of the identity of the central shape.

(D) Probe trial. Block-by-block probe performance of entire group (n = 25) during Initial session. Performance on spatial probe trials shown in green, nonspatial in

blue, and averaged performance in red. Error bars denote standard deviation.
Neuron 63, 889–901, September 24, 2009 ª2009 Elsevier Inc. 893
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hypothesis that the hippocampus and vMPFC, two reciprocally

interconnected brain regions (Ongur et al., 2003), interact during

the emergence of conceptual knowledge during decision

making. To achieve this, we used a psychophysiological interac-

tion (PPI) analysis, which assesses whether the functional cou-

pling of distant brain regions varies according to experimental

parameters (Friston et al., 1997) (see Experimental Procedures).

This enabled us to ask whether the left hippocampus, our source

region, significantly influenced activity in vMPFC, specifically in

relation to the level of conceptual knowledge acquired (i.e.,

condition 3 probe_performance interaction). We observed

a significant correlation between neural activity in left hippo-

campus and the functionally defined vMPFC region (t = 1.9,

p = 0.03), but not PCC (p > 0.1), whereby greater conceptual

knowledge was associated with stronger coupling. This finding

provides evidence that the hippocampus and vMPFC act as

a circuit during the acquisition and application of conceptual

knowledge during decision making.

Initial Session: Neural Activity in Hippocampus and

vMPFC Correlates with Performance during Probe Trials

We next turned to the fMRI data acquired during probe trials,

which allowed us to test participants’ ability to use conceptual

knowledge to generalize under circumstances where the avail-

able information was incomplete (i.e., partial patterns; Figures

2D and 5), but did not provide opportunity for learning through

feedback. We reasoned that if the hippocampus and vMPFC

track the emergence of conceptual knowledge during learning

Figure 4. Brain Areas Tracking the Emergence of Conceptual

Knowledge during Learning Trials in the Initial Session

Brain areas whose activity during learning trials showed a significant positive

correlation with a participant-specific index of conceptual knowledge acquisi-

tion (probe_performance), after the effect of probability_success had been

covaried out. Activations are shown on the averaged structural MRI scan of

the 25 participants, with the color bar indicating the t statistic associated

with each voxel and the z score equivalent. Activation in the left hippocampus

is shown in axial section (upper right panel) and in close-up in lower left

(sagittal) and lower right (coronal) panels. Activation in vMPFC and PCC are

shown in sagittal section (upper left panel). See Table S2 for a full list of activa-

tions. Activation in hippocampus significant at p < 0.001 uncorrected and p <

0.05 SVC corrected (see Experimental Procedures). Activation in vMPFC

significant at p < 0.05 FWE corrected. Activations are shown at p < 0.005 for

display purposes.
894 Neuron 63, 889–901, September 24, 2009 ª2009 Elsevier Inc.
trials, then these regions should also guide probe trial perfor-

mance. To test this hypothesis, we performed a region of interest

analysis in these two functionally defined regions, initially con-

trasting activity during the two varieties of probe trials, termed

‘‘outcome determined’’ and ‘‘outcome undetermined’’ (see Ex-

perimental Procedures; Figure 5). Critically, in outcome-deter-

mined trials, the outcome (i.e., sun/rain) could be accurately pre-

dicted based on conceptual knowledge of the task structure. In

contrast, in outcome-undetermined trials, the outcome could not

be predicted based on the information given (i.e., 50% sun, 50%

rain), though these trials were otherwise closely matched to

outcome-determined trials in terms of visual appearance and

RT (outcome_determined 1.54 s, outcome_undetermined 1.58 s,

p = 0.31).

Results from this analysis show that activity in the hippo-

campus, and vMPFC, was significantly greater in outcome_

determined trials as compared to outcome_undetermined trials

(functionally defined left hippocampus ROI: t = 1.83, p = 0.04;

vMPFC ROI: t = 1.96, p = 0.03). Importantly, neural activity in

these brain regions showed a significant correlation with perfor-

mance in outcome_determined trials (hippocampus ROI: t =

1.87, p = 0.04; vMPFC ROI: t = 1.91, p = 0.03). Our findings,

therefore, provide evidence that the hippocampus and vMPFC

support neural representations of conceptual knowledge, which

are used to guide participants’ choices even in the absence of

trial-by-trial feedback, when generalization is required because

the exact situation has not been previously experienced during

learning.

Taken together, our results show that neural activity in the

hippocampus and vMPFC tracks the emergence of knowledge

during the Initial session and its deployment during conceptual

decision making. Previous work has emphasized the role of the

vMPFC, and closely situated orbitofrontal cortex (OFC), in goal-

directed decision making (Daw et al., 2005; Rangel et al., 2008;

Rudebeck et al., 2008), based on outcome expectancies (Murray

et al., 2007), simple if-then rules (e.g., match versus nonmatch

[Hampton et al., 2006; Miller et al., 2002; Otto and Eichenbaum,

1992]), and the integration of social and reward information

(Behrens et al., 2008). While conceptual knowledge has often

been assumed to influence goal-directed behavior in humans

(Shea et al., 2008), our study highlights its profound effect on

participants’ behavior and shows that this is reflected in neural

activity in vMPFC, adding a further level of abstraction to the

nature of neural representations it sustains.

New Session: Hippocampus Underpins Use

of Conceptual Knowledge as a Guiding Schema

in a Perceptually Novel Setting

Having examined how conceptual knowledge is acquired during

the Initial session, we next probed the neural mechanisms un-

derpinning its application in a new setting (i.e., the New session),

where, unbeknownst to the participants, the task structure was

the same but the actual shapes novel. To successfully transfer

previously acquired knowledge, participants were required to

represent the higher-order task structure in an abstract form

(i.e., not tied to individual shapes), reactivate this abstract con-

ceptual representation (i.e., schema [Bartlett, 1932; Rumelhart,

1980]) appropriately in the New session, and use it to provide

organizing principles to guide learning and choice behavior.
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Figure 5. Design of Probe Trials

We included two varieties of probe trials termed

‘‘outcome_determined’’ (labeled ‘‘D’’ and ‘‘out-

come_undetermined’’ (labeled ‘‘UD’’). In outcome-

determined trials, the main trials of interest, partic-

ipants could deploy conceptual knowledge to

make accurate predictions: specifically, in spatial

probe trials of this type, the presence of F1 on

the left is predictive of sun, regardless of the iden-

tity of the central shape. In nonspatial outcome_

determined probe trials, the presence of fractals

F2 and F4 on the screen (shown) is indicative of

rain, regardless of the position of F2. In outco-

me_undetermined probe trials, however, concep-

tual knowledge could not be deployed, and the

outcome could not be predicted based on the

information given (i.e., 50% sun, 50% rain). These

trials, however, were otherwise closely matched to

outcome-determined trials, providing an appro-

priate comparison condition for the neuroimaging

analyses, as well as serving the function of pre-

venting participants from gaining information

about the higher-order task structure from the

probe trials themselves.
That participants were able to do this is evidenced by their supe-

rior performance during the New session as compared to the

Initial session (Figure 6A; t = 4.0, p < 0.001). While nonspecific

skill learning effects are a well-recognized consideration in

such circumstances, it is unlikely that they contribute signifi-

cantly to the performance enhancement observed. Specifically,

our neural findings argue strongly against this possibility (see

below), as does the tight correlation observed at a behavioral

level between the performance of an individual participant in

the New session and the amount of conceptual knowledge

acquired in the Initial session (r = 0.35, p = 0.04).

To discover the neural mechanisms responsible for this

striking performance enhancement observed in the New ses-

sion, we next turned to the fMRI data. We predicted that a brain

region supporting schema representation and application

should exhibit activity during learning trials in the Initial session

which accounts for the considerable variability shown by indi-

vidual participants in terms of performance enhancement in

the New session. To test this hypothesis, we performed an ROI

analysis in left hippocampus and vMPFC (see Experimental

Procedures). Strikingly, activity averaged across the whole of

the left hippocampus showed a significant correlation with

performance in the New session (t = 2.7, p = 0.007; Figure 6B,

see Experimental Procedures). Importantly, this correlation

remained significant even once any effect of Initial session

performance had been covaried out (p < 0.05), arguing against

this finding representing a nonspecific effect associated with

good performers in general. In contrast, activity in vMPFC, or

indeed a PCC ROI, during the Initial session did not correlate

with the performance of participants in the New session (both

p > 0.1).
We also asked whether the correlation of hippocampal activity

with New session performance reflects a nonspecific motor skill

effect, indexed by the tendency of participants to be faster to

respond in learning trials during the first block of the New session

as compared to Initial session (Initial RT 1.62 s SD 0.15, New RT

1.43 s, SD 0.16; p < 0.05). No significant correlation was found

between hippocampal activation and reduction in RT across

sessions (r = 0.09, p > 0.1). Furthermore, the correlation of hippo-

campal activity with performance in the New session remained

significant once both the effects of Initial session performance

and the effect of RT speeding had been partialled out (r = 0.46,

p = 0.02).

We next analyzed the fMRI data obtained from the New

session in a similar way as previously (i.e., for the Initial session).

Using a whole-brain analysis, we observed that activity in

a network involving the hippocampus, vMPFC, and PCC showed

a robust correlation with the probability of a correct response

(i.e., probability_success) in the New session (Figure S2 and

Table S4). The left posterior hippocampus alone (Figure 6C)

showed a significantly stronger correlation with the probability

of success on a given learning trial during the New session as

compared to the Initial session (x, y, z = �21 �30 �6, z =

3.40). Interestingly, the region of left hippocampus identified in

this analysis is more posterior to that observed in the Initial

session. Previous studies have observed that activations within

the hippocampus, and MTL, tend to be located toward its

anterior aspect during encoding, and posterior during retrieval

(Schacter and Wagner, 1999). As such, our observations are

consistent with the notion that activation of the posterior hippo-

campus in the New session reflects schema retrieval/applica-

tion, whereas activation of a more anterior region in the Initial
Neuron 63, 889–901, September 24, 2009 ª2009 Elsevier Inc. 895
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Figure 6. New Session: Behavioral and fMRI

Data

(A) Group-averaged (n = 25) performance (percent

correct responses) in the first three blocks of the

Initial session (red bars) plotted together with per-

formance in the New session (green bars). Partic-

ipants performed superiorly in the New session, as

compared to the Initial session (t = 4.0, p < 0.001).

Bars represent SEM.

(B) Between-subjects correlation: the activity in

left hippocampus of individual participants during

learning trials in the Initial session correlated with

their performance in New session (r = 0.51, p =

0.007), even once their performance in Initial ses-

sion has been covaried out (p < 0.01). y axis: ac-

tivity averaged across whole of left hippocampus

during learning trials in the Initial session in arbi-

trary units (ROI analysis: see Experimental Proce-

dures). x axis: performance (percent correct re-

sponses) averaged across three blocks of the

New session.

(C) Neural activity in the left posterior hippo-

campus exhibits a significantly stronger correla-

tion with performance during learning trials in the

New session as compared to the Initial session

(x, y, z = �21, �30, �6; z = 3.40). Activation is

significant at p < 0.001 uncorrected, and p <

0.05 SVC corrected. Overall network associated

with proficient performance in the New session is illustrated in Figure S2 and detailed in Table S4. Activation is shown on the averaged structural MRI scan of

the 25 participants, with color reflecting the z statistic (white > yellow > orange > red). Activation is shown at p < 0.005 for display purposes.
session reflects schema formation. In marked contrast, differen-

tial activity in this analysis was not observed in vMPFC (p > 0.1),

which tracked the probability of success in both New (Figure S2)

and Initial sessions (Figure 3).

Taken together, these findings support a model in which the

hippocampus and vMPFC interact during conceptual decision

making but play dissociable roles. Specifically, our data, in link-

ing hippocampal activity to subjects’ ability to transfer knowl-

edge to a novel setting, suggest that this region may house

abstract conceptual representations of the task structure, which

endure across time (e.g., across experimental sessions). In

contrast, the vMPFC may act primarily to guide choices online,

by integrating abstract information received from the hippo-

campus with stimulus-bound value information. As such, our

results dovetail with recent perspectives arguing that the hippo-

campus plays a key role in decision making, by passing pro-

spective memory signals coding for the available options to

downstream valuation modules such as the vMPFC and OFC

(Johnson et al., 2007). More generally, our findings accord with

the recent demonstration that hippocampal amnesics, like

patients with vMPFC damage, show decision-making impair-

ments on the Iowa gambling task (Gupta et al., 2009).

The Hippocampus, Conceptual Learning, and Semantic
Memory
This study, in demonstrating that the hippocampus underpins

the acquisition of conceptual knowledge, provides new insights

into the types of neural representations and functions it support.

While the hippocampus has been previously implicated in the

representation of well-established concepts (e.g., Jennifer Anis-
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ton neurons [Quiroga et al., 2005]) and the generation of acquired

equivalence between stimuli (Myers et al., 2003; Shohamy and

Wagner, 2008), its role in knowledge acquisition, often sub-

sumed within the broader notion of semantic memory, has re-

mained controversial. In particular, it has been unclear whether

patients with damage limited to the hippocampus show deficits

in new semantic learning due to impaired episodic memory

capacities (Tulving and Markowitsch, 1998), the role of the

hippocampus as a ‘‘teacher’’ replaying individual memories to

enhance knowledge acquisition in the neocortex (McClelland

et al., 1995), or instead due to its function in the creation of linked

networks of relational representations within a ‘‘memory space’’

(Cohen and Eichenbaum, 1993; Eichenbaum et al., 1999). Our

results, in revealing how conceptual knowledge emerges

through the abstraction of commonalities among multiple related

experiences, provide empirical support for the latter memory

space hypothesis of hippocampal function (Cohen and Eichen-

baum, 1993; Eichenbaum et al., 1999). According to this per-

spective, therefore, the hippocampus supports conceptual

learning through its unique associative memory capacities,

which also explain its critical role in other relational memory

domains (e.g., transitive inference paradigm [Preston et al.,

2004]).

The current study also sheds new light on the nature of new

semantic learning in amnesia. Previous work has shown that

while patients with amnesia perform relatively well, or even nor-

mally (Duff et al., 2006), on certain tests of new semantic

learning, information acquired tends to be rigidly organized

(Bayley et al., 2008; Cohen and Eichenbaum, 1993; Duff et al.,

2006; Eichenbaum, 2004; O’Kane et al., 2004; Westmacott and



Neuron

Tracking the Emergence of Conceptual Knowledge
Moscovitch, 2001). Our findings suggest that a key deficit in such

patients is the capacity to synthesize new concepts from related

associative experiences, a function mediated by the hippo-

campus and critical in allowing knowledge to be flexibly ac-

cessed and deployed. In the future, it will be important to under-

stand why patients with developmental amnesia, who have

dysfunctional hippocampi, are able to achieve an apparently

normal conceptual understanding of the world (Vargha-Khadem

et al., 1997) and whether this arises as a consequence of neural

plasticity resulting from early brain injury.

Conclusions
While conceptual knowledge is thought to play an influential role

in human decision making (Shea et al., 2008), the neural mecha-

nisms underpinning its emergence and influence on choice

behavior have been little studied until now. Here, we reveal

that the vMPFC, in concert with the hippocampus, underpins

conceptual decision making, implying that this neural circuit

comprises an important, but until now neglected, part of the

goal-directed system in humans. More generally, our findings,

in elucidating the conditions under which the hippocampus

and vMPFC are recruited into a simple choice scenario, offer

a fresh perspective on the intriguing question of why these brain

regions are engaged during such a diverse range of tasks (e.g.,

spatial navigation, imagination, autobiographical memory, self-

projection, fear extinction [Bar, 2007; Buckner and Carroll,

2007; Hassabis and Maguire, 2007; Phelps et al., 2004]). We

suggest, therefore, that this neural circuit may support a common

core function during goal-directed cognition, regardless of

whether it is oriented to the past, present, or future, whereby

the vMPFC mediates the online integration and evaluation of

associative information conveyed by the hippocampus.

EXPERIMENTAL PROCEDURES

Participants

Twenty-seven healthy, right-handed native English speakers, who were

currently undertaking or had recently completed a university degree, partici-

pated in this experiment (age range 19–31; 12 female). Two of these partici-

pants were excluded: one due to a keypad malfunction and the other due to

consistently poor task performance (i.e., failure to exceed chance perfor-

mance of 50% in either the Initial or New session). All participants gave

informed written consent to participation in accordance with the local research

ethics committee.

Stimuli

Pictures of fractals, rather than real-life objects, were used in our experiment to

investigate the learning of new concepts uncontaminated by previous experi-

ence outside the experimental context. Two sets of six fractal images were

used during the main experiment: one set in the Initial session and one set in

the New session. A separate set of fractals was used during a practice session

prior to the experiment where participants were familiarized with the task. In

each set, four fractals were presented during learning and probe trials, and

a further two fractals were only ever seen during control trials (see below). Allo-

cation of set was randomized across participants. Prior to each scanning

session, participants briefly performed a simple one-back task where they

viewed each individual fractal picture five times, in order to minimize stimulus

novelty effects during scanning. Images were obtained from the internet

(http://techrepublic.com.com/2346-10878_11-33277-7.html), resized, and

placed on a square black background. Examples of fractals used in the exper-

iment are shown in Figure 1.
Task and Procedures

Participants were told to imagine themselves as a weather forecaster who has

to predict if it will be sunny or rainy on the basis of a given ‘‘pattern’’ on the

screen, which was said to represent constellations of stars in the night sky

(Figure 1) (see Supplemental Instructions Document).

Participants’ task was to learn how each of eight patterns (P1–P8), created

from different combinations of four fractals (i.e., F1–F4), predicted the

weather. Each pattern was made up of two fractal shapes: one in the center

of the screen, and one either to the right or the left. As illustrated in Figure 1,

two fractals (F1 and F2) were only presented on either the left- or right-hand

side of the screen, with two fractals (i.e., F3 and F4) only appearing in the

center of the screen. Since all eight patterns were constructed from the

same four fractals, successful performance required participants to use asso-

ciative information consisting of shape-location and shape-shape conjunc-

tions rather than elemental information (e.g., single shape). Each pattern

(e.g., P1) was associated with a given outcome (e.g., sun) with a 100% prob-

ability. This probability was fixed for the duration of the experiment and did

not change. The eight patterns are illustrated with their outcomes (Figure 1).

Note that this is an example, since the construction of patterns from fractals

and the mapping of patterns to outcomes was changed between partici-

pants.

During learning trials, participants viewed a given pattern on the screen (e.g.,

P1), entered a prediction (e.g., sun), and received feedback regarding correct-

ness (correct/incorrect) and reward (win/lose money) (Figure 2A and Supple-

mental Experimental Procedures). Probe trials, however, did not involve feed-

back and required participants to generalize, since they were confronted with

partial patterns (i.e., ‘‘as if the sky was partially obscured by cloud’’), therefore

providing us with an online measure of the level of conceptual knowledge

acquired throughout the experiment (Figures 2C and 5 and Supplemental

Experimental Procedures). Participants were also asked to rate their confi-

dence in their predictions during probe trials, by indicating whether they

were ‘‘sure’’ or ‘‘not sure’’ by button press. Prior to the experiment, participants

were instructed to select a sure confidence rating only if they felt ‘‘at least 90%

certain’’ that their prediction was correct.

Scanning consisted of two main sessions, the Initial session (45 min) and the

New session (15 min), which had the same higher-order task structure though

differing in terms of the set of fractals used. At the start of the experiment,

participants were told that they would take part in two sessions. However,

they were not told what would happen during the second (New) session until

after the completion of the first (Initial session).

The Initial and New sessions were composed of nine and three blocks,

respectively. Each block was comprised of a 40 trial miniblock made up of

32 learning trials with 8 control (i.e., baseline: see Supplemental Experimental

Procedures) trials pseudorandomly interspersed in between, followed by an

eight trial miniblock of probe trials. The start of each miniblock was preceded

with the relevant instruction (i.e., ‘‘Get ready for learning trials,’’ ‘‘Get ready for

probe trials’’). In the Initial session, participants were given a brief rest after

every three blocks, though remained in the scanner. Participants were

removed from the scanner after the Initial session, debriefed, and returned

to the scanner after a short interval (5 min) for the New session. In total, there-

fore, the Initial session consisted of 288 learning trials, 72 control trials, and

72 probe trials, and the New session of 96 learning trials, 24 control trials,

and 24 probe trials.

Debriefing Protocol

Following the completion of each experimental session (Initial and New),

participants were carefully debriefed in order to evaluate the presence

and nature of conceptual knowledge concerning the task structure, and

dissociate this from a more specific knowledge of outcomes associated

with each pattern in isolation (see Supplemental Experimental Procedures

and Questionnaire). Information obtained at debriefing was designed to

provide a measure of explicit (i.e., consciously accessible) conceptual

knowledge, indexing participants’ ability to access and deploy conceptual

knowledge in a context quite different from the original learning situation.

As such, the composite debriefing score (see Supplemental Experimental

Procedures) complemented online indices of conceptual knowledge acqui-

sition (i.e., probe trial performance) obtained during task performance. Of
Neuron 63, 889–901, September 24, 2009 ª2009 Elsevier Inc. 897
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note, our debriefing protocol, like probe trials, was carefully designed so as

to avoid the provision of new information concerning the task structure to

participants.

Behavioral Analyses

Analyses were conducted using SPSS software (http://www.spss.com), Mat-

lab 7.0 (http://www.mathworks.com/products/matlab), and using the state-

space model toolbox obtained from http://www.neurostat.mit.edu.

To evaluate the correlation between performance on different patterns

(i.e., P1–P8), we first extracted vectors coding for participants’ responses

in binary fashion (i.e., correct versus incorrect). We then computed correla-

tion coefficients, as implemented in Matlab 7.0, between pairs of different

patterns (e.g., P1 versus P2, P1 versus P3, etc.). For each individual partic-

ipant, we calculated the average correlation coefficient between perfor-

mance on learning trials within a given domain (i.e., spatial [P1–P4] and

nonspatial [P5–P8]) and that across domains (e.g., P1–P5, P1–P6, etc.).

We then asked whether, using a paired sample t test across the entire

group, performance on learning trials within a domain showed a significantly

greater correlation than across domains. This is what would be expected if

participants integrated information across relevant patterns (e.g., P1–P4)

rather than learning each pattern-outcome association (e.g., P1 = sun) in

isolation.

fMRI Design

The temporal pattern of stimulus presentation was designed to maximize

statistical efficiency while preserving psychological validity, in line with estab-

lished procedure (Frackowiak et al., 2004; Friston et al., 1998; Josephs and

Henson, 1999). The trial onset asynchrony (TOA) for learning trials was 7 s

(i.e., 5 s during which the pattern and outcome were presented followed by

2 s fixation cross). Given that the TOA is not a simple integer multiple of the

TR (time for acquisition of one scanning volume = 4.05 s), trial onsets were

automatically temporally jittered with respect to scan onsets (Frackowiak

et al., 2004). Importantly, the haemodynamic response to events that occur

a few seconds apart is explicitly modeled (via a haemodynamic response func-

tion) and therefore can be estimated separately for each event type by imple-

menting the general linear model, as is standard when using statistical para-

metric mapping software (SPM5) (http://www.fil.ion.ucl.ac.uk/spm/) (also

see below) (Friston et al., 1998).

Imaging Parameters and Acquisition

T2-weighted echo planar images (EPI) with BOLD (blood-oxygen-level-depen-

dent) contrast were acquired on a 1.5 tesla Siemens Sonata MRI scanner using

a specialized sequence to minimize signal dropout in the medial temporal lobe

(Deichmann et al., 2003). We used the following scanning parameters to

achieve whole brain coverage: 45 oblique axial slices angled at 30� in the ante-

rior-posterior axis, TR 4.05 s, 2 mm thickness (1 mm gap), TE 30 ms, in-plane

resolution 3 3 3 mm, field-of-view 192 mm, 64 3 64 matrix. A preparation

pulse (duration 1 ms, amplitude +1 mT/m*ms) was used in the slice selection

direction to compensate for through-plane susceptibility gradients predomi-

nant in the hippocampus (Weiskopf et al., 2005). High-resolution (1 3 1 3

1 mm) T1-weighted structural MRI scan were acquired for each participant

after functional scanning. These were coregistered to the functional EPIs

and averaged across participants to aid localization.

fMRI Data Preprocessing

Images were analyzed in a standard manner using the statistical parametric

mapping software SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). After the first

six ‘‘dummy volumes’’ were discarded to permit T1 relaxation, images were

spatially realigned to the first volume of the first session, followed by spatial

normalization to a standard EPI template, resulting in a functional voxel size

of 3 3 3 3 3 mm. Normalized images were smoothed using a Gaussian kernel

with full width at half maximum of 8 mm.

fMRI Data Analysis

Following preprocessing, the event-related fMRI data were analyzed in SPM5

using the general linear model following established procedures (Frackowiak

et al., 2004; Friston et al., 1998). We targeted our analyses to detect brain
898 Neuron 63, 889–901, September 24, 2009 ª2009 Elsevier Inc.
regions whose activation pattern during learning trials significantly correlated

with participant-specific trial-by-trial regressors, namely the probability_suc-

cess and probe_performance regressors.

Parametric Regressors

(1) Probability_success: for each individual subject, the state-space

model was used to estimate learning curves for each pattern (i.e.,

P1–P8) (see Supplemental Experimental Procedures). These learning

curves constituted vectors indexing the probability of a correct

response on a given trial and were used to create participant-specific

parametric regressors.

(2) Probe_performance: probe trial performance was scored in accor-

dance with the instructions given to participants about how to rate

their confidence in their predictions. Correct predictions that were

given a sure confidence rating were scored more highly than those

accorded a not-sure rating, with the former scoring 5 points and

the latter 2 points. Performance on spatial and nonspatial outcome_

determined probe trials was then used to modulate respective

learning trials (i.e., spatial: P1–P4/nonspatial: P5–P8) during the

preceding miniblock. For instance, performance on the spatial outco-

me_determined probe trial illustrated in Figure 2C (upper panel) was

used to modulate the four learning trials during the preceding mini-

block where patterns P1 and P3 were presented. Similarly, perfor-

mance on the nonspatial outcome_determined probe trial illustrated

in Figure 2C (lower panel) was used to modulate the four learning

trials during the preceding miniblock where patterns P7 and P8 were

presented.

Specification of First-Level Design Matrix and Model Estimation

As a first step, the 5 s period during which pattern and outcome were displayed

during learning trials was modeled as a boxcar function and convolved with the

canonical haemodynamic response function (HRF) to create regressors of

interest. In initial analyses, vectors indexing spatial (i.e., P1–P4) and nonspatial

(i.e., P5–P8) learning trials were coded separately in the design matrix. Given

that no significant effects of domain (i.e., spatial versus nonspatial) were found,

even at liberal statistical thresholds (p < 0.01 uncorrected) (see Supplemental

Results), spatial and nonspatial trials were included within a single regressor in

all subsequent analyses.

Participant-specific vectors coding for probability_success, probe_per-

formance were then included as parametric modulators in the design matrix.

In the first analysis reported, only probability_success was included as a para-

metric regressor. In subsequent analyses set up to identify brain regions

whose activity specifically tracks the emergence of conceptual knowledge,

we included the probe_performance vector as an additional (second) para-

metric regressor in the design matrix. Of note, the correlation between these

two regressors before inclusion in the first level design matrix was �0.42

across subjects. After the automatic orthogonalization procedure imple-

mented in SPM5, the correlation between these two regressors averaged

across subjects was �0.08.

These parametric regressors were also convolved with the HRF, leading

to the height of the HRF for a given event being modulated as a function

of the probability of success, or probe performance. Thus, these regres-

sors model BOLD signal changes that covary with probability of success,

or probe performance on a given trial. We also included vectors coding for

outcome_determined, and outcome_undetermined, probe trials, and

control trials, in the first level design matrix. Probe performance was

also included as a parametric regressor relating to neural activity during

probe trials. Further, participant-specific movement parameters were

included as regressors of no interest. A high-pass filter with a cutoff of

180 s was employed. Temporal autocorrelation was modeled using an

AR(1) process.

Model estimation proceeded in two stages. In the first stage, condition-

specific experimental effects (parameter estimates, or regression coefficients,

pertaining to the height of the canonical HRF) were obtained via the GLM in

a voxel-wise manner for each participant. In the second (random-effects) stage,

participant-specific linear contrasts of these parameter estimates, collapsed

across the three sessions, were entered into a series of one-sample t tests

(as is standard when using SPM and a factorial design [Frackowiak et al.,

2004]), each constituting a group-level statistical parametric map.

http://www.spss.com
http://www.mathworks.com/products/matlab
http://www.neurostat.mit.edu
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Statistical Inference

Voxel-Based Analyses

We report results in a priori regions of interest (previously defined in neuroi-

maging studies of decision making and associative learning [Hampton et al.,

2006; Law et al., 2005; O’Doherty, 2004]: MTL, vMPFC, PCC, amygdala) where

activations are significant at p < 0.001 uncorrected for multiple comparisons

with an extent threshold of 5 voxels, and survive small volume correction

(SVC) for multiple comparisons (or family-wise error [FWE] correction across

the whole brain). The SVC procedure, as implemented in SPM5 using the

FWE correction procedure (p < 0.05), allows results to be corrected for multiple

nonindependent comparisons with a defined region of interest. For the SVC

procedure, we used an anatomical masks obtained from the MarsBar SPM

toolbox (hippocampus, amygdala) (http://marsbar.sourceforge.net/), and

a 4 mm sphere centered on coordinates derived from previous work (vMPFC:

x, y, z = 6 57�6 [Hampton et al., 2006]). Activations in other brain regions were

only considered significant if they survived whole-brain FWE correction for

multiple comparisons at p < 0.05 (in line with established procedures [Fracko-

wiak et al., 2004]), but are reported for completeness at a threshold of p < 0.001

uncorrected for multiple comparisons. All activations are displayed on

sections of the average structural image of all the participants. Reported vox-

els conform to Montreal Neurological Institute (MNI) coordinate space. Right

side of the brain is displayed on the right side.

Region of Interest Analyses

To test whether brain regions, namely the left hippocampus and vMPFC, which

track the emergence of conceptual knowledge also guide probe trial perfor-

mance, we performed an ROI analysis in these two functionally defined regions

(using the MarsBar SPM toolbox: http://marsbar.sourceforge.net/). These

regions were functionally defined from the group statistical map pertaining

to the correlation of brain activation with probe_performance and thresholded

at p < 0.005 uncorrected. Thus, definition of this ROI is unbiased with respect

to our contrast of interest, which pertains to neural activity during probe trials.

Using the MarsBar SPM toolbox, we obtained parameter estimates for all vox-

els within this region, for the group as a whole. These parameter estimates

were averaged across the ROI and specific effects tested by one-sample

t tests.

We also performed an ROI analysis to ask whether activity within the hippo-

campus during learning trials in the Initial session accounts for the consider-

able variability shown by individual participants in terms of performance

enhancement in the New session. Here, we used an anatomically defined

mask of the (left) hippocampus obtained from the MarsBar SPM toolbox

(http://marsbar.sourceforge.net/). This analysis was implemented using the

multiple regression function in SPM5, with the effect of performance in the

Initial session included as a covariate of no interest.

It is important to note that these analyses treat data from a ROI as if it was

from a single voxel, and hence no correction for multiple comparisons is

necessary.

Psychophysiological Interaction Analysis

A PPI analysis is employed to identify the presence of functional coupling

between different brain regions, by showing that activity in a distant region

can be accounted for by an interaction between the influence of a source

region and an experimental parameter (Friston et al., 1997). We used a PPI

analysis to ask whether the left hippocampus, our source region, significantly

influenced activity in vMPFC (or PCC), specifically in relation to the level of

conceptual knowledge acquired (i.e., condition 3 probe_performance interac-

tion). To do this, we used SPM5 to first extract the time series for the peak

voxel in the left hippocampus (i.e., 4 mm sphere centered on peak coordinate

in the group analysis x, y, z, = �24, �25, �21), identified in the correlation of

learning trial related activity with probe_performance (Figure 4) (physiological

effect). This time course was the first regressor in the PPI analysis. Next, we

calculated the product of the time course and the probe_performance vector

to create the PPI (i.e., psychophysiological interaction) term. The effect of this

interaction term was assessed for each participant and entered into a second

level group-level analysis. Specifically, we performed an ROI analysis in the

functionally defined region of the vMPFC (see above) to ask whether this region

shows significant functional coupling with the left hippocampus, the magni-

tude of which specifically tracks the amount of conceptual knowledge de-

ployed during learning trials.
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