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Abstract

This paper explores approximation properties of finite smooth mixtures of normal regressions

as flexible models for conditional densities. These models are a special case of mixtures of experts

(ME) introduced by Jacobs et al. (1991). ME have become increasingly popular in statistical

literature since they are very flexible, easy to interpret, and reasonably easy to estimate. This paper

contributes to the literature that provides a theoretical explanation of the success of ME models in

applications. In particular, I show that large classes of conditional densities can be approximated in

the Kullback–Leibler (KL) distance by finite smooth mixtures of normal regressions. Approximation

results are obtained in the KL distance for the following reason. If a data generating density is in

the KL closure of a class of models then this density can be consistently estimated from data by

these models under weak regularity conditions. The results can be useful for establishing posterior

consistency of certain Bayesian nonparametric models for conditional distributions.

Consider a joint probability distribution F on a product space Y ×X, Y ⊂ Rd and X ⊂ Rdx .

Assume the conditional distribution F (y|x) has a density f(y|x) with respect to the Lebesgue

measure. The marginal density of x with respect to some generic measure is denoted by f(x). A

model M for the conditional density f(y|x) is described by p(y|x,M). The KL distance between

f(y|x)f(x) and p(y|x,M)f(x) is defined by

dKL(F,M) =
∫

log
f(y|x)

p(y|x,M)
F (dy, dx).

This distance can also be interpreted as the expected KL distance between the conditional distri-

butions. Either way, this is the distance useful for obtaining estimation consistency results. Also,

convergence in the KL distance implies convergence in the total variation distance. In the paper,

I consider several different specifications of mixture of normal regressions models, p(y|x,M), and

provide conditions on F under which dKL(F,M) can be made arbitrarily small. I also derive rates

of convergence and easy to interpret bounds for dKL(F,M).
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In general, a finite mixture of normal regressions model can be written as

p(y|x,M) =
m∑

j=1

αm
j (x)φ(y, µm

j (x), σm
j (x))

where mixing probabilities satisfy αm
j (x) ∈ [0, 1] and

∑
j αm

j (x) = 1 and φ(y, µ, σ) is a normal

density with mean µ and standard deviation σ evaluated at y (if y is multidimensional then the

variance-covariance matrix is diagonal σ2I). Most of the results obtained in the paper can be easily

extended to models in which general location scale densities σ−dK((y − µ)/σ) are mixed instead

of the normal densities φ(y, µ, σ). Models, in which the mixing weights depend on x, are referred

in the paper as smooth mixtures. In practice, αm
j (x)’s are often modelled by a multinomial choice

model, e.g., multinomial logit (Peng et al. (1996)) or probit (Geweke and Keane (2007)) or it might

not depend on x. The mean µm
j (x) can be constant, linear or flexible, e.g., polynomial, in x. An

exponentiated polynomial or spline in x can be used for modeling the standard deviation σm
j (x)

(Villani et al. (2009)).

To the best of my knowledge, previous literature on smooth mixtures of regressions (or experts)

does not provide a theory on what specifications for αm
j , µm

j , and σm
j deliver a model that can

approximate and consistently estimate large nonparametric classes of densities F . There are the-

oretical results on approximation of smooth functions and estimation of conditional expectations

by ME, see Zeevi et al. (1998) and Maiorov and Meir (1998). The only paper on approximation

of conditional densities by ME seems to be Jiang and Tanner (1999) who develop approximation

and estimation results for target densities from a single parameter exponential family, in which the

parameter is a smooth function of covariates. In this paper, I do not restrict the functional form

of f(y|x) and use weak regularity conditions to describe a class of F that can be approximated.

Conditions on approximable classes of f(y|x) and f(x) that are common for different model spec-

ifications include bounded support for f(x), continuity of f(y|x) in (y, x), finite expectation of a

change of log f(y|x) in a neighborhood of y, and existence of the second moments of y. The latter

restriction can be weakened by adding densities with fat tails to the mixtures in addition to normal

densities.

Considerable flexibility is already attained when αm
j ’s are modeled by multinomial logit with

linear indices in x and (µm
j , σm

j ) are independent of x. Using polynomials in the logit specifica-

tion reduces the number of mixture components m required to achieve a specified approximation

precision. Models for univariate response y in which the mixing probabilities and the variances

of the mixed normals are independent of x and the means are flexible, e.g., polynomial in x, can
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approximate large classes of f(y|x). Differences in quantiles of f(y|x) from these classes have to

be bounded above and below uniformly in x. These restrictions on f(y|x) can be weakened if the

variances of the mixed normals are modeled by flexible functions of x.

Obtained approximation error bounds and convergences rates suggest that models with flexi-

ble mixing probabilities might perform better in practice than models with flexible means of the

mixed normals and constant mixing probabilities. They also suggest that estimating conditional

distributions directly is better than estimating the joint distributions first and then extracting the

conditional distributions of interest.

Overall, the paper provides a number of encouraging approximation results for (smooth) mix-

tures of densities or experts, which might stimulate more theoretical and applied work in this area

of research.
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