Learning to Rank: from Pairwise Approach to Listwise Approach

Tie-Yan Liu
Lead Researcher, Microsoft Research Asia
http://research.microsoft.com/users/tyliu/
Talk Outline

• Introduction to Learning to Rank
• Previous work: Pairwise Approach
• Our proposal: Listwise Approach
 – ListNet
 – Relational Ranking
• Summary
Ranking Problem: Example = Information Retrieval

Let $D = \{d_1, d_2, \ldots, d_l\}$ be the set of documents. The ranking system takes a query $q^{(i)}$ and produces a ranked list of documents $\{d_1^{(i)}, d_2^{(i)}, \ldots, d_n^{(i)}\}$.

Ranking is also important in NLP applications, such as first-pass attachment disambiguation, and reranking alternative parse trees generated for the same sentence by a statistical parser, etc.
IR Evaluation Measures

- Precision at position n
 \[
P @ n = \frac{\{\text{relevant documents in top } n \text{ results}\}}{n}
 \]

- Average precision
 \[
 AP = \frac{\sum P @ n \cdot I\{\text{document } n \text{ is relevant}\}}{\#\{\text{relevant documents}\}}
 \]

- MAP: averaged over all queries in the test set

- NDCG at position n:
 \[
 N @ n = Z_n \sum_{j=1}^{n} \frac{(2^{r(j)} - 1)}{\log(1 + j)}
 \]
Learning to Rank

Labels: a total order or multiple-level ratings (as in this example)
Previous Work: Pairwise Approach

- Transforming ranked list into document pairs
- Formalizing ranking as classification on document pairs
- Ranking SVM, RankNet, RankBoost

\[
\begin{align*}
q^{(i)} & \rightarrow \left\{ (d_1^{(i)}, d_2^{(i)}), (d_1^{(i)}, d_{n(i)}^{(i)}), \ldots, (d_2^{(i)}, d_{n(i)}^{(i)}) \right\} \\
& \quad \begin{array}{cccc}
5 & > & 3 & \quad 5 & > & 2 & \quad 3 & > & 2
\end{array}
\end{align*}
\]
Problems with Pairwise Approach

• Loss function is suboptimal
 – Not to optimize evaluation measures (e.g. NDCG and MAP)
 – Not to consider position in ranking and number of documents per query
• Ranking function cannot represent relational information
• Generalization theory is limited
Our Proposal: Listwise Approach

• Listwise Loss Function
 – Using permutation probability distribution to represent a ranked list
 – Using KL-divergence between permutation probability distributions to define loss function

• Learning to rank relational objects
 – Embed object relationship in the ranking function
 – Formalize ranking function as a new optimization problem.

• Query-level Generalization Analysis
ListNet: A Listwise Loss Function for Learning to Rank

(ICML, 2007)
Distance between Ranked Lists

• A Simple Example:
 – function f: $f(A)=3$, $f(B)=1$, $f(C)=0$ ABC
 – function h: $h(A)=5$, $h(B)=2$, $h(C)=3$ ACB
 – ground truth g: $g(A)=5$, $g(B)=3$, $g(C)=2$ ABC

• Question: which function is closer to ground truth?

• Euclidian distance between score vectors?
 – f: $<3,1,0>$
 – g: $<5,3,2>$
 – h: $<5,2,3>$

 \[d(f,g)=3.5 \]

 \[d(g,h)=1.4 \]

 – However, ranked lists given by f and g are exactly the same!
Representation of Ranked List

• Question:
 – How to represent a ranked list?

• Our proposal:
 – Ranked list \leftrightarrow Permutation probability distribution

\[f: f(A)=3, f(B)=1, f(C)=0; \]

Ranking by f: ABC \leftrightarrow

\[P(\pi) \]

ABC ACB BAC BCA CAB CBA π
Permutation Probability

• Probability of permutation π is defined as (Luce Model)

$$P_s(\pi) = \prod_{j=1}^{n} \frac{\exp(s_{\pi(j)})}{\sum_{k=j}^{n} \exp(s_{\pi(k)})}$$

• Example:

$$P_f(\text{ABC}) = \frac{\exp(f(A))}{\exp(f(A)) + \exp(f(B)) + \exp(f(A))} \cdot \frac{\exp(f(B))}{\exp(f(B)) + \exp(f(C))} \cdot 1$$

\begin{align*}
P(A \text{ ranked No.1}) & = P(B \text{ ranked No.2 | A ranked No.1}) \\
& = \frac{P(B \text{ ranked No.1})}{1 - P(A \text{ ranked No.1})} \\

P(C \text{ ranked No.3 | A ranked No.1, B ranked No.2})
\end{align*}
Distance between Ranked Lists

\[\varphi = \exp \]

\(f: \) \(f(A) = 3, f(B) = 1, f(C) = 0; \)
Ranking by \(f: \) ABC

\(g: \) \(g(A) = 5, g(B) = 3, g(C) = 2; \)
Ranking by \(g: \) ABC

\(h: \) \(h(A) = 5, h(B) = 2, h(C) = 3; \)
Ranking by \(h: \) ACB
Permutation Probability Loss

• Formulation

\[L(w) \propto - \sum_{q \in Q} \sum_{G(j_1,...,j_k)} \left(\prod_{t=1}^{n} \frac{\exp(s_{y(j_t)})}{\sum_{u=t}^{n} \exp(s_{y(j_u)})} \right) \log \left(\prod_{t=1}^{n} \frac{\exp(w \cdot X_{y(j_t)})}{\sum_{u=t}^{n} \exp(w \cdot X_{y(j_u)})} \right) \]

• Properties

 – Continuous and Differentiable
 – Convex
 • Log of a convex function is still convex, and the set of convex functions is closed under addition.
 – Consistent
 • In the large sample limit, minimizing the proposed listwise loss can achieve the optimal Bayes error rate with respect to 0-1 loss.
Top-k Probability

- Correctly ranking top-k documents is more critical
- Computation of Permutation Probability is intractable
- Top-k Probability
 - Defining Top-k subgroup $G(j_1, \ldots, j_k)$ containing all permutations whose top-k documents are j_1, \ldots, j_k

 \[
P_s(G(j_1, \ldots, j_k)) = \prod_{t=1}^{k} \frac{\exp(s_{\pi(j_t)})}{\sum_{u=t}^{n} \exp(s_{\pi(j_u)})}
\]

 - Time complexity of computation: from $n!$ to $\frac{n!}{(n-k)!}$
ListNet Method

- Loss function = KL-divergence between two Top-\(k\) probability distributions

\[
L(w) \propto - \sum_{q \in Q} \sum_{G(j_1, \ldots, j_k)} \left(\prod_{t=1}^{k} \frac{\exp(s_{y(j_t)})}{\sum_{u=t}^{n} \exp(s_{y(j_u)})} \right) \log \left(\prod_{t=1}^{k} \frac{\exp(w \cdot X_{y(j_t)})}{\sum_{u=t}^{n} \exp(w \cdot X_{y(j_u)})} \right)
\]

- Model = Neural Network
- Algorithm = Stochastic Gradient Descent
Experimental Results

Pairwise (RankNet) More correlated!
Listwise (ListNet)

Training Performance on TREC Dataset

2008/2/12
Tie-Yan Liu @ Tokyo Forum on Advanced NLP and TM
Experimental Results

Testing Performance on TREC Dataset

NDCG@

ListNet RankNet RankSVM RankBoost
Learning to Rank Relational Objects using a Listwise Ranking Function

(WWW, 2008)
Motivation

• Traditional ranking function models independent relevance
 – Working on features of single documents
• Many applications in IR are beyond independent relevance
 – Subtopic retrieval
 – Representative page retrieval
 – Pseudo relevance feedback
 – Topic distillation
Relational Ranking Model

• Generic formulation

\[
y = f(X, R) = f(h(X; \omega), R).
\]

\[
\min_{\omega} \sum_{i=1}^{N} L(f(h(X_i; \omega), R_i), y_i)
\]

• Practical formulation

\[
f(h(X; \omega), R) = \arg \min_{z} \{l_1(h(X; \omega), z) + \beta l_2(R, z)\}
\]

\[
l_1(h(X; \omega), z) = \|h(X; \omega) - z\|^2
\]

Application-dependent
Pseudo Relevance Feedback

• A very common type of relationship between objects is similarity.
 – Similarity relationship can be represented in an undirected graph.
 – Such kind of graph is widely used in the learning tasks of clustering and semi-supervised learning.

\[
l_2(R, z) = \frac{1}{2} \sum_i \sum_j R_{i,j} (z_i - z_j)^2
\]

\[
f(h(X; \omega), R) = \arg \min_z \{\|X\omega - z\|^2 + \beta / 2 \sum_i \sum_j R_{i,j} (z_i - z_j)^2\}
\]
Topic Distillation

• Topic distillation prefers parent objects to be ranked before child objects.
 – Preference relationship can be represented by directed graph.

\[
R_{i,j} = \begin{cases}
1 & \text{if instance } i \text{ is the parent of } j, \\
0 & \text{other.}
\end{cases}
\]

\[
l_2(R, z) = \sum_i \sum_j R_{i,j} \exp(z_j - z_i)
\]

\[
f(h(X; \omega), R) = \arg \min_z \{ \|X\omega - z\|^2 + \beta \sum_i \sum_j R_{i,j} \exp(z_j - z_i) \}\]
Learning of Relational Ranking Model

- Substitute the ranking model into conventional optimization problems for model learning

\[
\min_{\omega} \sum_{i=1}^{N} L(f(h(X_i; \omega), R_i), y_i)
\]

\[
s.t. \quad f(h(X; \omega), R) = \arg \min_{z} \{ l_1(h(X; \omega), z) + \beta l_2(R, z) \}
\]

- Conventional Ranking SVM is a special case of relational ranking

\[
\min_{\omega, \xi, j} \frac{1}{2} \omega^T \omega + c \mathbf{1}^T [1 - C f(X; \omega)]_+ \\
\text{s.t. } f(X; \omega) = \arg \min_{z} \| X \omega - z \|^2
\]
Challenges

• The optimization problem for relational ranking is a constrained optimization problem, and the constraint itself is also an optimization problem.

• No existing method can be directly applied to the problem.

• We propose solving the problem in two steps.
 – Solve the optimization problem in constraint and obtain an explicit form for the constraint
 – Solve the original optimization problem with explicit constraint
Explicit Model for Pseudo Relevance Feedback

\[
l(z) = \|X\omega - z\|^2 + \frac{\beta}{2} \sum_i \sum_j R_{i,j} (z_i - z_j)^2 \\
= \|X\omega - z\|^2 + \beta z^T (D - R) z.
\]

\[
\frac{\partial l(z)}{\partial z} = 2(z - X\omega) + 2\beta (D - R) z = 0.
\]

\[
f(X, G; \omega) = (I + \beta (D - R))^{-1} X\omega
\]
Explicit Model for Topic Distillation

\[l(z) = \|X\omega - z\|^2 + \beta \sum_i \sum_j R_{i,j} \exp(z_j - z_i) \]

\[\exp(z_j - z_i) \approx 1 + (z_j - z_i) + \frac{1}{2}(z_j - z_i)^2. \]

\[l(z) \approx \|X\omega - z\|^2 + \beta \sum_i \sum_j R_{i,j} \left\{ 1 + (z_j - z_i) + \frac{1}{2}(z_j - z_i)^2 \right\} \]

\[= \|X\omega - z\|^2 + \beta (g_0 + g_1^T z + z^T (D - R) z) \]

\[\frac{\partial l(z)}{\partial z} = 2(z - X\omega) + \beta g_1 + \beta (2D - R - R^T) z = 0 \]

\[f(X, R; \omega) = (2I + \beta (2D - R - R^T))^{-1} (2X\omega - \beta g_1) \]
Relational Ranking SVM

Ranking SVM

\[
\begin{aligned}
&\min_{\omega, \xi} \frac{1}{2} \omega^T \omega + c \sum_q 1_q^T \xi_q \\
&s.t. \quad C_q f(X_q; \omega) \geq 1_q - \xi_q, f(X_q; \omega) = X_q \omega, \xi \geq 0
\end{aligned}
\]

Relational Ranking SVM for Pseudo Relevance Feedback

\[
\begin{aligned}
&\min_{\omega, \xi} \frac{1}{2} \omega^T \omega + c \sum_q 1_q^T \xi_q \\
&s.t. \quad C_q f(X_q, R_q; \omega) \geq 1_q - \xi_q, \xi_q \geq 0 \\
&\quad f(X_q, R_q; \omega) = (I - \beta(D_q - R_q))^{-1} X_q \omega
\end{aligned}
\]

Relational Ranking SVM for Topic Distillation

\[
\begin{aligned}
&\min_{\omega, \xi} \frac{1}{2} \omega^T \omega + c \sum_q 1_q^T \xi_q \\
&s.t. \quad C_q f(X_q, R_q; \omega) \geq 1_q - \xi_q, \xi_q \geq 0 \\
&\quad f(X_q, R_q; \omega) = (2I + \beta(2D_q - R_q - R_q^T))^{-1} (2X_q \omega - \beta g_{q,1})
\end{aligned}
\]
Experimental Results

Pseudo Relevance Feedback on OHSUMED

Topic Distillation on TD 2004
Summary

• Listwise approach is more effective than pairwise approach

• Future Work
 – Combination of listwise loss function and listwise ranking function
 – Investigation of generalization ability of listwise approach
References

Thanks!

Benchmark Dataset for Learning to Rank:
http://research.microsoft.com/users/LETOR/