
Active Pointillistic Pattern Search

Yifei Ma* Danica J. Sutherland* Roman Garnett† Jeff Schneider
Carnegie Mellon University Carnegie Mellon University Washington University

in St. Louis
Carnegie Mellon University

Abstract

We introduce the problem of active pointillistic
pattern search (APPS), which seeks to discover
regions of a domain exhibiting desired behavior
with limited observations. Unusually, the patterns
we consider are defined by large-scale proper-
ties of an underlying function that we can only
observe at a limited number of points. Given a
description of the desired patterns (in the form
of a classifier taking functional inputs), we se-
quentially decide where to query function values
to identify as many regions matching the pattern
as possible, with high confience. For one broad
class of models the expected reward of each un-
observed point can be computed analytically. We
demonstrate the proposed algorithm on three dif-
ficult search problems: locating polluted regions
in a lake via mobile sensors, forecasting winning
electoral districts with minimal polling, and iden-
tifying vortices in a fluid flow simulation.

1 Introduction

Consider a function containing interesting patterns that are
defined only over a region of space. For example, if you
view the direction of wind as a function of geographical
location, it defines fronts, vortices, and other weather pat-
terns, but those patterns are defined only in the aggregate.
If we can only measure the direction and strength of the
wind at point locations, we then need to infer the presence
of patterns over broader spatial regions.

Many other real applications also share this feature. For
example, an autonomous environmental monitoring vehi-
cle with limited onboard sensors needs to strategically plan
routes around an area to detect harmful plume patterns on
a global scale [19]. In astronomy, projects like the Sloan
Digital Sky Survey [5] search the sky for large-scale objects
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such as galaxy clusters. Biologists investigating rare species
of animals must find the ranges where they are located and
their migration patterns [4]. We aim to use active learn-
ing to search for such global patterns using as few local
measurements as possible.

This bears some resemblance to the artistic technique known
as pointillism, where the painter creates small and distinct
dots each of a single color, but when viewed as a whole they
reveal a scene. Pointillist paintings typically use a denser
covering of the canvas, but in our setting, “observing a dot”
is expensive. Where should we make these observations in
order to uncover interesting regions as quickly as possible?

We propose a probabilistic solution to this problem, known
as active pointillistic pattern search (APPS). We assume we
are given a predefined list of candidate regions and a clas-
sifier that estimates the probability that a given region fits
the desired pattern. Our goal is then to find as many regions
that are highly likely to match the pattern as we can. We
accomplish this by sequentially selecting point locations to
observe so as to approximately maximize expected reward.

1.1 Related Work

Our concept of active pattern search falls under the broad
category of active learning [15], where we seek to sequen-
tially build a training set to achieve some goal as fast as
possible. Our focus solely on finding positive (“interest-
ing”) regions, rather than attempting to learn to discriminate
accurately between positives and negatives, is similar to
the problem previously described as active search [6]. In
previous work on active search, however, it has been as-
sumed that the labels of interest can be revealed directly.
In active pattern search, on the other hand, the labels are
never revealed but must be inferred via a provided classifier.
This indirection increases the difficulty of the search task
considerably.

In Bayesian optimization [3, 12], we seek to find the global
optimum of an expensive black-box function. Bayesian op-
timization provides a model-based approach where a Gaus-
sian process (GP) prior is placed on the objective function,
from which a simpler acquisition function is derived and op-
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timized to drive the selection procedure. In [17], the authors
extend this idea to optimizing a latent function from binary
observations. Our proposed active pattern search also uses
a Gaussian process prior to model the unknown underlying
function and derives an acquisition function from it, but
differs in that we seek to identify entire regions of interest,
rather than finding a single optimal value.

Another intimately related problem setup is that of multi-
arm bandits [2], with more focus on analysis of the cumu-
lative reward over all function evaluations. Originally, the
goal was to maximize the expectation of a random function
on a discrete set; a variant considers the optimization in
continuous domains [8, 11]. However, like Bayesian opti-
mization, multi-arm bandit problems usually do not consider
discriminating a regional pattern.

Level set estimation [7, 9], rather than finding optima of a
function, seeks to select observations so as to best discrim-
inate the portions of a function above and below a given
threshold. This goal, though related to ours, aims to directly
map a portion of the function on the input space rather than
seeking out instances of patterns. LSE algorithms can be
used to attempt to find some simple types of patterns (say,
areas with high mean), but even then its learning goal un-
derperforms in the mismatched search objective, and it does
not attempt more complex models.

APPS can be viewed as a generalization of active area search
(AAS) [10], which is a considerably simpler version of active
search for region-based labels. In AAS, the label of a region
is only determined by whether its mean value exceeds some
threshold. APPS allows for arbitrary classifiers rather than
simple thresholds, and in some cases its expected reward can
still be computed analytically. This extends the usefulness
of this class of algorithms considerably.

2 Problem Formulation

There are three key components of the APPS framework: a
function f which maps input covariates to data observations,
a predetermined set of regions wherein instances of function
patterns are expected, and a classifier that evaluates the
salience of the pattern of function values in each region. We
define f : Rm → R to be the function of interest,1 which
can be observed at any location x ∈ Rm to reveal a noisy
observation z. We assume the observation model z = f(x)+

ε, where ε iid∼ N (0, σ2). We suppose that a set of regions
where matching patterns might be found is predefined, and
will denote these {g1, . . . , gk}; gi ⊂ Rm. Finally, for each
region g, we assume a classifier hg which evaluates f on g
and returns the probability that it matches the target pattern,
which we call salience: hg(f) = h(f ; g) ∈ [0, 1],where the

1For clarity, in this and the next sections we will focus on scalar-
valued functions f . The extension to vector-valued functions is
straightforward; we consider such a case in Section 4.3.

mathematical interpretation of hg is similar to a functional
of f . Classifier forms are typically the same for all regions
with different parameters.

Unfortunately, in general, we will have little knowledge
about f other than the limited observations made at our
selected set of points. Classifiers which take functional
inputs (such as our assumed hg) generally do not account
for uncertainty in their inputs, which should be inversely
related to the number of observed data points. We thus
must consider the probability that hg(f) is high enough,
marginalized across the range of functions f that might
match our observations. As is common in nonparametric
Bayesian modeling, we model f with a Gaussian process
(GP) prior; we assume hyperparameters, including prior
mean and covariance functions, are set by domain experts.
Given a dataset D = (X, z), we define

f ∼ GP(µ, κ); f | D ∼ GP(µf |D, κf |D), (1)

to be a given GP prior and its posterior conditioned on D,
respectively. Thus, since f is a random variable, we can
obtain the marginal probability that g is salient,

Tg(D) = Ef
[
hg(f) | D

]
. (2)

We then define a matching region as one whose marginal
probability passes a given threshold θ. Unit reward is as-
signed to each matching region g:

rg(D) = 1
{
Tg(D) > θ

}
. (3)

We make two assumptions regarding the interactive proce-
dure. The first is that once a region is flagged as potentially
matching (i.e., its marginal probability exceeds θ), it will be
immediately flagged for further review and no longer con-
sidered during the run. The second is that the data resulting
from this investigation will not be made immediately avail-
able during the course of the algorithm; rather the classifiers
hg will be trained offline. We consider both of these as-
sumptions to be reasonable when the cost of investigation is
relatively high and the investigation collects different types
of data. For example, if the algorithm is being used to run
autonomous sensors and scientists collect separate data to
follow up on a matching region, these assumptions allow
the autonomous sensors to continue in parallel with the hu-
man intervention, and avoid the substantial complexity of
incorporating a completely different modality of data into
the modeling process. Making different assumptions would
lead to interesting extensions to our algorithms that we do
not consider here.

Garnett et al. [6] attempt to maximize their reward at the
end of a fixed number of queries. Directly optimizing that
goal involves an exponential lookahead process. However,
this can be approximated by a greedy search like the one
we perform. Similarly, one could attempt to maximize the
area under the recall curve through the search process. This
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also requires an intractable amount of computation which is
often replaced with a greedy search.

We now write down the greedy criterion our algorithm seeks
to optimize. Define Dt to be data collected before time step
t and Gt = {g : Tg(Dτ ) ≤ θ,∀τ ≤ t} to be the set of
remaining search subjects; we aim to greedily maximize the
sum of rewards over all the regions in Gt in expectation,

max
x∗

E
∑
g∈Gt

[
rg(D∗) | x∗,Dt

]
, (4)

where D∗ is the (random) dataset augmented with x∗.

This criterion satisfies a desirable property: when the re-
gions are uncoupled and the classifier hg is probit-linear,
the point that maximizes (4) in each region also minimizes
the variance of that region (Section 3.2).

3 Method

For the aim of maximizing the greedy expected reward
of finding matching patterns, (4), a more careful examina-
tion of the GP model can yield a straight-forward sampling
method. This method, in the following, turns out to be quite
useful in APPS problems with rather complex classifiers.
Section 3.1 introduces an analytical solution in an important
special case.

At each step, given Dt = (X, z) as the set of any already
collected (noisy) observations of f and x∗ as any potential
input location, we can assume the distribution of possible
observations z∗ as

z∗ | x∗,Dt ∼ N
(
µf |Dt

(x∗), κf |Dt
(x∗, x∗) + σ2

)
. (5)

Conditioned on an observation value z∗, we can update our
GP model to include the new observation (x∗, z∗), which
further affects the marginal distribution of region classifier
outputs and thus the probability this region is matching.
With D∗ = Dt ∪

{
(x∗, z∗)

}
as the updated dataset, we use

rg(D∗) to be the updated reward of region g. The utility
of this proposed location x∗ for region g is thus measured
by the expected reward function, marginalizing out the un-
known observation value z∗:

ug(x∗,Dt) = Ez∗
[
rg(D∗) | x∗,Dt

]
(6)

= Pr
{
Tg(D∗) > θ | x∗,Dt

}
. (7)

Finally, in active pointillistic pattern search, we select the
next observation location x∗ by considering its expected
reward over the remaining regions:

x∗ = arg max
x

u(x,Dt) = arg max
x

∑
g∈Gt

ug(x,Dt). (8)

For the most general definition of the region classifier hg , the
basic algorithm is to compute (6) and thus (8) via sampling
at two stages:

1. Sample the outer variable z∗ in (6) according to (5).

2. For every draw of z∗, sample enough of (f | D∗) to
compute the marginal reward Tg(D∗) in (2), in order
to obtain one draw for the expectation in (6).

To speed up the process, we can evaluate (8) for a subset of
possible x∗ values as long as a good action is likely to be
contained in the set.

3.1 Analytic Computation of Expected Utility for
Functional Probit Models

We now turn to a family of classifiers for which we can com-
pute both (2) and (7) analytically, allowing us to efficiently
perform exact searches for potentially complex patterns.
This family is formed by a probit link function of any affine
functional of f .

In the following, we will consider a fixed, arbitrary time
step t and omit the time index. Suppose we have observed
data D, yielding the posterior distribution p(f | D) =
GP(f ;µf |D, κf |D). Let Lg be a linear functional, Lg : f 7→
Lgf ∈ R, associated with region g. (For clarity, we will
usually not explicitly notate the dependence on g below.)
The family of classifiers is:

hg(f) = Φ(Lgf + bg), (9)

where Φ is the cumulative distribution function of the stan-
dard normal and b ∈ R is an offset. We will consider two
specific cases of such functionals in our experiments:

• Lf : f 7→ w>f(Ξ), where Ξ is a finite set of fixed
points {ξi}|Ξ|i=1, and w ∈ R|Ξ| is an arbitrary vector.
This mapping applies a linear classifier to a weighted
average of f when the input set, and thus g, is discrete.

• Lf : f 7→ c
|g|
∫
g
f(x) dx, where |g| is the volume of

region g ⊂ Rm. Here Lgf is the mean value of f on
g, scaled by an arbitrary c ∈ R.

Each of these functionals is of the form
∫
f(x) dν(x), but

our results below apply to any linear L.

As Gaussian processes are closed under linear transforma-
tions, Lf + b has a normal distribution:

Lf + b ∼ N (Lµf |D + b, L2κf |D),

where L2 is the bilinear form L2κ : κ 7→ L
[
Lκ(x, ·)

]
=

L
[
Lκ(·, x′)

]
. For the specific cases above, we can explicitly

calculate the mean and variance of Lf + b:{
Ef [Lf | D] = w>µf |D(Ξ)

Varf [Lf | D] = w>κf |D(Ξ,Ξ)w

or{ Ef [Lf | D] = c
|g|
∫
g
µf |D(x) dx

Varf [Lf | D] = c2

|g|2
∫∫
g2
κf |D(x, x′) dx dx′.
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For certain classes of covariance functions κ, the above
integrals are tractable; they are encountered when estimating
integrals via Bayesian quadrature, also known as Bayesian
Monte Carlo [14].

Then we have the marginal probability (2) in closed form:

Tg(D) = Ef
[
hg(f) | D

]
= Ef

[
Φ(Lf + b) | D

]
= Φ

(
Lµf |D + b√
1 + L2κf |D

)
. (10)

Now we turn to the expected utility (7) of a new observation.
Consider a potential observation location x∗, and again
define D∗ = D ∪

{
(x∗, z∗)

}
. Then ug(x∗,D) is:

Pr

[
Φ

(
Lµf |D∗ + b√
1 + L2κf |D∗

)
> θ | x∗,D

]

= Pr

(
Lµf |D∗ + b√
1 + L2κf |D∗

> Φ−1(θ) | x∗,D

)
, (11)

where Φ−1 is the inverse of the normal CDF. Letting V∗|D =
Var[z∗ | D] = κf |D(x∗, x∗) + σ2, we have

L2κf |D∗ = L2
[
κf |D(x, x′)−κf |D(x, x∗)V

−1
∗|D κf |D(x∗, x

′)
]

= L2κf |D − L
[
κf |D(·, x∗)

]
V −1
∗|D L

[
κf |D(x∗, ·)

]
, (12)

which does not depend on z∗. Next, consider the distribution
of Lµf |D∗ . If we knew the observation value z∗, we could
compute the updated posterior mean as

µf |D∗(x) = µf |D(x) + κf |D(x, x∗)V
−1
∗|D
(
z∗ − µf |D(x∗)

)
.

But, thanks to the linearity of L and the known Gaussian
distribution on z∗, the updated posterior mean of Lf is also
normally distributed with

Lµf |D∗ | x∗,D ∼ N
(
Lµf |D, V

−1
∗|D L

[
κf |D(·, x∗)

]2)
(13)

and so, using (13) in (11), we can finally compute the de-
sired expected reward ug(x∗,D) in closed form:

ug = Φ

Lµf |D + b−
√

1 + L2κf |D∗ Φ−1(θ)√
V −1
∗|DL

[
κf |D(·, x∗)

]2
 . (14)

3.2 Analysis for Independent Regions

The analytical solution to (7) by (14) enables us to further
study the theory behind the exploration/exploitation tradeoff
of APPS in one nontrivial case: when all regions are approx-
imately independent. This assumption allows us to ignore
the effect a data point has on regions other than its own. We
will answer two questions in this case:

1. which region will APPS explore next, and

2. what location will be queried for that region.

The key to answer these two questions lies in the fact that
because (12) provides a link between Var[z∗ | D] and
Var
[
Lgf + b | D∗

]
, there is only one degree of freedom in

(14) for a single region. We define this free variable as

ρg(x∗) =

√
V −1
∗|DLg

[
κf |D(·, x∗)

]2√
1 + L2

gκf |D

=
∣∣Corr

(
z∗, Lgf + b+ ε1 | x∗,D

)∣∣ , (15)

where ε1 ∼ N (0, 1) is independent noise.

With this variable, the relation in (12) becomes

(1 + L2
gκf |D∗) =

(
1− ρg(x∗)2

)
(1 + L2

gκf |D). (16)

For θ > 0.5, introduce another shorthand notation2

Rg =
Φ−1(Tg(D))

Φ−1(θ)
, (17)

which indicates how close the current state is to the reward;
we can rewrite (14) as

ug(x∗,D) = Φ

(
Φ−1(θ)

Rg −
√

1− ρg(x∗)2

ρg(x∗)

)
. (18)

At this step, it is possible to take partial derivatives to find
the maximizers for (18). However, the analysis can be made
easier if one realizes that, assuming Rg < 1, maximizing
(18) is equivalent to maximizing the slope of the line joining
the following two points Pg(x),Rg in R2:{

Pg(x) =
(
−ρg(x),

√
1− ρg(x)2

)
Rg =

(
0, Rg

)
,

(19)

among every available pair of (g, x).

In Figure 1(a), one can observe that the slope of the line can
always be made larger by either increasing ρg(x), which
results in moving the Pg(x) point to the left along the arc
of the unit circle, or by increasing Rg .

With the help of Figure 1, we can conclude for regions that
do not currently have a reward that

1. For any given region, ug(x,D) is maximized by choos-
ing the location that yields ρ∗g = maxx ρg(x).

2. Comparing different regions, if two regions can be
equally explored (i.e. they have the same ρ∗g value),
then the region with the larger marginal probability of
a matching outcome Rg will be selected. Figure 1(a)
illustrates the comparison.

2Our conclusions remain the same for any θ; for simplicity, we
consider only the common case θ > 0.5 here.
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(−ρ)

Rg

Rg

R′g
P∗g
′

(a) same exploration

(−ρ)

RgP∗g

R′gP∗g
′

(b) same mean

(−ρ)

Rg
R′gP∗g

′

RgP∗g

(c) general criterion

Figure 1: Illustration of selection criterion on independent
regions. The solid red line with prime labels is preferred in
each plot; it has a larger derivative.

3. If two regions have equal marginal probability of
matching the desired pattern Rg, then a region with a
larger ρ∗g will be selected. See Figure 1(b).

4. In general, APPS will simultaneously consider both
point 2 & 3 (i.e., exploitation and exploration), illus-
trated by Figure 1(c).

3.3 Connection to Active Area Search

We will call the above model with the scaled mean value
functional the mean threshold classifier (MTC). It is worth
pointing out that the MTC is a generalization of the classifier
used by Ma et al. [10] for active area search, where a hard
threshold was used to decide whether a region is matching.
Our sigmoid-based classifier can emulate the step function
by taking |c| → ∞ while scaling b appropriately. Closed-
form solutions can be found by removing the unit value in
the billinearly transformed variance in (10) and (14).

4 Empirical Evaluation

We now turn to an empirical evaluation of our framework,
in three different settings and with three different classifiers.
Code and data for these experiments is available online.3

Precision plots are available in the appendix for complete-
ness. Precision is determined primarily by the classifier and
θ, and thus does not vary much across methods.

4.1 Environmental Monitoring (Linear Classifier)

In order to analyze the performance of APPS with the MTC,
we ran it on a real environmental monitoring dataset and
compared to baseline algorithms. Valada et al. [19] used
small (60 cm) autonomous fan-powered boats to collect dis-
solved oxygen (DO) readings in a pond, with the goal of
finding regions that are low in dissolved oxygen, an indica-
tor of poor water quality. The data used in our experiment
comes from a pond approximately 150 meters wide and 50
meters long. The mobile robots have a cell-phone module

3
https://github.com/AutonlabCMU/ActivePatternSearch/

that records the time and location of every measurement.
Because of physical limitations, the measurement reading
does not stabilize for about one minute. Therefore, in data
collection, the boat was moved back and forth in a single lo-
cation, in the hope that the noise would cancel by averaging
these measurements.

In order to verify our methods, we borrowed data from [19],
comprising 16 960 location/DO value pairs, and fit a GP
model by maximizing the likelihood of the prior parameters
on 500 random samples seven times, taking the median
of the learned hyperparameter values. We used a squared-
exponential kernel with a learned length scale. We defined
regions by covering the map with many windows of size
comparable to the GP length scale, and used MTC parameters
b = −9, c = −100. Data points and classifier probability
outputs for the ground truth are shown in Figure 2(a), which
also shows the learned length scale (roughly 3 meters).

We then repeated the following experiment: we randomly
sampled 6 000 points at a time from data points not used for
GP parameter training, and randomly selected 10 of these
6 000 points to form an initial training set D. We then used
several competing methods to sequentially make further
queries until 300 total observations were obtained. The
considered algorithms were: APPS with analytical solutions,
APPS with one draw of z∗ at each candidate location, AAS
in Ma et al. [10] with analytical solutions, AAS with sam-
pling, the level set estimation (LSE) algorithm of Gotovos
et al. [7] with parameters βt = 6.25 and ε = 0.1, uncer-
tainty sampling (UNC), and random selection (RAND). Each
algorithm chose queries based on its own criterion; the qual-
ity of queried points was evaluated by the MTC classifier
with the above parameters and was then compared with true
region labels that were computed by MTC using all 6 000
data points. A 70% marginal probability was chosen to be
required for a region to be classified as matching (θ = 0.7).

Figure 3 reports the mean and standard error of the recall
of matching regions over 15 repetitions of this experiment.
APPS and AAS with both analytical solutions and sampling
performed equally well here. The similarity between APPS
and AAS is also expected because in linear problems, the
choice of c is a fine-tuning problem, which does not show
its impact on this real dataset. Notice that AAS is not able to
handle any other classifier-based setting; this is the core con-
tribution of APPS. To understand why analytical solutions
were similar to sampling, notice that the data collection lo-
cations have to be constrained to those actually recorded,
which makes it easier to obtain a near-optimal decision.

The second group in performance ranking is the LSE method.
We attempted to boost its performance by selecting its pa-
rameters to directly optimize the area under its recall curve,
which was, in a sense, cheating. On further analysis of its
query decisions, we saw LSE making, for the most part, qual-
itatively similar selection decisions to APPS. LSE will stop
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(a) data in one run and true matching regions (black) (b) APPS collected data and posterior region probability

Figure 2: Illustration of dataset and APPS selections for one run. A point marks the location of a measurement whose value
is also reflected in its color. Every grid box is a region whose possibility of matching is reflected on gray-scale.

Figure 3: Recall curves for pond monitoring experiment.
Color bands show standard errors after 15 runs.

collecting data in a region if there is enough confidence, but
does not specifically try to push regions over the threshold,
and so its performance on this objective is inferior.

Last in the comparison are RAND and UNC. It is interest-
ing to observe that RAND was initially better than, but later
crossed by UNC. In the beginning, since UNC is purely
explorative, its reward uniformly remained low across mul-
tiple runs, whereas in some runs RAND queries can be lucky
enough to concentrate around matching regions. At a later
phase, RAND faces the coupon collector’s problem and may
select redundant boring observations, when UNC keeps mak-
ing progress at a constant rate.

Figure 2(b) illustrates the selection locations for our APPS
method. This plot shows that our APPS method can obtain
reasonable data to both explore the available space and gain
enough information around the matching regions.

4.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official
who wishes to determine which races will be won, lost, or
might go either way. As surveying likely voters is relatively
expensive, we would like to do so with as few surveys as
possible.

In a simple model of this problem, the problem of finding
races which will be won is a natural fit to a classifier of the
form hg(f) = Φ

(
wTf(Ξg) + bg

)
. Our function f maps

from the voting precincts in the state to the vote share of a
given party in that district, with a covariance kernel defined
by demographic similarity and geographic proximity. To
account for multiple races taking place in each district (e.g.,
state and national legislators), we duplicate each precinct
with a flag for the type of election. If g is the set of all
precincts participating in a particular race and wg is some
constant c times the voting population of each precinct, then
wTf(Ξg) gives c times the total vote portion for the given
party in that election. In a simple model which ignores
turnout effects, the probability of winning a race is essen-
tially 1 if the underlying proportion is greater than 0.5 and
0 otherwise; this can be accomplished by setting c to some
fairly large constant, say 100, and b = − 1

2c. (An equally
simple model that nonetheless more thoroughly accounts
for unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsyl-
vania election returns [1]. For each voting precinct in the
dataset, we used the 2010 Decennial Census [18] to obtain
a total population count and percentages of the population
for gender, race, age, and housing type categories; we also
added an (x, y) location based on a Lambert conformal
conic projection of point in the precinct, and used these
features in a squared-exponential kernel. The data for each
precinct was then replicated three times and associated with
Democratic vote shares for its U.S. House of Representa-
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tives, Pennsylvania House of Representatives, and Penn-
sylvania State Senate races; the demographic/geographic
kernel was multiplied by a positive-definite covariance ma-
trix amongst the races. We learned the hyperparameters for
this kernel by maximizing the likelihood of the model on
full 2008 election data.

Given the kernel, we set up experiments to predict 2010
races based on surveying an individual voting precinct at a
time. For simplicity, we assume that a given voting precinct
can be thoroughly surveyed (and ignore turnout effects,
voters changing their minds over time, and so on); thus ob-
servations were made with the true vote share. We seeded
the experiment with a random 10 (out of 16 226) districts
observed; APPS selected from a random subset of 100 pro-
posals at each step. We again used θ = 0.7.

Figure 4: Recalls for election prediction. Color bands show
standard errors after 15 runs.

Figure 4 shows the mean and standard errors of 15 runs.
APPS outperforms both random and uncertainty sampling
here, though in this case the margin over random sampling
is much narrower. This is probably because the portion of
regions which are positive in this problem is much higher,
so more points are informative.

Uncertainty sampling is in fact worse than random here,
which is not too surprising because the purely explorative
nature of UNC is even worse on the high dimensional input
space of this problem.

LSE and AAS are not applicable to this problem, as they
have no notion of weighting points (by population).

4.3 Finding Vortices (Black-Box Classifier)

We now turn to more complex pattern classifiers by studying
the task of identifying vortices in a vector field based on
limited observations of flow vectors. Linear classifiers are
insufficient for this problem,4 so we will demonstrate the

4The set of vortices is not convex: consider the midpoint be-
tween a clockwise vortex and its identical counter-clockwise case.

flexibility of our approach with a black-box classifier.

To illustrate this setting, we consider the results of a large-
scale simulation of a turbulent fluid in three dimensions over
time in the Johns Hopkins Turbulence Databases5 [13]. Fol-
lowing Sutherland et al. [16], we aim to recognize vortices
in two-dimensional slices of the data at a single timestep,
based on the same small training set of 11 vortices and 20
non-vortices, partially shown in Figure 5(a).

Recall that hg assigns probability estimates to the entire
function class F confined to region g. Unlike the previous
examples, it is insufficient to consider only a weighted in-
tegral of f . Instead, though, we can consider the average
flow across sectors (angular slices from the center) of our
region as building blocks in detecting vortices. We count
how many sectors have clockwise/counter-clockwise flows
to give a classification result, in three steps:

1. First, we divide a region into K sectors. In each sector,
we take the integral of the inner product between the
actual flow vectors and a template. The template is
an “ideal” vortex, but with larger weights in the center
than the periphery. This produces a K-dimensional
summary statistic Lg(f) for each region.

2. Next, we improve robustness against different flow
speeds in the data by scaling Lg(f) to have maximum
entry 1, and flip its sign if its mean is negative. Call
the result L̃g(f).

3. Finally, we feed the normalized L̃g(f) vector through
a 2-layer neural network of the form

hg(f) = σ

(
wout

K∑
i=1

σ
(
winL̃g(f)i + bin

)
+ bout

)
,

where σ is the logistic sigmoid function.

Lg(f) | D obeys a K-dimensional multivariate normal dis-
tribution, from which we can sample many possible Lg(f),
which we then normalize and pass through the neural net-
work as described above. This gives samples of probabilities
hg , whose mean is a Monte Carlo estimate of (2).

We used K = 4 sectors, and the weights in the template
were fixed such that the length scale matches the distance
from the center to an edge. The network was optimized for
classification accuracy on the training set. We then identified
a 50× 50-pixel slice of the data that contains two vortices,
some other “interesting” regions, and some “boring” regions,
mostly overlapping with Figure 11 of Sutherland et al. [16];
the region, along with the output of the classifier when given
all of the input points, is shown in Figure 5(b). We then ran
APPS, initialized with 10 uniformly random points, for 200
steps. We defined the regions to be squares of size 11× 11
and spaced them every 2 points along the grid, for 400 total

5
http://turbulence.pha.jhu.edu
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Figure 5: (a): Positive (top) and negative (bottom) training examples for the vortex classifier. (b): The velocity field used;
each arrow is the average of a 2× 2 square of actual data points. Background color shows the probability obtained by each
region classifier on the 200 circled points; red circles mark points selected by one run of APPS initialized at the green circles.

regions. We again thresholded at θ = 0.7. We evaluate (2)
via a Monte Carlo approximation: first we took 4 samples
of z∗, and then 15 samples from the posterior of f over the
window for each z∗. Furthermore, at each step we evaluate
a random subset of 80 possible candidates x∗.

Figure 6: Mean recalls over the search process on the vortex
experiment. Color bands show standard errors after 15 runs.

Figure 6 shows recall curves of active pattern search, un-
certainty sampling, and random selection, where for the
purpose of these curves we call the true label the output of
the classifier when all data is known, and the proposed label
is true if Tg > θ at that point of the search (evaluated using
more Monte Carlo samples than in the search process, to
gain assurance in our evaluation but without increasing the
time required for the search). We can see that active pattern
search substantially outperforms uncertainty sampling and

random selection. As in Section 4.1, uncertainty sampling
was initially bad but later surpassed random selection, for
the same reason.

5 Conclusions

We have introduced the general active pointillistic pattern
search problem, where we seek to discover specific local
patterns exhibited by an underlying smooth function with a
limited observation budget. We proposed a framework built
on Bayesian decision theory for the sequential active selec-
tion of observations so as to maximize the expected number
of matching locations discovered at termination. We derived
analytical forms for the required quantities for a broad class
of models, and demonstrated the method’s efficacy across
three very different settings, using two different analytical
classifier forms and one based on sampling.
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