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Abstract
Many interesting machine learning problems are best posed by considering instances that are distri-
butions, or sample sets drawn from distributions. Previous work devoted to machine learning tasks
with distributional inputs has done so through pairwise kernel evaluations between pdfs (or sample
sets). While such an approach is fine for smaller datasets, the computation of an N × N Gram
matrix is prohibitive in large datasets. Recent scalable estimators that work over pdfs have done so
only with kernels that use Euclidean metrics, like the L2 distance. However, there are a myriad of
other useful metrics available, such as total variation, Hellinger distance, and the Jensen-Shannon
divergence. This work develops the first random features for pdfs whose dot product approximates
kernels using these non-Euclidean metrics, allowing estimators using such kernels to scale to large
datasets by working in a primal space, without computing large Gram matrices. We provide an
analysis of the approximation error in using our proposed random features and show empirically
the quality of our approximation both in estimating a Gram matrix and in solving learning tasks in
real-world and synthetic data.
Keywords: Learning on Distributions, Approximate Kernel Embeddings, Nonparametric Statis-
tics

1. Introduction

As machine learning matures, focus has shifted towards datasets with richer, more complex in-
stances. For example, a great deal of effort has been devoted to learning functions on vectors of
a large fixed dimension. While complex static vector instances are useful in a myriad of applica-
tions, many machine learning problems are more naturally posed by considering instances that are
distributions, or sets drawn from distributions. Political scientists can learn a function from com-
munity demographics to vote percentages to understand who supports a candidate (Flaxman et al.,
2015). The mass of dark matter halos can be inferred from the velocity of galaxies in a cluster
(Ntampaka et al., 2015). Expensive expectation propagation messages can be sped up by learning
a “just-in-time” regression model (Jitkrittum et al., 2015). All of these applications are aided by
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working directly over sets drawn from the distribution of interest, rather than having to develop a
per-problem ad-hoc set of summary statistics.

Distributions are inherently infinite-dimensional objects, since in general they require an infinite
number of parameters for their exact representation. Hence, it is not immediate how to extend
traditional finite vector technique machine learning techniques to distributional instances. However,
recent work has provided various approaches for dealing with distributional data in a nonparametric
fashion. For example, regression from distributional covariates to real or distributional responses is
possible via kernel smoothing (Póczos et al., 2012a; Oliva et al., 2013), and many learning tasks can
be solved with RKHS approaches (Muandet et al., 2012; Póczos et al., 2012b). A major shortcoming
of both approaches is that they require computing N kernel evaluations per prediction, where N is
the number of training instances in a dataset. Often, this implies that one must compute a N × N
Gram matrix of pairwise kernel evaluations. Such approaches fail to scale to datasets where the
number of instancesN is very large. Another shortcoming of these approaches is that they are often
based on Euclidean metrics, either working over a linear kernel, or one based on the L2 distance
over distributions. While such kernels are useful in certain applications, better performance can
sometimes be obtained by considering non-Euclidean based kernels. To this end, Póczos et al.
(2012b) use a kernel based on Rényi divergences; however, this kernel is not positive semi-definite
(PSD), leading to even higher computational cost and other practical issues.

This work addresses these major shortcomings by developing an embedding of random features
for distributions. The dot product of the random features for two distributions will approximate
kernels based on various distances between densities (see Figure 1). With this technique, we can
approximate kernels based on total variation, Hellinger, and Jensen-Shannon divergences, among
others. Since there is then no need to compute a Gram matrix, one will be able to use these kernels
while still scaling to datasets with a large number of instances using primal-space techniques. We
provide an approximation bound for the embeddings, and demonstrate the efficacy of the embed-
dings on both real-world and synthetic data. To the best of our knowledge, this work provides the
first non-discretized embedding for non-L2 kernels for probability density functions.

2. Related Work

The two main lines of relevant research are the development of kernels on probability distributions
and explicit approximate embeddings for scalable kernel learning.

Learning on distributions In computer vision, the popular “bag of words” model (Leung and
Malik, 2001) represents a distribution by quantizing it onto codewords (usually by running k-means
on all, or many, of the input points from all sets), then compares those histograms with some kernel
(often exponentiated χ2).

Another approach estimates a distance between distributions, often the L2 distance or Kullback-
Leibler (KL) divergence, parametrically (Jaakkola and Haussler, 1998; Moreno et al., 2003; Jebara
et al., 2004) or nonparametrically (Sricharan et al., 2013; Krishnamurthy et al., 2014). The distance

K(    ,    ) ≈ z(    )Tz(    )
Figure 1: We approximate kernels of densities pi, pj with features of samples χi

iid∼ pi, χj
iid∼ pj .
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can then be used in kernel smoothing Póczos et al. (2012a); Oliva et al. (2013) or Mercer kernels
Moreno et al. (2003); Kondor and Jebara (2003); Jebara et al. (2004); Póczos et al. (2012b).

These approaches can be powerful, but usually require computing an N × N matrix of kernel
evaluations, which can be infeasible for large datasets. Using these distances in Mercer kernels faces
an additional challenge, which is that the estimated Gram matrix may not be PSD, due to estimation
error or because some divergences do not induce a PSD kernel. In general this is remedied by replac-
ing the Gram matrix with a “nearby” PSD one. Typical approaches involve eigendecomposing the
Gram matrix, which costsO(N3) computation and also presents challenges for traditional inductive
learning, where the test points are not known at training time (Chen et al., 2009).

One way to alleviate the scaling problem is the Nyström extension (Williams and Seeger, 2001),
in which some columns of the Gram matrix are used to estimate the remainder. In practice, one
frequently must compute many columns, and methods to make the result PSD are known only for
mildly-indefinite kernels (Belongie et al., 2002).

Another approach is to represent a distribution by its mean RKHS embedding under some kernel
k. The RKHS inner product is known as the mean map kernel (MMK), and the distance the maximum
mean discrepancy (MMD) (Gretton et al., 2009; Muandet et al., 2012; Szabó et al., 2015). When k is
the common RBF kernel, the MMK estimate is proportional to an L2 inner product between Gaussian
kernel density estimates.

Approximate embeddings Recent interest in approximate kernel embeddings was spurred by
the “random kitchen sink” (RKS) embedding (Rahimi and Recht, 2007), which approximates shift-
invariant kernels K on R` by sampling their Fourier transform. Le et al. (2013) gave an approxi-
mation which is faster for large `, which Yang et al. (2014) use for kernel learning; Yu et al. (2015)
also consider kernel learning based on embeddings. Storcheus et al. (2015) give learning theory for
this setting.

A related line of work considers additive kernels, of the form K(x, y) =
∑`

j=1 κ(xj , yj), usu-
ally defined on R`≥0 (e.g. histograms). Maji and Berg (2009) construct an embedding for the in-
tersection kernel

∑`
j=1 min(xj , yj) via step functions. Vedaldi and Zisserman (2010) consider any

homogeneous κ, so that κ(tx, ty) = t κ(x, y), which also allows them to embed histogram kernels
such as the additive χ2 kernel and Jensen-Shannon divergence. Their embedding uses the same
fundamental result of Fuglede (2005) as ours; we expand to the continuous rather than the discrete
case. Vempati et al. (2010) later apply RKS embeddings to obtain generalized RBF kernels (1).

For embeddings of kernels on input spaces other than R`, the RKS embedding extends naturally
to locally compact abelian groups (Li et al., 2010). Oliva et al. (2014) embedded an estimate of
the L2 distance between continuous densities via orthonormal basis functions. An embedding for
the base kernel k also gives a simple embedding for the mean map kernel (Flaxman et al., 2015;
Jitkrittum et al., 2015; Lopez-Paz et al., 2015; Sutherland and Schneider, 2015).

3. Embedding Information Theoretic Kernels

For a broad class of distributional distances d, including many common and useful information
theoretic divergences, we consider generalized RBF kernels of the form

K(p, q) = exp

(
− 1

2σ2
d2(p, q)

)
. (1)
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We will construct features z(A(·)) such that K(p, q) ≈ z(A(p))Tz(A(q)) as follows:

1. We define a random function ψ such that d(p, q) ≈ ‖ψ(p)− ψ(q)‖, where ψ(p) is a function
from [0, 1]` to R2M . Thus the metric space of densities with distance d is approximately
embedded into the metric space of 2M -dimensional L2 functions.

2. We use orthonormal basis functions to approximately embed smooth L2 functions into finite
vectors in R|V |. Combined with the previous step, we obtain features A(p) ∈ R2M |V | such
that d is approximated by Euclidean distances between the A features.

3. We use the RKS embedding z(·) so that inner products between z(A(·)) features, in RD,
approximate K(p, q).

We can thus approximate the powerful kernel K without computing an expensive Gram matrix.

3.1 Homogeneous Density Distances (HDDs)

We consider kernels based on metrics which we term homogeneous density distances (HDDs):

d2(p, q) =

∫
[0,1]`

κ(p(x), q(x)) dx, (2)

where κ(x, y) : R+ × R+ → R+ is a negative-type kernel, i.e. a squared Hilbertian metric, and
κ(tx, ty) = tκ(x, y) for all t > 0. Table 1 shows a few important instances. Note that we assume
the support of the distributions is contained within [0, 1]`.

Name κ(p(x), q(x)) dµ(λ)

Jensen-Shannon (JS) p(x)
2 log

(
2p(x)

p(x)+q(x)

)
+ q(x)

2 log
(

2q(x)
p(x)+q(x)

)
dλ

cosh(πλ)(1+λ2)

Squared Hellinger (H2) 1
2

(√
p(x)−

√
q(x)

)2
1
2 δ(λ = 0) dλ

Total Variation (TV) |p(x)− q(x)| 2
π

1
1+4λ2

dλ

Table 1: Squared HDDs.

We then use these distances in a generalized RBF kernel (1). d is a Hilbertian metric (Fuglede,
2005), soK is positive definite (Haasdonk and Bahlmann, 2004). Note that we use the

√
TV metric,

even though TV is itself a metric.

We can approximate the expectation with an empirical mean. Letting λj
iid∼ µ

Z for j ∈ {1, . . . ,M},

κ(x, y) ≈ 1

M

M∑
j=1

|gλj (x)− gλj (y)|2.
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Hence, using R, I to denote the real and imaginary parts:

d2(p, q) =

∫
[0,1]`

κ(p(x), q(x)) dx

=

∫
[0,1]`

Eλ∼ µ
Z
|gλ(p(x))− gλ(q(x))|2 dx

≈ 1

M

M∑
j=1

∫
[0,1]`

( (
R(gλj (p(x)))−R(gλj (q(x)))

)2
+
(
I(gλj (p(x)))− I(gλj (q(x)))

)2 )
dx

= ‖ψ(p)− ψ(q)‖2, (3)

where we have defined pRλj (x) = R(gλj (p(x))), pIλj (x) = I(gλj (p(x))) and

[ψ(p)](x) =
1√
M

(
pRλ1(x), . . . , pRλM (x), pIλ1(x), . . . , pIλM (x)

)
.

Hence, the HDD between densities p and q is approximately the L2 distance from ψ(p) to ψ(q),
where ψ maps a function f : [0, 1]` 7→ R to a vector-valued function ψ(f) : [0, 1]` 7→ R2M of λ
functions. M can typically be quite small, since the kernel it approximates is one-dimensional.

3.2 Finite Embeddings of L2

If densities p and q are smooth, then the L2 metric between the pλ and qλ functions may be well
approximated using projections to basis functions. Suppose that {ϕi}i∈Z is an orthonormal basis
for L2([0, 1]); then we can construct an orthonormal basis for L2([0, 1]`) by the tensor product:

{ϕα}α∈Z` where ϕα(x) =
∏̀
i=1

ϕαi(xi), x ∈ [0, 1]`,

∀f ∈ L2([0, 1]`), f(x) =
∑
α∈Z`

aα(f)ϕα(x)

and aα(f) = 〈ϕα, f〉 =
∫
[0,1]` ϕα(t) f(t) dt ∈ R. Let V ⊂ Z` be an appropriately chosen finite set

of indices. If f, f ′ ∈ L2([0, 1]`) are smooth and ~a(f) = (aα1(f), . . . , aα|V |(f)), then ‖f − f ′‖2 ≈
‖~a(f)− ~a(f ′)‖2. Thus we can approximate d2 as the squared distance between finite vectors:

d2(p, q) ≈ ‖ψ(p)− ψ(q)‖2 ≈ ‖A(p)−A(q)‖2 (4)

where A : L2([0, 1]`)→ R2M |V | concatenates the ~a features for each λ function:

A(p) =
1√
M

(
~a(pRλ1), . . . ,~a(pRλM ),~a(pIλ1), . . . ,~a(pIλM )

)
. (5)

We will discuss how to estimate ~a(pRλ ), ~a(pIλ) shortly.
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SUTHERLAND, OLIVA, PÓCZOS, AND SCHNEIDER

3.3 Embedding RBF Kernels into RD

The A features approximate the HDD (2) in R2M |V |; thus applying the RKS embedding (Rahimi
and Recht, 2007) to the A features will approximate our generalized RBF kernel (1). The RKS

embedding is1 z : Rm → RD such that for fixed {ωi}D/2i=1
iid∼ N (0, σ−2Im) and for each x, y ∈ Rm:

z(x)Tz(y) ≈ exp
(
− 1

2σ2 ‖x− y‖2
)
, where z(x) =

√
2
D

(
sin(ωT

1 x), cos(ωT
1 x), . . .

)
. (6)

Thus we can approximate the HDD kernel (1) as:

K(p, q) = exp

(
− 1

2σ2
d2(p, q)

)
≈ exp

(
− 1

2σ2
‖A(p)−A(q)‖2

)
≈ z(A(p))Tz(A(q)). (7)

3.4 Finite Sample Estimates

Our final approximation for HDD kernels (7) depends on integrals of densities p and q. In practice,
we are unlikely to directly observe an input density, but even given a pdf p, the integrals that make
up A(p) are not readily computable. We thus first estimate the density as p̂, e.g. with kernel density
estimation (KDE), and estimate A(p) as A(p̂). Recall that the elements of A(p̂) are:

aα(p̂Sλj ) =

∫
[0,1]`

ϕα(t) p̂Sλj (t) dt (8)

where j ∈ {1, . . . ,M}, S ∈ {R, I}, α ∈ V . In lower dimensions, we can approximate (8) with

simple Monte Carlo numerical integration. Choosing {ui}nei=1
iid∼ Unif([0, 1]`), we can get Â(p̂) by

âα(p̂Sλj ) =
1

ne

ne∑
i=1

ϕα(ui) p̂
S
λj

(ui). (9)

We note that in high dimensions, one may use any high-dimensional density estimation scheme (e.g.
Lafferty et al. 2012) and estimate (8) with MCMC techniques (e.g. Hoffman and Gelman 2014).

3.5 Summary and Complexity

The algorithm for computing features {z(A(pi))}Ni=1 for a set of distributions {pi}Ni=1, given sample

sets {χi}Ni=1 where χi = {X(i)
j ∈ [0, 1]`}nij=1

iid∼ pi, is thus:

1. Draw M scalars λj
iid∼ µ

Z and D/2 vectors ωr
iid∼ N (0, σ−2I2M |V |), in O(M |V |D) time.

2. For each of the N input distributions i:

(a) Compute a kernel density estimate from χi, p̂i(uj) for each uj in (9), in O(nine) time.

(b) Compute Â(p̂i) using a numerical integration estimate as in (9), in O(M |V |ne) time.

(c) Get the RKS features, z(Â(p̂i)), in O(M |V |D) time.

Supposing each ni � n, this process takes a total of O (Nnne +NM |V |ne +NM |V |D) time.
Taking |V | to be asymptotically O(n), ne = O(D), and M = O(1), this is O(NnD) time, com-
pared to O(N2n log n+N3) for Póczos et al. (2012b) and O(N2n2) for Muandet et al. (2012).

1. There are two versions of the embedding in common use, but this one is preferred (Sutherland and Schneider, 2015).
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4. Theory

We bound Pr
(∣∣∣K(p, q)− z(Â(p̂))Tz(Â(q̂))

∣∣∣ ≥ ε) for two fixed densities p and q in each source
of error: kernel density estimation (εKDE); approximating µ(λ) withM samples (ελ); truncating the
projection coefficient series (εtail); Monte Carlo integration (εint); and the RKS embedding (εRKS).

We need some smoothness assumptions on p and q: that they are members of a periodic Hölder
class Σper(β, Lβ), that they are bounded below by ρ∗ and above by ρ∗, and that their kernel density
estimates are in Σper(γ̂, L̂) with probability at least 1− δ. We use a suitable form of kernel density
estimation, to obtain a uniform error bound with a rate based on the functionC−1 (Giné and Guillou,
2002). We use the Fourier basis and choose V = {α ∈ Z` |

∑`
j=1|αj |2s ≤ t} for parameters

0 < s < γ̂, t > 0.
Then, for any εRKS + 1

σk
√
e

(εKDE + ελ + εtail + εint) ≤ ε,

Pr
(∣∣∣K(p, q)− z(Â(p̂)Tz(Â(q̂))

∣∣∣ ≥ ε) ≤
2 exp

(
−Dε2RKS

)
+ 2 exp

(
−Mε4λ/(8Z

2)
)

+ δ + 2M
(
1− µ

(
[0, utail)

))
+ 2C−1

(
ε4KDEn

2β/(2β+`)

4 log n

)
+ 8M |V | exp

−1
2ne


√

1 + ε2int/(8 |V |Z)− 1
√
ρ∗ + 1

2


where utail =

√
max

(
0, ρ∗t

8M`L̂2

4γ̂−4s
4γ̂

ε2tail −
1
4

)
.

The bound decreases when the function is smoother (larger β, γ̂; smaller L̂) or lower-dimensional
(`), or when we observe more samples (n). Using more projection coefficients (higher t or smaller
s, giving higher |V |) improves the approximation but makes numerical integration more difficult.
Likewise, taking more samples from µ (higher M ) improves that approximation, but increases the
number of functions to be approximated and numerically integrated.

For the proof and further details, see the appendix.

5. Numerical Experiments

We evaluate RBF kernels based on various distances. First, we try our JS, Hellinger, and TV embed-
dings. We compare to L2 kernels as in Oliva et al. (2014): exp

(
− 1

2σ2 ‖p− q‖22
)
≈ z(~a(p̂))Tz(~a(q̂))

(L2). We also try the MMD distance (Muandet et al., 2012) with approximate kernel embed-
dings: exp

(
− 1

2σ2 M̂MD(p, q)
)
≈ z (z̄(p̂))T z (z̄(q̂)), where z̄ is the mean embedding z̄(p̂) =

1
n

∑n
i=1 z(Xi) (MMD). We further compare to RKS with histogram JS embeddings (Vempati et al.,

2010) (Hist JS); we also tried χ2 embeddings, but their performance was quite similar. We finally
try the full Gram matrix approach of Póczos et al. (2012b) with the KL estimator of Wang et al.
(2009) in an RBF kernel (KL), as did Ntampaka et al. (2015).

Throughout these experiments we use M = 5, |V | = 10` (selected as rules of thumb; larger
values did not improve performance), and use a validation set (10% of the training set) to choose
bandwidths for KDE and the RBF kernel as well as model regularization parameters. Except in the
scene classification experiments, the histogram methods used 10 bins per dimension; performance
with other values was not better. The KL estimator used the fourth nearest neighbor.

7



SUTHERLAND, OLIVA, PÓCZOS, AND SCHNEIDER

5.1 Gram Matrix Estimation

We first illustrate that our embedding, using the parameter selections as above, can approximate
the Jensen-Shanon kernel well. We compare three different approaches to estimating K(pi, pj) =
exp(− 1

2σ2 JS(pi, pj)). Each approach uses kernel density estimates p̂i. The estimates are compared
on a dataset of N = 50 random GMM distributions {pi}Ni=1 and samples of size n = 2 500: χi =

{X(i)
j ∈ [0, 1]2}nj=1

iid∼ pi. See the appendix for more details.
The first approach approximates JS based on empirical estimates of entropies E log p̂i. The

second approach estimates JS as the Euclidean distance of vectors of projection coefficients (4):
JSpc(pi, pj) = ‖Â(p̂i) − Â(p̂j)‖2. For these first two approaches we compute the Gram matrix
entries as Gent

ij = exp(− 1
2σ2 JSent(pi, pj)), and Gpc

ij = exp(− 1
2σ2 JSpc(pi, pj)). Lastly, we directly

estimate the JS kernel with our random features (7): Grks
ij = z(Â(p̂i))

Tz(Â(p̂j)), with D = 7 000.
The appendix plots the true pairwise kernel values versus the aforementioned estimates. Quanti-

tatively, the entropy method obtained a squared correlation to the true kernel value ofR2
ent = 0.981;

using the A features with an exact kernel yielded R2
pc = 0.974; adding RKS embeddings gave

R2
rks = 0.966. Thus our method’s estimates are nearly as good as direct estimation via entropies.

5.2 Estimating the Number of Mixture Components

We will now illustrate the efficacy of HDD random features in a regression task, following Oliva
et al. (2014): estimate the number of components from a mixture of truncated Gaussians. We
generate the distributions as follows: Draw the number of components Yi for the ith distribution
as Yi ∼ Unif{1, . . . , 10}. For each component select a mean µ(i)k ∼ Unif[−5, 5]2 and covariance
Σ
(i)
k = a

(i)
k A

(i)
k A

(i)T
k +B

(i)
k , where a ∼ Unif[1, 4], A(i)

k (u, v) ∼ Unif[−1, 1], andB(i)
k is a diagonal

2 × 2 matrix with B(i)
k (u, u) ∼ Unif[0, 1]. Then weight each component equally in the mixture.

Given a sample χi, we predict the number of components Yi. An example distribution and sample
are shown in Figure 2; predicting the number of components is difficult even for humans.

Density with 9 Components

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Sample with 9 Components

Figure 2: A GMM and 200 points drawn from it.

Figure 3 presents results for predicting with ridge regression the number of mixture components
Yi, given a varying number of sample sets χi, with |χi| ∈ {200, 800}; we useD = 5 000. The HDD-
based kernels achieve substantially lower error than the L2 and MMD kernels. They also outperform
the histogram kernel, especially with |χi| = 200, and the KL kernel. Note that fitting mixtures
with EM and selecting a number of components using AIC (Akiake, 1973) or BIC (Schwarz, 1978)
performed much worse than regression; only AIC with |χi| = 800 outperformed a constant predictor
of 5.5. Linear versions of the L2 and MMD kernels were also no better than the constant predictor.
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RMSE
1.35 1.4 1.45 1.5 1.55

T
im

e
 (

c
p

u
-h

o
u

rs
)

10
0

10
1

10
2

10
3

HellingerJS

TV

L2
MMD

KL with kNN

Hist JS

(a) Samples of size 200.
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Figure 3: Error and computation time for estimating mixture components. The points on each line
show training set sizes 4K, 8K, and 16K; the test set is of size 2K. Note the logarithmic time scale.
The KL kernel for |χi| = 800 with 16K training sets was too slow to run. AIC-based predictions
achieved RMSEs of 2.7 and 2.3; BIC errors were 3.8 and 2.7; constant predictor RMSE was 2.8.
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Figure 4: Error rate and computation time for
classifying CIFAR-10 cats versus dogs. The three
points on each line show training set sizes 2.5K,
5K, and 10K; the test set is fixed of size 2K. Note
the linear time scale. The KL kernel was too slow
to run for 5K or 10K training points.
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Figure 5: Mean and standard deviation of ac-
curacies on the Scene-15 dataset in 10 random
splits. Left, black lines use Â(·) features; right,
blue lines, z(Â(·)) features. MMD methods vary
bandwidth relative to the median pairwise dis-
tance; histogram methods vary number of bins.

The HDD embeddings were more computationally expensive than the other embeddings, but
much less expensive than the KL kernel, which grows at least quadratically in N . Note that the
histogram embeddings used an optimized C implementation (Vedaldi and Fulkerson, 2008), as did
the KL kernel2, while the HDD embeddings used a simple Matlab implementation.

5.3 Image Classification

As another example of the performance of our embeddings, we now attempt to classify images
based on their distributions of pixel values. We took the “cat” and “dog” classes from the CIFAR-
10 dataset (Krizhevsky and Hinton, 2009), and represented each 32 × 32 image by a set of triples
(x, y, v), where x and y are the position of each pixel in the image and v the pixel value after
converting to grayscale. The horizontal reflection of the image was also included, so each sample
set χi ⊂ R3 had |χi| = 2 048. This is not the best representation for these images; rather, we show
that given this simple representation, our HDD kernels perform well relative to the other options.

2. https://github.com/dougalsutherland/skl-groups/
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SUTHERLAND, OLIVA, PÓCZOS, AND SCHNEIDER

We used the kernel estimates in an SVM classifier from LIBLINEAR (Fan et al. 2008, for the
embeddings) or LIBSVM (Chang and Lin 2011, for the KL kernel), with D = 7 000. Figure 4 shows
results on the standard test set (of size 2K) with 2.5K, 5K, and 10K training images. Our JS and
Hellinger embedding match the histogram JS embedding in accuracy, while our TV embedding beats
histogram JS; all outperform L2 and MMD. We could only run the KL kernel for the smallest size; its
accuracy was comparable to the HDD and histogram embeddings, at far higher computational cost.

5.4 Scene Classification

Modern computer vision classification systems typically consist of a deep network with several
convolutional and pooling layers to extract complex features of input images, followed by one or two
fully-connected classification layers. The activations are of shape n×h×w, where n is the number
of filters; each unit corresponds to an overlapping patch of the original image. We can thus treat the
final pooled activations as a sample of size hw from an n-dimensional distribution, similarly to how
Póczos et al. (2012b) and Muandet et al. (2012) used SIFT features from image patches. Wu et al.
(2015) set accuracy records on several scene classification datasets with a particular ad-hoc method
of extracting features from distributions (D3); we compare to our more principled alternatives.

We consider the Scene-15 dataset (Lazebnik et al., 2006), which contains 4 485 natural images
in 15 location categories, and follow Wu et al. in extracting features from the last convolutional layer
of the imagenet-vgg-verydeep-16model (Simonyan and Zisserman, 2015). We replace that
layer’s rectified linear activations with sigmoid squashing to [0, 1].3 hw ranges from 400 to 1 000.
There are 512 filter dimensions; we concatenate features Â(p̂i) extracted from each independently.

We train on the standard for this dataset of 100 images from each class (1500 total) and test on
the remainder; Figure 5 shows results. We do not add any spatial information to the model; still,
we match the best prior published performance of 91.59 ± 0.48, which trained on over 2 million
external images (Zhou et al., 2014). Adding spatial information brought the D3 method slightly
above 92% accuracy; their best hybrid method obtained 92.9%. Using these features, however, our
methods match or beat MMD and substantially outperform D3, L2, and the histogram embeddings.

6. Discussion

This work presents the first nonlinear embedding of density functions for quickly computing HDD-
based kernels, including kernels based on the popular total variation, Hellinger and Jensen-Shanon
divergences. While such divergences have shown good empirical results in the comparison of densi-
ties, nonparametric uses of kernels with these divergences previously necessitated the computation
of a large N × N Gram matrix, prohibiting their use in large datasets. Our embeddings allow one
to work in a primal space while using information theoretic kernels. We analyze the approximation
error of our embeddings, and illustrate their quality on several synthetic and real-world datasets.
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A Gretton, K Fukumizu, Z Harchaoui, and B K Sriperumbudur. A fast, consistent kernel two-sample
test. In NIPS, 2009.

Bernard Haasdonk and Claus Bahlmann. Learning with distance substitution kernels. In Pattern
Recognition: 26th DAGM Symposium, pages 220–227, 2004.

Matthew D Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. JMLR, 15(1):1593–1623, 2014. URL http://arxiv.
org/abs/1111.4246.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In NIPS,
1998.

Tony Jebara, Risi Kondor, and Andrew Howard. Probability product kernels. JMLR, 5:819–844,
2004.

Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess, SM Eslami, Balaji Lakshminarayanan, Dino
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Appendix A. Gram Matrix Estimation

We illustrate our embedding’s ability to approximate the Jensen-Shanon divergence. In the examples
below the densities considered are mixtures of five equally weighted truncated spherical Gaussians
on [0, 1]2. That is,

pi(x) =
1

5

5∑
j=1

Nt(mij ,diag(s2ij))

where mij
iid∼ Unif([0, 1]2), sij

iid∼ Unif([0.05, 0.15]2) and Nt(m, s) is the distribution of a Gaus-
sian truncated on [0, 1]2 with mean parameter m and covariance matrix parameter s. We work over

the sample set {χi}Ni=1, where χi = {X(i)
j ∈ [0, 1]2}nj=1

iid∼ pi, n = 2500, N = 50.
We compare three different approaches to estimating K(pi, pj) = exp(− 1

2σ2 JS(pi, pj)). Each
approach uses density estimates p̂i, which are computed using kernel density estimation. The first
approach is based on estimating JS using empirical estimates of entropies:

JS(pi, pj) = −1
2Epi

[
log

(
1

pi(x)

)]
− 1

2Epj
[
log

(
1

pj(x)

)]
+ E 1

2
pi+

1
2
pj

[
log

(
2

pi(x) + pj(x)

)]

≈ −1
2

dn/2e∑
m=1

log

(
1

p̂i(X
(i)
m )

)
− 1

2

dn/2e∑
m=1

log

(
1

p̂j(X
(j)
m )

)

+ 1
2

dn/2e∑
m=1

log

(
2

p̂i(X
(i)
m ) + p̂j(X

(i)
m )

)
+ 1

2

dn/2e∑
m=1

log

(
2

p̂i(X
(j)
m ) + p̂j(X

(k)
m )

)
= JSent(pi, pj),

where density estimates p̂i above are based on points {X(i)
m }nm=dn/2e+1 to avoid biasing the empir-

ical means. The second approach estimates JS as the Euclidean distance of vectors of projection
coefficients:

JS(pi, pj) ≈ ‖Â(p̂i)− Â(p̂j)‖2 = JSpc(pi, pj),

where here the density estimates p̂i are based on the entire set of points χi. We build Gram matrices
for each approach by setting Gent

ij = exp(− 1
2σ2 JSent(pi, pj)) and Gpc

ij = exp(− 1
2σ2 JSpc(pi, pj)).

Lastly, we directly estimate the JS kernel with random features:

Grks
ij = z(Â(p̂i))

Tz(Â(p̂j)).

We compare the effectiveness of each approach by computing the R2 score of the estimates
produced versus a true JS kernel value computed through numerically integrating the true densities
(see Figure 6 and Table 2). The RBF values estimated with our random features produce estimates
that are nearly as good as directly estimating JS divergences through entropies, whilst allowing us
to work over a primal space and thus avoid computing a N ×N Gram matrix for learning tasks.

Appendix B. Proofs

We will now prove the bound on Pr
(∣∣∣K(p, q)− z(Â(p̂))Tz(Â(q̂))

∣∣∣ ≥ ε) for fixed densities p, q.
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Figure 6: Estimating RBF values using the JS diveregence.

Table 2: R2 values of estimates of JS Gram elements.

Method R2

Entropies 0.9812
PCs 0.9735
RKS 0.9662

Setup We will need a few assumptions on the densities:

1. p and q are bounded above and below: for x ∈ [0, 1]`, 0 < ρ∗ ≤ p(x), q(x) ≤ ρ∗ <∞.

2. p, q ∈ Σ(β, Lβ) for some β, Lβ > 0. Σ(β, L) refers to the Hölder class of functions f whose
partial derivatives up to order bβc are continuous and whose rth partial derivatives, where r
is a multi-index of order bβc, satisfy |Drf(x)−Drf(y)| ≤ L‖x − y‖β . Here bβc is the
greatest integer strictly less than β.

3. p, q are periodic.

These are fairly standard smoothness assumptions in the nonparametric estimation literature.
Let γ = min(β, 1). If β > 1, then p, q ∈ Σ(1, Lγ) for some Lγ ; otherwise, clearly p, q ∈

Σ(β, Lβ). Then, from assumption 3, p, q ∈ Σper(γ, Lγ), the periodic Hölder class. We’ll need this
to establish the Sobolev ellipsoid containing p and q.

We will use kernel density estimation with a bounded, continuous kernel so that the bound of
Giné and Guillou (2002) applies, with bandwidth h � n−1/(2β+`) log n, and truncating density
estimates to [ρ∗, ρ

∗].
We also use the Fourier basis ϕα = exp

(
2iπαTx

)
, and define V as the set of indices α s.t.∑`

j=1|αj |2s ≤ t for parameters 0 < s ≤ 1, t > 0 to be discussed later.
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Decomposition Let rσ(∆) = exp
(
−∆2/(2σ2)

)
. Then∣∣∣K(p, q)− z(Â(p̂))T z(Â(q̂))

∣∣∣ ≤∣∣∣K(p, q)− rσk
(
‖Â(p̂)− Â(q̂)‖

)∣∣∣
+
∣∣∣rσk (‖Â(p̂)− Â(q̂)‖

)
− z(Â(p̂))T z(Â(q̂))

∣∣∣ .
The latter term was bounded by Rahimi and Recht (2007). For the former, note that rσ is 1

σ
√
e
-

Lipschitz, so the first term is at most 1
σk
√
e

∣∣∣d(p, q)− ‖Â(p̂)− Â(q̂)‖
∣∣∣. Breaking this up with the

triangle inequality:∣∣∣d(p, q)− ‖Â(p̂)− Â(q̂)‖
∣∣∣ ≤ |d(p, q)− d(p̂, q̂)|+ |d(p̂, q̂)− ‖ψ(p̂)− ψ(q̂)‖|

+ |‖ψ(p̂)− ψ(q̂)‖ − ‖A(p̂)−A(q̂)‖|+
∣∣∣‖A(p̂)−A(q̂)‖ − ‖Â(p̂)− Â(q̂)‖

∣∣∣ . (10)

Estimation error Recall that d is a metric, so the reverse triangle inequality allows us to address
the first term with

|d(p, q)− d(p̂, q̂)| ≤ d(p, p̂) + d(q, q̂).

For d2 the total variation, squared Hellinger, or Jensen-Shannon HDDs, we have that d2(p, q̂) is
upper bounded by TV(p, p̂) (Lin, 1991). Moreover, as the distributions are supported on [0, 1]`,
TV(p, p̂) = 1

2 ‖p− p̂‖1 ≤
1
2 ‖p− p̂‖∞.

It is a consequence of Giné and Guillou (2002) that, for any δ > 0, there is some Cδ depending
on the kernel such that Pr

(
‖p− p̂‖∞ >

√
Cδ logn

nβ/(2β+`)

)
< δ. Thus

Pr (|d(p, q)− d(p̂, q̂)| ≥ ε) < 2C−1

(
ε4n2β/(2β+`)

4 log n

)
,

where CC−1(x) = x.

λ approximation The second term of (10), the approximation error due to sampling λs, admits
a simple Hoeffding bound. Note that

∥∥p̂Rλ − q̂Rλ ∥∥2 +
∥∥p̂Iλ − q̂Iλ∥∥2, viewed as a random variable in

λ only, has expectation d2(p̂, q̂) and is bounded by [0, 4Z] (where Z =
∫
R≥0

dµ(λ)): write it as

Z
∫
|p̂(x)

1
2+iλ − q̂(x)

1
2+iλ|2 dx, expand the square, and use

∫ √
p̂(x)q̂(x)dx ≤ 1 (via Cauchy-

Schwarz).
For nonnegative random variablesX and Y , Pr (|X − Y | ≥ ε) ≤ Pr

(∣∣X2 − Y 2
∣∣ ≥ ε2), so we

have that Pr (|‖ψ(p̂)− ψ(q̂)‖ − d(p̂, q̂)| ≥ ε) is at most 2 exp(−Mε4/(8Z2)).

Tail truncation error The third term of (10), the error due to truncating the tail projection coeffi-
cients of the pSλ functions, requires a little more machinery. First note that

∣∣∣‖ψ(p̂)− ψ(q̂)‖2 − ‖A(p̂)−A(q̂)‖2
∣∣∣ ≤ M∑

j=1

∑
S=R,I

∑
α/∈V

∣∣aα(p̂Sλ − q̂Sλ )
∣∣2 . (11)
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Let W(s, L) be the Sobolev ellipsoid of functions
∑

α∈Z` aαϕα such that the coefficients aα
have

∑
α∈Z`

(∑`
j=1|αj |2s

)
|aα|2 ≤ L, where ϕ is still the Fourier basis. Then Lemma 14 of

Krishnamurthy et al. (2014) shows that Σper(γ, Lγ) ⊆ W(s, L′) for any 0 < s < γ and L′ =
`L2

γ(2π)−2bγc 4γ

4γ−4s .

So, suppose that p̂, q̂ ∈ Σper(γ̂, L̂) with probability at least 1− δ. Since x 7→ x
1
2+iλ is

√
1+4λ2

2
√
ρ∗

-

Lipschitz on [ρ∗,∞), p̂Sλ ∈ Σper

(
γ̂, 12
√

1 + 4λ2 L̂ ρ
−1
2
∗

)
and so p̂Sλ − q̂Sλ is inW(s, (1 + 4λ2)L̂′)

for s < γ̂ and L̂′ = `L̂2ρ−1∗ /(1− 4s−γ̂).

Recall that we chose V to be the set of α ∈ Z` such that
∑`

j=1|αj |2s ≤ t. Thus
∑

α/∈V |aα(p̂Sλ−
q̂Sλ )|2 ≤

∑
α/∈V |aα(p̂Sλ − q̂Sλ )|2

(∑`
j=1|αj |2s

)
/t ≤ (1 + 4λ2)L̂′/t.

The tail error term therefore exceeds ε with probability no more than

δ + 2
M∑
j=1

Pr
(

(1 + 4λ2j )L̂
′/t ≥ ε2/(2M)

)
.

The latter probability, of course, depends on the choice of HDD d. Letting ζ = tε2/(8ML̂′) − 1
4 ,

it is 1 if ζ < 0 and 1 − µ
(
[0,
√
ζ]
)
/Z otherwise. If ζ ≥ 0, squared Hellinger’s probability is 0,

and total variation’s is 2
π arctan(

√
ζ). A closed form for the cumulative distribution function for the

Jensen-Shannon measure is unfortunately unknown.

Numerical integration error The final term of (10) also bears a Hoeffding bound. Define the
projection coefficient difference ∆S

λ,α(p, q) = aα,λ(pSλ)−aα(qSλ ), and ∆̂ similarly but with â. Then

∣∣∣∣‖A(p̂)−A(q̂)‖2 −
∥∥∥Â(p̂)− Â(q̂)

∥∥∥2∣∣∣∣ ≤ M∑
j=1

∑
S=R,I

∑
α∈V

∣∣∣∣∣∣∣∆S
α,λj

(p̂, q̂)
∣∣∣2 − ∣∣∣∆̂S

α,λj
(p̂, q̂)

∣∣∣2∣∣∣∣ . (12)

Letting ε̂(p) = aα(p̂Sλ)− âα(p̂Sλ), each summand is at most (ε̂(p) + ε̂(q))2 + 2
∣∣∣∆S

λ,α(p̂, q̂)
∣∣∣ (ε̂(p) +

ε̂(q)). Also,
∣∣∣∆S

α,λ(p̂, q̂)
∣∣∣ ≤ 2

√
Z, using Cauchy-Schwarz on the integral and ‖ϕα‖2 = 1. Thus

each summand in (12) can be more than ε only if one of the ε̂s is more than
√
Z + ε/4−

√
Z.

Now, using (9), âα(p̂Sλ) is an empirical mean of ne independent terms, each with absolute value
bounded by (

√
ρ∗ + 1) maxx|ϕα(x)| =

√
ρ∗ + 1. Thus, using a Hoeffding bound on the ε̂s, we get

that Pr
(∣∣∣‖A(p̂)−A(q̂)‖2 − ‖Â(p̂)− Â(q̂)‖2

∣∣∣ ≥ ε) is no more than 8MS exp

(
−
ne
(√

Z+ε2/(8S)−
√
Z
)2

2Z(
√
ρ∗+1)2

)
.
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Final bound Combining the bounds for the decomposition (10) with the pointwise rate for RKS

features, we get:

Pr
(∣∣∣K(p, q)− z(Â(p̂)Tz(Â(q̂))

∣∣∣ ≥ ε) ≤ 2 exp
(
−Dε2RKS

)
+ 2C−1

(
ε4KDEn

2β/(2β+`)

4 log n

)

+ 2 exp
(
−Mε4λ/(8Z

2)
)

+ δ + 2M

1− µ

0,

√
max

(
0,
ρ∗tε2tail

8M`L̂2

4γ̂ − 4s

4γ̂
− 1

4

)
+ 8M |V | exp

−1
2ne


√

1 + ε2int/(8 |V |Z)− 1
√
ρ∗ + 1

2
 (13)

for any εRKS + 1
σk
√
e

(εKDE + ελ + εtail + εint) ≤ ε.
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