Bayesian Approaches to Distribution Regression

Ho Chung Leon Law*, Dougal J. Sutherland*, Dino Sejdinovic, Seth Flaxman

ho.law@spc.ox.ac.uk,dougals@gatsby.ucl.ac.uk,dino.sejdinovic@stats.ox.ac.uk,s.flaxman@imperial.ac.uk

Distribution regression Inputs are sample sets from distributions [e.g. 7]: $u_i = f^*(\mathbb{P}_i) + \varepsilon$ $\mathbf{X}_i \stackrel{iid}{\sim} \mathbb{P}_i$ $\hat{u}_i = f(\mathbf{X}_i)$			 Shrinkage New model Handles \u00fc_i uncertainty 	Synthetic data
				 Toy problem to examine input uncertainty: Labels y_i uniform over [4, 8]
Examples:		$g_l J(l)$	• Point estimate for β to retain conjugacy	• 5d data points: $[x_j^i]_{\ell} \mid y_i \stackrel{iid}{\sim} \frac{1}{y_i} \Gamma\left(\frac{y_i}{2}, \frac{1}{2}\right)$
\mathbb{P}_i	\mathbf{X}_i	y_i	• Uses Bayesian nonparametric model for $\hat{\mu}_i$ [1]:	• $(s_5, 25, 25, 100 - s_5)\%$ of bags respectively have
Multivariate	Sample from	Entropy of a	• Prior: $\mu_i \sim \mathcal{GP}(m_0, \eta r(\cdot, \cdot))$	$N_i = (5, 20, 100, 1000)$
distribution $[7]$	distribution	projection	• Likelihood: "observed" at points u , CLT:	2.0
Demographics of county $[2, 3]$	AGEP SEX PINCP WKHP 45 2 14418.0 30.0	30.3% Clinton	$\hat{\mu}_i(\mathbf{u}) \mid \mu_i(\mathbf{u}) \sim \mathcal{N}(\mu_i(\mathbf{u}), \Sigma_i)$	1.5 $3 \cdot 1.0$ $y = 4$ $y = 6$ $y = 8$
	37 1 120152.0 40.0 63 1 11314.0 NaN 38 2 73092.0 40.0	9.9% Trump 59.8% none/othe	• Closed-form GP posterior for $\hat{\mu}_i \mid \mathbf{X}_i$	0.5
		,	 Similar to James-Stein shrinkage 	0.0

Cluster mass: $7 \times 10^{14} M_{\odot}$

Standard approach [e.g. 7]

- Kernel mean embeddings: kernel k, RKHS \mathcal{H} , $\mu_{\mathbb{P}} = \mathbb{E}_{X \sim \mathbb{P}} \left[k(\cdot, X) \right] \in \mathcal{H}$
- $\mu_{\mathbb{P}}$ fully characterizes \mathbb{P} for many k
- Empirical mean estimator:

 $\hat{\mu}_{\mathbb{P}} = \frac{1}{N} \sum_{j=1}^{N} k\left(\cdot, X^{(j)}\right)$

• Ridge regression from $\hat{\mu}_{\mathbb{P}}$ to y_i :

$$f(\hat{\mu}_{\text{test}}) = \sum_{i=1}^{n} \alpha_i \langle \hat{\mu}_{\text{test}}, \hat{\mu}_i \rangle_{\mathcal{H}}$$
$$= \sum_{i=1}^{n} \alpha_i \sum_{i=1}^{N_{\text{test}}} \sum_{i=1}^{N_i} k\left(X_j^{\text{test}}, X_{j'}^i\right)$$

- Observations $y_i \mid \mu_i, f \sim \mathcal{N}\left(\langle f, \mu_i \rangle_{\mathcal{H}}, \sigma^2\right)$ • Predictive: $y_i \mid \mathbf{X}_i, \beta, \mathbf{z} \sim \mathcal{N}(\xi_i^{\beta}, \nu_i^{\beta})$ $\xi_i^{\beta} = \beta^{\top} R_{\mathbf{z}} \left(R + \frac{\Sigma_i}{N_i}\right)^{-1} (\hat{\mu}_i - m_0) + \beta^{\mathsf{T}} m_0$ $\nu_i^{\beta} = \beta^{\mathsf{T}} \left(R_{\mathbf{zz}} - R_{\mathbf{z}} \left(R + \frac{\Sigma_i}{N_i}\right)^{-1} R_{\mathbf{z}}^{\mathsf{T}}\right) \beta + \sigma^2$
 - Point estimates for β , σ , maybe kernel params. . .
 - Optimise with backprop (TensorFlow)

Bayesian Distribution Regression

- Full uncertainty model (BDR)
 Shrinkage posterior for μ̂_i
- BLR-like posterior for weights α
- Not fully conjugate
- MCMC for inference about α (Stan)

0.0 0.5 1.0 1.5 2.0 xEigure: Density of x^i for different u

Figure: Density of x_j^i for different y_i .

• BDR \approx shrinkage < BLR in NLL, MSE:

Figure: Negative log predictive likelihoods.

• Illustrative behaviour of different kinds of bags:

- i=1 j=1 j'=1
- We make a landmark approximation (RBF net):

 $f(\hat{\mu}) = \beta^{\mathsf{T}} \hat{\mu}(\mathbf{u}) = \sum_{\ell=1}^{s} \beta_{\ell} \, \hat{\mu}(u_{\ell})$

Sources of uncertainty

- \bullet Uncertainty about regression weights β
- Mean embeddings µ_i not seen exactly
 Should "trust" points with small N_i less

Bayesian linear regression

- Standard BLR model (similar to e.g. [3])
 Handles regression weight β uncertainty
- Assumes $\hat{\mu}_i$ known exactly
- Normal prior on regression weights β ~ N(0, ρ²)
 Observations y_i | X_i, β ~ N(β^Tμ̂_i(**u**), σ²)

Age prediction from images

age

- IMDb database from [6]
- *Very* noisy labels in the dataset
- Group pictures of actors, predict mean age
- Features: last hidden layer from [6]'s CNN

Figure: Bags are dots: horizontal position is true y_i , vertical is predictive mean, colour is predictive std. $s_5 = 25$.

• Similar experiment with $N_i = 1000$, label noise:

• Gives normal $y_i \mid \mathbf{X}_i$ with hyperparameters σ, ρ

References

- [1] S. Flaxman, D. Sejdinovic, J. Cunningham and S. Filippi. 'Bayesian Learning of Kernel Embeddings'. In: *UAI*. 2016. arXiv: 1603.02160.
- [2] S. Flaxman, D. J. Sutherland, Y.-X. Wang and Y.-W. Teh. Understanding the 2016 US Presidential Election using ecological inference and distribution regression with census microdata. 2016. arXiv: 1611.03787.
- [3] S. Flaxman, Y.-X. Wang and A. J. Smola. 'Who Supported Obama in 2012?: Ecological inference through distribution regression'. In: *KDD*. ACM. 2015.
- [4] M. Ntampaka, H. Trac, D. J. Sutherland, N. Battaglia, B. Póczos and J. Schneider.
 'A Machine Learning Approach for Dynamical Mass Measurements of Galaxy Clusters'. In: *The Astrophysical Journal* 803.2 (2015). arXiv: 1410.0686.
- [5] M. Ntampaka, H. Trac, D. J. Sutherland, S. Fromenteau, B. Poczos and J. Schneider. 'Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning'. In: *The Astrophysical Journal* 831.2 (2016), p. 135.
- [6] R. Rothe, R. Timofte and L. V. Gool. 'Deep expectation of real and apparent age from a single image without facial landmarks'. In: *IJCV* (July 2016).
- [7] Z. Szábo, B. K. Sriperumbudur, B. Póczos and A. Gretton. 'Learning Theory for Distribution Regression'. In: *JMLR* 17.152 (2016), pp. 1–40. arXiv: 1411.2066.

Figure: Results across ten data splits (means and standard deviations). RBF net, freq-shrinkage are tuned for RMSE, other methods for NLL. CNN takes the mean of the predictive distributions of [6] for each point in the bag.

• BDR \approx BLR < shrinkage in NLL, MSE

• BDR able to take advantage of both settings

Takeaway

Two sources of uncertainty in distribution regression: inputs and model
BLR handles model uncertainty

• Shrinkage method handles input uncertainty based on bag size

• Full BDR handles both, but needs MCMC