
Nonparametric Kernel Estimators for Image Classification
Barnabás Póczos, Liang Xiong, Dougal J. Sutherland, and Jeff Schneider

Auton Lab, School of Computer Science, Carnegie Mellon University – autonlab.org

References
[1] T. Hofmann. Probabilistic latent semantic analysis. UAI, 1999.
[2] K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with sets of features. JMLR, 2007.
[3] P. J. Moreno, P. P. Ho, and N. Vasconcelos. A Kullback-Leibler divergence based kernel for SVM classification in multimedia applications. NIPS, 2004.
[4] T. Jebara, R. Kondor, A. Howard, K. Bennett, and N. Cesa-bianchi. Probability product kernels. JMLR, 2004.
[5] J. Qin and N. H. Yung. SIFT and color feature fusion using localized maximum-margin learning for scene classification. ICMV, 2010.
[6] C. Zhang, J. Liu, Q. Tian, C. Xu, H. Lu, and S. Ma. Image classification by non-negative sparse coding, low-rank and sparse decomposition. CVPR, 2011.

Motivation
The “bag of features” approach to image
classification, representing images as a set of local
features over a grid, is very powerful and popular.
But to use it for learning methods like SVMs, we
need either a mapping into Rn (e.g. “bag of words”
or histograms) or a kernel directly on these sets.
We construct such a kernel by considering each
sets as a samples from an unknown probability
distribution, then nonparametrically estimating
divergences between the distributions.

Support Distribution Machines
Many kernel functions can be computed from:

KL divergence is the limit of Rényi-α as α→1.

To get a kernel matrix, we:
1.  Estimate D matrix (pairwise from samples)
2.  Plug into the formulae above to get K
3.  Symmetrize: K := (K + KT) / 2
4.  Project to PSD: discard negative eigenvalues

D↵,�(pkq) =
Z

p(x)↵ q(x)� p(x) dx

including linear , polynomial ,
and Gaussian ,
where we can use various “distances” μ:

R
pq (c+

R
pq)s

exp

�
� 1

2µ
2
(p, q)/�2

�

L2 : µ2 =
R
p2 +

R
q2 � 2

R
pq

Rényi-↵ : µ↵ = log
�R

p↵q1�↵
�
/(↵� 1)

Tsallis-↵ : µ↵ =
�R

p↵q1�↵ � 1
�
/(↵� 1)

Hellinger : µ2 = 1�
Rp

pq

Bhattacharyya : µ2 = � log
Rp

pq

Divergence Estimation
We estimate D with kth-nearest-neighbor distances:

•  X1:n: n samples from p; Y1:m: m samples from q

•  ρk(i): the distance to the kth neighbor of Xi in X1:n

•  νk(i): the distance to the kth neighbor of Xi in Y1:m

•  d: dimension

For fixed k (we use 5), this estimator is provably
L2 consistent and asymptotically unbiased.

Bk,d,↵,� =
⇡d/2

�(d2 + 1)

�(k)2

�(k � ↵)�(k � �)

bD↵,�(X1:n, Y1:m) =
Bk,d,↵,�

n (n� 1)↵ m�

nX

i=1

⇢�d↵
k (i)⌫�d�

k (i)

Comparison to Bag of Words

BoW loses information in quantization,
including correlations between codewords, and
requires tuning the codebook size.

1	

2	

3	

4	

5	

6	

0 2 4

1

2

3

4

5

6

Acknowledgements
This work was funded in part by the National Science Foundation under grant
NSF-IIS0911032 and the Department of Energy under grant DESC0002607.

Image Classification
We will now show experimental results on
classifying images into categories, based on 384-
dimensional color SIFT features after PCA
dimensionality reduction. We compare to:
•  Bag of words (BoW)
•  BoW processed by pLSA [1]
•  the Pyramid Matching Kernel (PMK) [2]
•  Kernels based on Gaussians and GMMs:

•  with KL divergence [3]
•  with Probability Product Kernels [4]

Object Classification (ETH-80)

16 runs, 10-fold CV; 18 PCA dimensions.

Scene Classification (Oliva/Torralba)

16 runs, 10-fold CV; 53 PCA dimensions, plus y
coordinate. Beats best previous result [5].

Sport Classification (Li/Fei-Fei)

16 runs, 2-fold CV; 57 PCA dimensions, plus x,
y coordinates. Matches best previous result [6].

Takeaway
The bag of features model is powerful. But in
quantizing it, we lose some of that power.

We can improve performance by using the same
features with better dissimilarity measures.

The nonparametric divergence estimator
presented here matches or beats state-of-the-art
techniques using learned features.

Performance by α value on ETH-80: values
near but slightly below 1 seem best.

