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Overview

Density estimation with an eye towards matching gradients.
Kernel exponential family has nice theory, promising applications to
relatively simple data so far, but limited by choosing a simple kernel.
We learn a deep kernel end-to-end with a kind of meta-learning.
Competitive with deep maximum likelihood models:
somewhat worse likelihoods but maybe better “shape”.

Kernel exponential family

Flexible class of distributions smooth under a given kernel [1, 2, 7].
Exp. fam. with infinite-dimensional parameter f ∈ H, an RKHS

p̃θ(x) = exp (f (x)) q(x) = exp (〈f , k(x, ·)〉H) q(x).

Normalized density is pθ(x) = p̃θ(x)/Zθ; q controls tail behavior.
Simple H give standard expfams: k(x , y) = xy + x2y2 for Gaussian.
Richer H: dense in continuous distributions on compact domain [7].

Density estimation with score matching

Density estimation: given samples {xn}
N
n=1 ∼ p0, want pθ ≈ p0.

Max likelihood: hard to compute Zθ, often ill-posed in infinite dim.s.
Alternative: minimize Fisher divergence, under mild assumptions [3]

J(pθ‖p0) =
1
2

∫
p0(x) ‖∇x log pθ(x) −∇x log p0(x)‖2 dx

=

∫
p0(x)

D∑
d=1

[
∂2

∂x2
d
log pθ(x) +

1
2

(
∂

∂xd
log pθ(x)

)2
]
dx + C;

doesn’t depend on Zθ, depends on p0 only as expectation.
Cares about gradient of estimate, unlike max likelihood.
Get kexpfam fit with a linear system [7]; good theory, but O(N3D3).
Speed up by finding f in subspace of H [8, 9]; O(M2ND) time with

f (x) =
M∑

m=1

αmk(x, zm); needs
∂

∂xd
k(xn, zm),

∂2

∂x2
d
k(xn, zm).

Need for a learned kernel

Left: no single bandwidth works well for both peaks.
Right: a learned kernel scales to the inherent variation of the data.
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Learning θ: kernel, z, q, regularization parameters

Take ∇θ of this whole process – meta-learning, using closed form α̂:

Fit α̂ using θ Eval on separate dataPick minibatches

f (x) = α1 kθ(·, z1)︸ ︷︷ ︸+ · · ·+ α4 kθ(·, z4)︸ ︷︷ ︸
1
N

∑
nd

[
∂2

∂X 2
d
log pθ(xn) +

1
2

(
∂

∂Xd
log pθ(xn)

)2
]

After fitting kernel, choose reg. λs for bigger batches, then final α̂.
TensorFlow not optimized for ∇θ solve({

∂2

∂x2
d
k(xn, zm), . . . }); faster

after implementing backprop for ∂2

∂x2
d
k(xn, zm) as TensorFlow ops.

A class of flexible deep kernels

k(x, y) =
R∑

r=1

ρr exp

(
−

1
2σ2

r

∥∥φwr
(x) −φwr

(y)
∥∥2
)

φ : RD → RDr is a deep network: three FC softplus layers, skip
connection from first to last. Guarantees Zθ <∞.

Results on synthetic problems
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DKEF-L-50-1 basically fits a network to the log-density directly [5].

Results on real data
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FSSD [4] is a measure of relative model fit based on ∇x log p̃(x).
Low p-value indicates DKEF’s FSSD is confidently better.
Lines on likelihoods indicate estimates of a bias upper bound.
DKEF likelihoods somewhat worse than [6], FSSDs somewhat better.

Evaluating unnormalized model likelihoods

Easy unbiased estimator Ẑθ for Zθ by importance sampling.
But by Jensen, log p̂(x) = log p̃(x) − log Ẑθ is biased upwards.
If we propose from q: can upper-bound bias in terms of p̃(x)/q(x)’s
infimum (easy loose bound) and median (can bound w.h.p.).
Can estimate that upper bound; estimator itself biased upwards.

Behavior on separated mixtures

Consider p0 = πp1 + (1 − π)p2, with disjoint, separated support.
If model has the same disjoint support, score matching doesn’t care
at all about relative weight between the two components.
If kexpfam kernel has components totally separated, fits as if
separately, but scaled λα (smaller components regularized more).

In extremely simplified case: want ratio π
1−π, get exp

(
D

2σ2λα

(
π− 1

2

))
.

Compare to “bridges” from likelihood models.
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[4] W. Jitkrittum, H. Kanagawa, Z. Szábo, P. Sangkloy, J. Hays, B. Schölkopf, and A. Gretton. “Informative Features for

Model Comparison.” NeurIPS. 2018.
[5] D. P. Kingma and Y. LeCun. “Regularized estimation of image statistics by score matching.” NIPS. 2010.
[6] G. Papamakarios, T. Pavlakou, and I. Murray. “Masked Autoregressive Flow for Density Estimation.” NIPS. 2017.
[7] B. Sriperumbudur, K. Fukumizu, A. Gretton, A. Hyvärinen, and R. Kumar. “Density estimation in infinite dimensional

exponential families.” JMLR 18.1 (2017).
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