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OVERVIEW
I MMD GANs are related to WGANs, but with part of critic

function optimization done in closed form.
I Outperform WGAN-GP, especially with smaller critic network.
I Clarify gradient bias situation: “outer loop” generator gradients

are biased, but each step is unbiased.
I New GAN performance metric, KID, with better estimator than

FID; use it to adapt the learning rate during training.

RELATION TO WASSERSTEIN AND CRAMÉR GANS
Integral Probablity Metrics (IPMs) are distances between
distributions defined by a class of critic functions F :

D(Ð,Ñ) = sup
f∈F
D f(Ð,Ñ) = sup

f∈F
Å

X∼Ð
[f(X)] − Å

Y∼Ñ
[f(Y )].

I Wasserstein distance has F the set of 1-Lipschitz functions

F =


f : sup

x,y

`f(x) − f(y)`
�x − y�

≤ 1


.

WGANs approximate f with a critic network, made
approximately Lipschitz with weight clipping [1] or gradient
penalty [4].

I Maximum Mean Discrepancy (MMD) has F a unit ball in a
Reproducing Kernel Hilbert Space (RKHS)H with kernel k:

f∗(t) ∝ Å
Ð
k(X, t) − Å

Ñ
k(Y , t)

MMD2
k :

I MMD GANs [6] optimize representation in kernel
kθ(x, y) = kbase(hθ(x), hθ(y)),

corresponding to distance
D(Ð,Ñ) = supθDθ(Ð,Ñ) = supθMMD2

kθ(Ð,Ñ).

I Cramér GAN [2] almost same, with Energy Distance kbase.

MMD GAN WITH GRADIENT PENALTY
Like WGAN-GPs [4], we penalize gradient of the critic function:

Losscritic(θ) = EMMD
2
θ(Ð,Ñψ) + λ Å

X̃

�
�+X̃ f

∗(X̃)� − 1
�2
.

With linear kbase, almost the same as a WGAN-GP.

sample-optimal critics population-optimal critics

Wasserstein MMD

THEORY: BIASED GRADIENT ESTIMATES
Bellemare et al. [2] claim that WGANs have biased generator
gradients, while Cramér GANs do not. We show:
I For a fixed kernel/critic, generator gradient steps are unbiased.
I “Outer loop” gradient steps, +ψD̂(X,Gψ(Z)), are biased.
I Estimators with non-constant bias have biased gradients.
I Optimization-based estimators are biased:

Å D̂ = Å D̂ f̂tr(Xte,Yte) = ÅD f̂tr(Ð,Ñ) ≤ supf D f = D .

I Small minibatch sizes don’t introduce bias: bias vanishes as
critic becomes optimal.

EXPERIMENTAL COMPARISON
MMD GANs outperform WGAN-GP, especially with smaller critic
networks (faster to train), probably by “offloading” work to
closed-form kernel optimization.

CelebA, 160 × 160.
MMD GAN (left) and
WGAN-GP (right), with
ResNet generator and
DCGAN critic.

LSUN bedrooms, 64 × 64.
MMD GAN (left) and
WGAN-GP (right), with
small critic DCGANs (4×
less convolutional filters).
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NEW EVALUATION METHOD: KID
Inception scores aren’t meaningful for LSUN or CelebA.

Fréchet Inception Distance (FID) [5] better, but biased estimator:
I Estimator has very strong bias, almost no variance.
I Easy to find Ð1, Ð2, Ñ where for reasonable sample sizes

FID(Ð1,Ñ) < FID(Ð2,Ñ) but Å FID(Ð̂1,Ñ) > Å FID(Ð̂2,Ñ).

I Monte Carlo “confidence intervals” are meaningless.

Proposed Kernel Inception Distance (KID): MMD2 estimate with
kernel k(x, y) =

�
xTy/d + 1

�3 between Inception representations.
I Estimator has no bias, small variance.
I Computationally faster, needs fewer samples than FID.
I Asymptotically normal: easy Monte Carlo confidence intervals.

CIFAR-10 train to test estimates, increasing sample sizes:
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LEARNING RATE ADAPTATION
Automatic learning rate adaptation using 3-sample test [3]:
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IMPLEMENTATION
github.com/mbinkowski/MMD-GAN/
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