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» MMD GANSs are related to WGANS, but with part of critic

function optimization done in closed form.

Outperform WGAN-GP, especially with smaller critic network.

Clarify gradient bias situation: “outer loop” generator gradients

are biased, but each step is unbiased.

» New GAN performance metric, KID, with better estimator than
FID; use it to adapt the learning rate during training.
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Integral Probablity Metrics (IPMs) are distances between
distributions defined by a class of critic functions ¥ :

D(P,Q) = sup DH(P, Q) = feu?rgxgp[f(x )1 = E_[F(Y)].

Wasserstein distance has ¥ the set of 1-Lipschitz functions

;o {f:supv(x)—f(y)\ ) 1}.
o Ix—yl

WGANSs approximate f with a critic network, made
approximately Lipschitz with weight clipping [1] or gradient
penalty [4].
Maximum Mean Discrepancy (MMD) has # a unit ball in a
Reproducing Kernel Hilbert Space (RKHS) H with kernel k:
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MMD GANSs [6] optimize representation in kernel

k@(xa y) = kb&S@(hQ(X)a h@(y)),
corresponding to distance

D(P, Q) = supg Do(P, Q) = sup; MMD;, (P, Q).
Cramér GAN [2] almost same, with Energy Distance kyse.

Like WGAN-GPs [4], we penalize gradient of the critic function:
oy —_—2 ~
Loss®™(6) = MMD,(P, Q) + A E (|[V&*(X)l - 1)°.
X

With linear ky.se, almost the same as a WGAN-GP.

Mikotaj Birikowski’

'Department of Mathematics, Imperial College London

DEMYSTIFYING MMD GANS

Michael Arbel?

Dougqal J. Sutherland?

sample-optimal critics population-optimal critics

Arthur Gretton?

°Gatsby Computational Neuroscience Unit, University College London i
{mikbinkowski1,dougal,michael.n.arbel,arthur.gretton}@gmail. com

-~
‘\ // \\(/’ \\
/ / \
/ / \ \
/ \ \
/ / \ \
—/\ / \\ \ AN
] I\-H\ | v p . .
/ / \ \
) ) \ \\
V4 //
y 7
— \Nasserstein MMD -——— P -—= 0

Bellemare et al. [2] claim that WGANs have biased generator
gradients, while Cramér GANs do not. We show:

For a fixed kernel/critic, generator gradient steps are unbiased.

“Outer loop” gradient steps, V,,D(X, G, (Z)), are biased.
Estimators with non-constant bias have biased gradients.
Optimization-based estimators are biased:

_ ZA) == @?tr(Xte’ Yte) == Z)?z‘r(ﬂj)’ @) < SUpP¢ Z)f =9P.

Small minibatch sizes don’t introduce bias: bias vanishes as
critic becomes optimal.

MMD GANSs outperform WGAN-GP, especially with smaller critic
networks (faster to train), probably by “offloading” work to
closed- form kernel opt|m|zat|on

‘f*} CelebA, 160 X 160.
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A2 MMD GAN (left) and
g WGAN-GP (right), with

-4 ResNet generator and
i DCGAN critic.

3 ' L4 LSUN bedrooms, 64 x 64.
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Inception scores aren’t meaningful for LSUN or CelebA.

Frechet Inception Distance (FID) [5] better, but biased estimator:

Estimator has very strong bias, almost no variance.
Easy to find P4, P», Q where for reasonable sample sizes

FID(P4,Q) < FID(P,, Q) but EFID(P4, Q) > EFID(P,, Q).
Monte Carlo “confidence intervals” are meaningless.

Proposed Kernel Inception Distance (KID): MMD? estimate with
kernel k(x,y) = (x'y/d + 1)3 between Inception representations.
Estimator has no bias, small variance.

Computationally faster, needs fewer samples than FID.
Asymptotically normal: easy Monte Carlo confidence intervals.

CIFAR-10 train to test estimates, increasing sample sizes:
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Automatic learning rate adaptation using 3-sample test [3]:
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github.com/mbinkowski/MMD-GAN/
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