Say we observe two different datasets:

\[X \sim P \text{ (model of [6])} \quad Y \sim Q \text{ (MNIST samples)} \]

Our question: is \(P \neq Q \)?

- Did my generative model actually learn the distribution I wanted it to?
- Do smokers and non-smokers have different distributions of cancers?
- Do these neurons fire differently when the subject is looking at image A instead of B?
- Are these different data sources the same? We want to be able to detect any possible difference, without making parametric assumptions, on high-dimensional data.

Maximum mean discrepancy

Distance between distributions [2] based on a kernel on sample points \(k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \):

\[
\text{MMD}^2(P, Q) = -2 \mathbb{E}_{X,Y \sim P \times Q}[k(X,Y)] + \mathbb{E}_{X \sim P}[\mathbb{E}_{Y \sim Q}[k(X,Y)]] + \mathbb{E}_{Y \sim Q}[\mathbb{E}_{X \sim P}[k(Y,X)]].
\]

Estimate the MMD by taking sample means.

MMD tests

- Estimate \(\text{MMD}(P, Q) \) with \(\hat{\text{MMD}}(X, Y) \).
- Estimate a threshold \(\hat{c}_m \).
- Shuffle up \(X \cup Y \) into random halves many times; take \(\hat{c}_m \) as the \(1 - \alpha \) quantile of the \(\hat{\text{MMD}}^2 \)’s.
- Say \(P \neq Q \) if \(m \hat{\text{MMD}}^2(X, Y) > \hat{c}_m \).

Train-test splits

Choose a kernel \(k \) in MMD test

\[X \quad \hat{t} \quad Y \]

\[\text{Choose a kernel } k \text{ in MMD test} \]

\[\text{Efficient permutation tests} \]

- Current ways to compute permutations very slow.
- Inefficient memory access pattern.
- Wrote a cache-aware implementation in Shogun.
- 15-30x the speed of existing implementations.
- Faster, more scalable than spectral approximations.

Model criticism

- [6]’s MNIST GAN is really good (top-left).
- Can we tell the distributions apart? Yes!
- Gaussian-ARD kernel: \(p \)-values almost exactly 0.
- Pixel weights (right) show where the model’s distribution differs.
- Just optimizing bandwidth: 57% power at \(\alpha = .01 \).
- Median heuristic: 42% power.
- Looking at points with high/low witness function values from ARD kernel (like [5]) gives more insight:
- Model underproduces vertical 1s,
- Overproduces right-slanted digits.
- MMD value very small, but very consistent.

Optimizing MMD test power

- When \(P \neq Q \), \(\hat{\text{MMD}}^2 \) is asymptotically normal:
 \[\hat{\text{MMD}}^2(X, Y) - \text{MMD}^2(P, Q) \sim \mathcal{N}(0,1). \]
- Then test power \(\hat{P} \left(m \hat{\text{MMD}}^2(X, Y) > \hat{c}_m \right) \) goes to
 \[\Phi \left(\frac{\text{MMD}^2(P, Q)}{\sqrt{V_m(P, Q)} - c_m} \right). \]
 \[V_m = O(m^{-1}); \text{ MMD, } c_m \text{ are constant in } m. \]
- So, maximize \(\hat{t} = \hat{\text{MMD}}^2(X, Y)/\sqrt{V_m(X, Y)} \).
- \(\hat{V}_m \): quadratic-time, unbiased estimator of \(V_m \).
- Maximize kernel parameters with backprop.

As a GAN objective

- Discriminators in standard GANs [3] look at one sample at a time.
- Problem: generator incentivized to produce just one sample that the discriminator likes, then gets stuck.
- Generator distribution should match true one.
- Use a two-sample test as the discriminator!
- [1, 4]: doing this by maximizing the MMD.
- Generative Moment Matching Network (GMMN)
- Instead, optimize \(\hat{t} \) criterion (t-GMMN).
- Or, do distributional feature matching (like [6]):
 - Train discriminator normally.
- Generator uses \(\hat{t} \) with kernel from discriminator.

- Used sum of Gaussian kernels:
 - Not a great kernel on MNIST pixels.
 - Nearly useless on natural image pixels.
 - Gradients decay too fast.
- We’re trying out better kernels.

References

