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Lookahead selection criteria!
We can also define a quality measure f and consider 
integrate over possible outcomes:!
!
Prediction:  entropy of predicted matrix �
!
Model: entropy of posterior over U and V �
!
Magnitude search: mean of found elements�
!
Search: expected number of positives found!
!
This can easily be extended to more than one 
lookahead step, and is optimal with full lookahead 
[6], but cost increases exponentially.!

Active matrix factorization!
Sometimes, however, we have the ability to obtain 
a certain element of the matrix (though doing so 
may be expensive, e.g. in drug discovery). Active 
matrix factorization asks how we can best choose 
matrix elements to query in order to accomplish 
our learning goals.!

Matrix factorization!
Low-rank matrix factorization is a very powerful 
and popular technique used in recommender 
systems and a variety of other application areas. 
Given a partially observed matrix, it does a good 
job of imputing the other elements of the matrix. !
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Learning goals!
Prediction: minimize prediction error�
!
Model: minimize uncertainty in the data model�
!
Magnitude Search: find the largest matrix elements�
�
!
Search: find many elements from a given class!
!
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Variational PMF!
One method to get this is to approximate p(U, V) by 
some parametric distribution q(U, V), and find the best 
such approximation by minimizing KL divergence:!
!

Some choices for q are!
1.  a normal distribution on the elements of U and V!
2.  fully factorized distribution on each element [2]!
3.  “in between”: a matrix normal distribution on their 

concatenation. We try this approach.!
In each case we can minimize KL(q‖p) through 
(projected) gradient descent.!
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!

Markov chain Monte Carlo!
Another option is to sample from p(U, V) using 
MCMC, and use the samples for inference.!
BPMF [3] extends PMF by adding arbitrary means and 
covariances to the priors on Ui and Vj, with Gaussian-
Wishart hyperpriors, and samples via Gibbs. We use 
Hamiltonian MCMC with the No-U-Turn Sampler [4].!

Myopic selection criteria!
Prediction: uncertainty sampling �
!
Model: ?!
Magnitude Search: the largest-mean element �
!
Search: the element most likely to be positive!

argmax(i,j) Var[Rij ]

argmax(i,j) E[Rij ]

argmax(i,j) P(Rij 2 +)

Z

x

P̂(R
ij

= x) E [f(q) | RO, Rij

= x]

f(q) = H[R]

f(q) = H[U, V ]

f(q) = Rij + max

(k,l)2P�(i,j)
E[Rkl]

f(q) = (Rij 2 +) + max

(k,l)2P�(i,j)
P(Rkl 2 +)
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Toy Experiments!

MCMC! Matrix normal variational!
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Rank 1 matrix: MCMC is good, variational bad.!

10x10 rank 2, values 1-5: !

Probabilistic Matrix Factorization (PMF)!
Our learning model will be the PMF generative 
factorization model for matrices of a specific rank [1]:!

It’s easy to get a point estimate for U and V (though 
the objective is biconvex). But for active learning, we 
want uncertainty in the model.!
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