Effective and principled score estimation with Nyström kernel exponential families

Dougal J. Sutherland*, Heiko Strathmann*, Michael Arbel, Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

Problem: Unnormalized density estimation

- Given samples \(\{X_n\}_{n=1}^{id} \sim p_0 \), \(X_n \in \mathbb{R}^d \)
- Want computationally efficient estimator \(p \) so that \(p(x)/Z \approx p_0(x) \)
- Don’t especially care about \(Z \): often difficult, not needed for finding modes / sampling (with MCMC) / use in approximate HMC / …
- Want to avoid strong (parametric) assumptions about \(p_0 \)

Exponential families

- Many classic densities on \(\mathbb{R}^d \) are of the form:
 \[p(x) = \exp\left(\eta \left(T(x) \right) - A(\eta) \right) \begin{pmatrix} \text{log-determinant} \\ \text{measure} \end{pmatrix} q_\eta(x) \]
- Gaussian: \(T(x) = \langle x, x^T \rangle \); Gamma: \(T(x) = \langle x, log(x) \rangle \)
- Density is on \(T(x) \), \(s \)-dimensional “features”; can we make this richer?

Kernel exponential families [1]

- Use an RKHS \(\mathcal{H} \), with kernel \(k(x, y) = \langle k_x, k_y \rangle \).
 - Parameter \(\eta \in \mathcal{H} \), sufficient statistic: \(T(x) = k_x \) gives
 \[p(x) = \exp(f(x) - A(f)) \]
 - Includes standard exponential family: \(k(x, y) = T(x) \cdot T(y) \)
 - But \(T \) can be infinite-dimensional, e.g. \(k(x, y) = \exp\left(-\frac{1}{2} ||x - y||^2 \right) \)
 - Class very rich: dense in anything with smooth log-density, tails like \(q_\eta \) [3]
 - But \(A(f) \) is hard to compute: maximum likelihood estimate intractable

Score matching-based estimator [3]

- Score matching approach here: minimize regularized Fisher divergence
 \[J_\lambda(f) = \frac{1}{2} \int p_0(x) \left(||\nabla_x \log p_0(x) - \nabla_x \log p_i(x) ||^2 \right) dx + \lambda \int \|f\|_H^2 \]
 \[= \int p_0(x) \sum_{i=1}^n \left[\frac{1}{2} \partial_i f(x) - \frac{1}{2} \partial_i d(f(x))^2 \right] dx + C(p_0, q_\eta) + \lambda \int \|f\|_H^2 \]
 where we used integration by parts, some mild assumptions

- Estimate integral with simple Monte Carlo
- Representer theorem: best solution \(f_{X,n} = \text{argmin}_{f \in \mathcal{H}} J_\lambda(f) \) is
 \[f_{X,n}(x) = \sum_{a=1}^d \sum_{i=1}^n \left(\beta_{a,i} \log q_\eta(X_i) \right) \partial_a k(X_{a,i}, x) - \frac{1}{2} \partial_a^2 k(X_{a,i}, x) \]
 where \(\beta \) is the solution to an \(nd \times nd \) linear system: \(\mathcal{O}(n^3 d^3) \) time!

Nyström approximation

- Instead of minimizing \(f \) over \(\mathcal{H} \), minimize over subspace
 \[\mathcal{H}_M = \text{span}\{q_\eta \}_{\|\eta\|^2 = 1} \subset \mathcal{H} \]
- Full solution \(f_{X,n} \) has \(y_{a,(i,2)} = \partial_a k_{X_i} \); \(M = 2nd \)

- “Nyström”: pick \(m \) points at random, \(y_{a,(i,1)} = \partial_a k_{X_i} ; M = md \)

- “Lite” [4]: pick \(m \) points at random, \(y_a = k_{X_i} ; M = m \)

Computing the Nyström approximation

- Minimizer of \(J_\lambda \) in \(\mathcal{H}_M \): \(f_{X,n}(x) = \sum_{a=1}^d \beta_a y_a \)
 \[\beta = \left(\sum_{M \times M} B_{MM} + \lambda G_{MM} \right)^{-1} b_Y \]
 \[(B_{XY})_{a,b} := \langle \partial_a k_{X_{a,i}}, \partial_b k_{X_{b,i}} \rangle \mathcal{H} \]

- “Nyström”: \(\mathcal{O}(nm^2d^2) \) time; “lite”: \(\mathcal{O}(nm^2d) \) time

Theory

- Assume \(p_0 = p_{f_0} \) for some \(f_0 \in \mathcal{H} \); technical assumptions on \(\mathcal{H}, f_0 \)
- \(\theta \) a parameter depending on problem smoothness: worst case \(\frac{1}{2} \), best \(\frac{1}{4} \)
- If we use “Nyström” with \(m = \Omega(n^\delta \log n) \), \(\lambda = \frac{n}{m^2} \)
- “Easy” problems: same convergence in \(J, \mathcal{H}, L_r, KL, \text{Hellinger as [3]} \)
- “Hard” problems: same \(J \) convergence, others saturate slightly sooner
- Proof uses ideas from [2] for regression, but different decomposition:
 \(f_X = \text{argmin}_{f \in \mathcal{H}} J_\lambda(f) \)

Synthetic experiments

- Target: Gaussians centered on \(d \) vertices of \(d \)-dimensional hypercube
- Evaluate Fisher divergence \(J(f) \):

Approximate Hamiltonian Monte Carlo

- HMC uses \(\nabla_x \log p(x) \), often more efficient
- Sometimes we can’t get these gradients
 - e.g. marginalizing out hyperparameter choice for a GP classifier
- Kernel Adaptive HMC [4]:
 - Start with random walk MCMC
 - Estimate \(\nabla_x \log p(x) \) from chain so far
 - Propose HMC trajectories with estimate
 - Metropolis rejection step accounts for errors in the proposed trajectories

Takeaways

- Flexible density modeling with kernel exponential families
- Nyström approximation: faster algorithm (\(n^3 \) to \(n^2 \)) with same statistical guarantees as full-data fit (\(n^2 \))
- Kernel Conditional Exponential Family: less-smooth densities
- Open questions: kernel choice, theory for “lite” basis, misspecified case

References