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Random Fourier features

Random Fourier features (Rahimi and Recht, 2007)
scale shift-invariant kernels to large numbers of inputs
by using linear models on z(x), where z : Rd → RD

has k(x, y) ≈ z(x)Tz(y).
Let ∆ := x − y, and k(x, y) = k(∆), k(0) = 1 be a
continuous psd kernel. Its Fourier transform P (ω) is
a probability measure (Bochner’s theorem).
One embedding is:
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φ(x)Tφ(y) is an average ofD/2 terms cos(ωT
i ∆); note
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Another has more samples from P (ω), but with ad-
ditional non-shift-invariant noise:

ψ(x) :=
√√√√ 2
D


cos(ωT

1 x + b1)
...
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 , ωi
iid∼ P (ω)

bi
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.

ψ(x)Tψ(y) is the mean of D terms of the form
cos(ωT

i ∆) + cos(ωT
i (x + y) + 2bi).

Our contribution

We show the φ embedding has lower variance than
ψ for the Gaussian kernel, and improve the theo-
retical understanding of both embeddings’ errors.

Prevalence of the embeddings

•The original publication discussed both φ and ψ.
Online revisions only mention ψ (but give a bound
only for φ). Later work used only ψ.

•Of the first 100 citations on Google Scholar, 15
used ψ, 14 used φ, 28 did not specify.

•All three library implementations we found
(scikit-learn, Shogun, and jsat) use ψ.

Variance

Using trig identities, we can show that

Varφ(x)Tφ(y) = 1
D

[
1 + k(2∆)− 2k(∆)2]

Varψ(x)Tψ(y) = 1
D

[
1 + 1

2k(2∆)− k(∆)2] .
So φ is lower-variance when

Var cos(ωT∆) = 1
2

+ 1
2
k(2∆)− k(∆)2 ≤ 1

2
.

φ is better for Gaussian kernels

For k(∆) := exp (−‖∆‖2/(2σ2)),
Var cos(ω) = 1

2
(
1− exp

(
−‖∆‖2/σ2)) ≤ 1

2.
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Figure 1: The variance per dimension for the Gaussian kernel.
The difference in variance is higher for larger kernel values.

Improved uniform convergence

We can tighten the bound for φ and show one for ψ.

•Let ` be the diameter of the domain X ⊂ Rd.
•Let σ2

p := E‖ω‖2, σ2
w := sup∆

[
2 Var cos(ωT∆)

]
.

Define fφ(x, y) := φ(x)Tφ(y)−k(x, y) to be the error
for φ, and let αε := min

(
1, 1

2σ
2
w + 1

3ε
)
; then

Pr (‖fφ‖∞ ≥ ε) ≤ βd

σp`
ε

 2
1+2
d exp

− Dε2
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 .
For ψ, define fψ(x, y) := ψ(x)Tψ(y)−k(x, y) as well
as α′ε := min

(
1, 1

8(1 + σ2
w) + 1

6ε
)
; then

Pr (‖fψ‖∞ ≥ ε) ≤ β′d

σp`
ε

 2
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 .
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Figure 2: The coefficients βd (blue, for φ) and β′d (orange, for ψ).

The bound for φ is always tighter than that for ψ.

Expected max error

•Suppose k(∆) is L-Lipschitz.
•Let γ ≈ 0.964, 0.8 < γ′ < 1.55 depending on X .
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 ,
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√
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D
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)
using Dudley’s entropy integral.

Concentration

Pr (‖fφ‖∞ ≥ E‖fφ‖∞ + ε)
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 ,
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via Bousquet’s inequality. fψ concentrates more
tightly, but its mean is higher, both in the bound
and empirically.

Numerical results with d = 1

Gaussian kernel, σ = 1. φ has solid lines, ψ dashed.
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Figure 3: Average max error within a given radius.
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Figure 4: Pr (‖f‖∞ > ε) on [−3, 3] with D = 500.

Further results

The paper also has:
•Exact expectations and contentration bounds of
squared L2 error, for any measure.

•Bounds on changes in the outputs of ridge
regression, svm, and maximum mean discrepancy
tests due to the features.

•More experiments.
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