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Traditional	models	for	imagesTraditional	models	for	images

1987-style	generative	model	of	faces	(Eigenface	via	 )

Can	do	fancier	versions,	of	course…

Usually	based	on	Gaussian	noise	 	loss

Alex	Egg

http://www.eggie5.com/111-nightmare-eigenface
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[ ]Lotter+	2016

https://arxiv.org/abs/1511.06380
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Is	this	real? No	way!	
:(	I'll	try	harder… ⋮

Is	this	real? Umm…	

https://arxiv.org/abs/1406.2661
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	is	an	activation	function:

Classi�cation	usually	uses	log	loss	(cross-entropy):	

Optimize	with	gradient	descent



Generator	networksGenerator	networks

How	to	specify	 ?

[ ]

,	

Radford+	ICLR-16

https://arxiv.org/abs/1511.06434
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GANs	in	equationsGANs	in	equations

Tricking	the	discriminator:	

Using	the	generator	network	for	 :	

Can	do	alternating	gradient	descent!	



Original	paper's	results	Original	paper's	results	[[ ]]Goodfellow+	NeurIPS-14Goodfellow+	NeurIPS-14

https://arxiv.org/abs/1406.2661
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https://arxiv.org/abs/1511.06434
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If	 	stays	optimal	throughout,	 	tries	to	minimize	
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JS	with	disjoint	support	JS	with	disjoint	support	[[ ]]

If	 	and	 	have	(almost)	disjoint	support	

so	

Arjovsky/Bottou	ICLR-17Arjovsky/Bottou	ICLR-17

https://arxiv.org/abs/1701.04862
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Discriminator	point	of	viewDiscriminator	point	of	view

Generator	( )
Discriminator

Target	( )

Is	this	real? No	way!	

:(	I	don't	know	how	to	do	any	better…
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How	likely	is	disjoint	support?How	likely	is	disjoint	support?

At	initialization,	pretty	reasonable:

: :

Remember	we	might	have	

For	usual	 ,	 	is	supported	on	a	countable	union	of
manifolds	with	dim	

“Natural	image	manifold”	usually	considered	low-dim

No	chance	that	they'd	align	at	init,	so	
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Original	GANs	almost	never	use	the	minimax	game	

If	 	is	near-perfect,	near	 	instead	of	

When	 	is	near-perfect,	makes	it	unstable	instead	of	stuck
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Need	to	enforce	

Easy	ways	to	do	this	are	way	too	stringent

Instead,	control	 	on	average,	near	the	data

Speci�cally:	 ,	
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FID:	

Estimator	very	biased,	small	variance

KID:	use	Maximum	Mean	Discrepancy	instead
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FID	FID	[[ ]]	and	KID		and	KID	[[ ]]

Consider	distance	between	distributions	of	image	features

Features	 	from	a	pretrained	ImageNet	classi�er

FID:	

Estimator	very	biased,	small	variance

KID:	use	Maximum	Mean	Discrepancy	instead
Similar	distance	with	unbiased,	~normal	estimator!

Heusel+	NeurIPS-17Heusel+	NeurIPS-17 Bińkowski+	ICLR-18Bińkowski+	ICLR-18

https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1801.01401
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MMD	loss	with	a	smarter	kernelMMD	loss	with	a	smarter	kernel

	from	pretrained	Inception	net

	simple:	exponentiated	quadratic	or	polynomial
We	just	got	adversarial	examples!

[ ]anishathalye/obfuscated-gradients

https://github.com/anishathalye/obfuscated-gradients


Optimized	MMD:	MMD	GANs	Optimized	MMD:	MMD	GANs	[[ ]]

Don't	just	use	one	kernel,	use	a	class	parameterized	by	 :	

Li+	NeurIPS-17Li+	NeurIPS-17

https://arxiv.org/abs/1705.08584
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Optimized	MMD:	MMD	GANs	Optimized	MMD:	MMD	GANs	[[ ]]

Don't	just	use	one	kernel,	use	a	class	parameterized	by	 :	

New	distance	based	on	all	these	kernels:	

Turns	out	that	 	isn't	continuous:	
have	 	but	

Li+	NeurIPS-17Li+	NeurIPS-17
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Optimized	MMD:	MMD	GANs	Optimized	MMD:	MMD	GANs	[[ ]]

Don't	just	use	one	kernel,	use	a	class	parameterized	by	 :	

New	distance	based	on	all	these	kernels:	

Turns	out	that	 	isn't	continuous:	
have	 	but	

Scaled	MMD	GANs	[ ]	
correct	 	with	a	gradient	penalty	to	make	it	continuous	

Li+	NeurIPS-17Li+	NeurIPS-17

Arbel+	NeurIPS-18

https://arxiv.org/abs/1705.08584
https://arxiv.org/abs/1804.11565
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StyleGANs	StyleGANs	[[ ]]Karras+	2018Karras+	2018

https://github.com/NVlabs/stylegan


StyleGAN:	latent	structureStyleGAN:	latent	structure



StyleGAN:	local	noiseStyleGAN:	local	noise



StyleGANs	on	a	different	domain	StyleGANs	on	a	different	domain	[[ ]]@roadrunning01@roadrunning01

https://twitter.com/roadrunning01/status/1095183075833757701


Finding	samples	you	want	Finding	samples	you	want	[[ ]]

If	we	want	to	�nd	“more	samples	like	 ”:

Jitkrittum+	ICML-19Jitkrittum+	ICML-19

https://arxiv.org/abs/1905.05882


Finding	samples	you	want	Finding	samples	you	want	[[ ]]

If	we	want	to	�nd	“more	samples	like	 ”:

Jitkrittum+	ICML-19Jitkrittum+	ICML-19

https://arxiv.org/abs/1905.05882


Conditional	GANs	and	BigGANConditional	GANs	and	BigGAN

Conditional	GANs:	[ ]
Just	add	a	class	label	as	input	to	 	and	

BigGAN	[ ]:	a	bunch	of	tricks	to	make	it	huge

Mirza+	2014

Brock+	ICLR-19

https://arxiv.org/abs/https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1809.11096


Image-to-image	translation	Image-to-image	translation	[[ ]]Isola+	CVPR-17Isola+	CVPR-17

https://arxiv.org/abs/1611.07004


Image-to-image	translation	Image-to-image	translation	[[ ]]Isola+	CVPR-17Isola+	CVPR-17

https://arxiv.org/abs/1611.07004


CycleGAN	CycleGAN	[[ ]]Zhu+	ICCV-17Zhu+	ICCV-17

https://junyanz.github.io/CycleGAN/


Pose-to-image	translation	Pose-to-image	translation	[[ ]]Chan+	2018Chan+	2018

https://carolineec.github.io/everybody_dance_now/


DeepFakesDeepFakes



Use	your	new	knowledge	for	good!Use	your	new	knowledge	for	good!

Slides	(including	links	to	papers)	are	online:
dougal.me/slides/gans-mlcc

https://dougal.me/slides/gans-mlcc/
https://www.tripsavvy.com/vancouver-4139150
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