Evaluation of Gaussian Processes and other Methods for Non-Linear Regression

Carl Edward Rasmussen, Department of Computer Science, University of Toronto

This thesis develops two Bayesian learning methods relying on Gaussian processes and a rigorous statistical approach for evaluating such methods. In these experimental designs the sources of uncertainty in the estimated generalisation performances due to both variation in training and test sets are accounted for. The framework allows for estimation of generalisation performance as well as statistical tests of significance for pairwise comparisons. Two experimental designs are recommended and supported by the DELVE software environment.

Two new non-parametric Bayesian learning methods relying on Gaussian process priors over functions are developed. These priors are controlled by hyperparameters which set the characteristic length scale for each input dimension. In the simplest method, these parameters are fit from the data using optimization. In the second, fully Bayesian method, a Markov chain Monte Carlo technique is used to integrate over the hyperparameters. One advantage of these Gaussian process methods is that the priors and hyperparameters of the trained models are easy to interpret.

The Gaussian process methods are benchmarked against several other methods, on regression tasks using both real data and data generated from realistic simulations. The experiments show that small datasets are unsuitable for benchmarking purposes because the uncertainties in performance measurements are large. A second set of experiments provide strong evidence that the bagging procedure is advantageous for the Multivariate Adaptive Regression Splines (MARS) method.

The simulated datasets have controlled characteristics which make them useful for understanding the relationship between properties of the dataset and the performance of different methods. The dependency of the performance on available computation time is also investigated. It is shown that a Bayesian approach to learning in multi-layer perceptron neural networks achieves better performance than the commonly used early stopping procedure, even for reasonably short amounts of computation time. The Gaussian process methods are shown to consistently outperform the more conventional methods.

Ph.D. thesis, Graduate Department of Computer Science, University of Toronto.

Available as ps.