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1. Noise in the amount of neurotransmitter per vesicle

A synapse has n release sites. When an action potential arrives at the synapse, neurotransmitter is

released (or not) from each site independently. The probability of release for all sites is p. If neuro-

transmitter is released, the amount released, which we’ll call q, is drawn from a distribution, denoted
P (q). This distribution has mean q and variance σ2

q .

(a) What is the mean amount of neurotransmitter released in terms of n, p, q and σ2

q?

(b) What is the variance of the amount of neurotransmitter released in terms of n, p, q and σ2

q?

(c) Plot the probability distribution of neurotransmitter released. Assume P (q) is Gaussian with
standard deviation 0.5, q = 1, n = 10 and p = 0.25.

(d) Why is the Gaussian assumption unrealistic?

For part c, you’ll need to know that the probability that neurotransmitter is released at exactly k sites,

denoted p(k), is

p(k) = pk(1− p)n−k n!

k!(n− k)!
.

This is the famous binomial distribution.

2. Maximum Likelihood estimate of a time-varying release model

We spend a lot of time writing down differential equations describing various processes in the brain.

Those equations almost always involve parameters. How are those parameters inferred? Often direct

measurements are made, but sometimes this is impossible and other times it’s inefficient. The goal
here is to use all the data as efficiently as possible to estimate the parameters of a neuron undergoing

both short term depression and facilitation.

Assume the probability of release, Pr, obeys the equation

dPr(t)

dt
=

P0 − Pr(t)

τ
+
[

fF (1 − Pr(t
−))− zi(1 − fD)Pr(t

−)
]

∑

i

δ(t− ti) .
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Here the ti are the presynaptic spike times, Pr(t
−) is the release probability evaluated immediately

before a spike, and zi is a random variable that can be 0 or 1; its value is determined by

zi =

{

1 with probability Pr(t
−

i )
0 with probability 1− Pr(t

−

i ) .

Both the spike times, ti, and the values of zi are known to you. Assume you know τ and P0, so your
only job is to estimate fF and fD. Conceptually, this is straightforward: the data is more likely for

some settings of fF and fD than for others. For instance, if Pr(t) is mainly much higher than P0, then
it’s likely that facilitation is strong (and thus fF is near 0) and depression is weak (and thus fD is near

1).

But we can do better than make qualitative statements, we can make quantitative ones. The idea is to

write down an expression for the probability of the data given fF and fD, and then find values of fF
and fD that make this probability as large as possible. That’s the maximum likelihood approach. We’re
going to do it in stages.

(a) Assume you know Pr(t
−

i ), and write down an expression for P ({t}, {z}|{Pr(t
−)}) where:

• {t} and {z} refer to the whole data set (all the ti and zi)

• {Pr(t
−)} refers to all the probabilities right before the spike; that is all the Pr(t

−

i ).

(b) If this is going to help us find the maximum likelihood values of fF and fD, we have to express

{Pr(t
−)} in terms of fF and fD. How would you do that? As mentioned above, we know τ and

P0; assume also that you know that the experiment starts at t = 0, and Pr(t = 0) = P0. The
answer should be short – I’m looking for a high level, conceptual explanation.

(c) A data set, which can be found on the course website, contains a set of spike times and x’s. You
can load the data set into matlab using “load hwk2data”. Arrays called t and x will appear in your

workspace; these are a list of spike times (the ti) and whether or not there was a release (the zi,
where 1 means release and 0 no release). Find the maximum likelihood values of fF and fD. Use
τ = 100 ms and P0 = 0.6, which are the true values. How certain are you of your answer?

3. Infinite cable response to arbitrary time-varying input

As we all know, the passive cable equation can be written

τm
∂u

∂t
− λ2

∂2u

∂x2
+ u = rmie (1)

where u(x, t) = V (x, t)−EL is the membrane potential relative to the leak reversal potential, τm is the
membrane time constant, λ = (rma/2rL)

1/2 is the length constant, rm is the specific resistance of the

membrane, rL is the longitudinal resistivity, and a is the radius of the cable.

(a) Let ie = r−1

m δ(x)δ(t). (Yes, we know this has the wrong units but, as you’ll see below, there’s a

reason for this.) Show that

u(x, t) =
1

τm

exp[−x2/(4λ2t/τm)− t/τm]

(4πλ2t/τm)1/2
Θ(t)

where Θ(t) is the Heaviside step function (Θ(t) = 1 if t ≥ 0 and 0 otherwise).

Hint #1: Fourier transform both sides of Eq. (1) with respect to x (but not t), solve the resulting

differential equation in time, then Fourier transform back.
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(b) Plot the time course of the voltage at position x = 0, λ, 2λ. Write down an expression for the

maximum amplitude of the voltage (with respect to time) as a function of x. Use this expression
to determine the “speed” at which signals travel in a passive cable. Here speed is defined as

x/tmax(x) where tmax is the time at which the voltage reaches a maximum at position x. Why is
speed in quotes?

(c) Let uδ(x, t) be the solution to Eq. (1) with ie = r−1

m δ(x)δ(t). This is the Green function for the

infinite, linear cable. The Green function is useful because it allows us to solve the equation

τ
∂u

∂t
− λ2

∂2u

∂x2
+ u = rmie(x, t) . (2)

Show that the solution to Eq. (2) is

u(x, t) =

∫

∞

−∞

dt′
∫

∞

−∞

dx′uδ(x− x′, t− t′)rmie(x
′, t′) .

The Green function method for solving linear inhomogeneous ODEs is an extremely powerful one;
you should remember it.
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