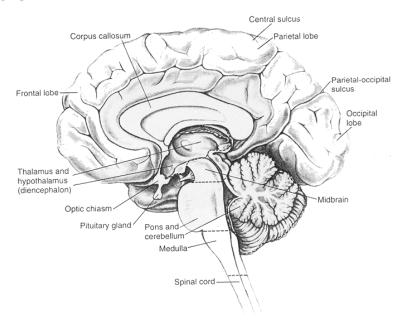
Introduction to Neural Coding

Peter Latham / Maneesh Sahani

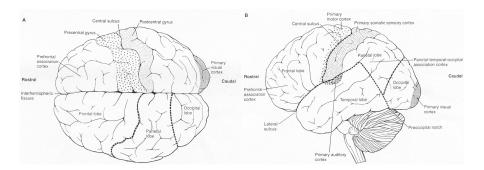
Gatsby Computational Neuroscience Unit University College London

Term 1, Autumn 2013

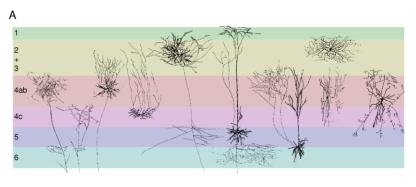
The CNS

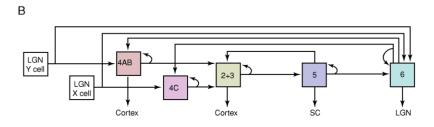


Neocortex



Cortical layers





Neural signals (in vivo)

Aggregate

- aggregate fields EEG, MEG, LFP
- aggregate membrane voltage dye imaging (voltage/calcium)
- metabolism fMRI, PET, intrinsic imaging

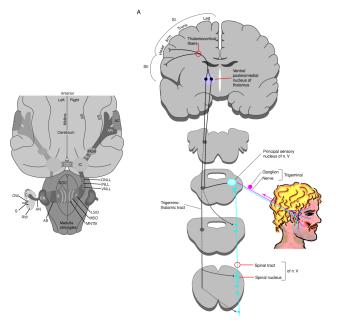
Single neuron

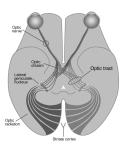
- extracellular single neuron, spike sorting, cell attach
- intracellular sharp electrode, whole cell
- imaging 2-photon calcium (and soon voltage) dyes.

Senses

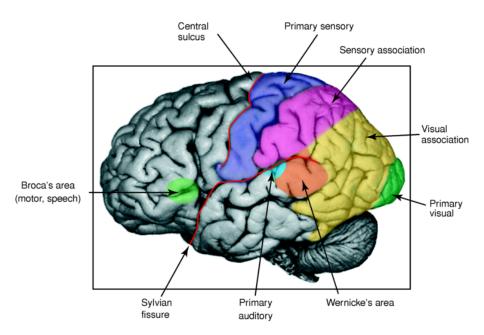
How many senses do you have?

Neocortical senses





Sensory areas



Common features of neocortical senses

- ▶ common pathways: receptors subctx nuclei thalamus primary ctx higher ctx
- thalamic loops between cortical areas
- feedback
- parallel hierarchy
- alternate pathways tectal, para-lemniscal

Common processing

- receptor discretisation sampling
- receptive fields
- centre-surround processing
- contrast sensitivity Weber's law
- adaptation
 - neural vs. psychological
 - adaptation to higher features
 - mismatch negativity
 - statistical adaptation

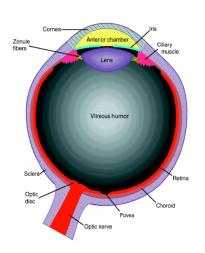
Quantifying responses

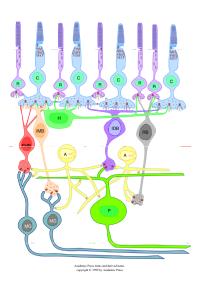
- receptive fields
- motor fields
- stimulus-response functions
- sensory computation and encoded variables
- tuning curves

Optimality of coding

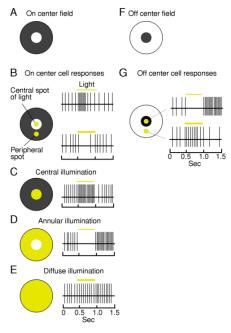
- "impedence" matching between different components
- matching to natural statistics
- matching to behaviourally relevant features
- redundancy reduction

The eye and retina

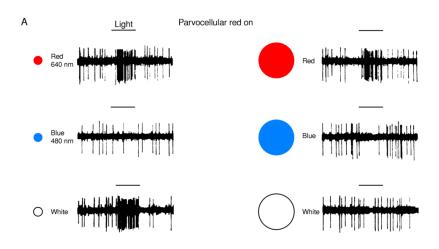




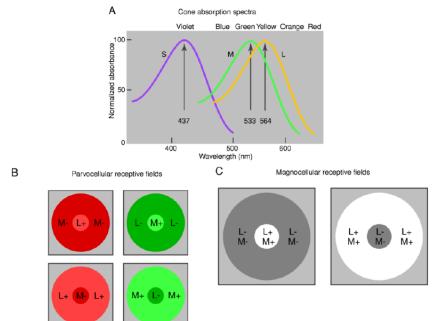
Centre-surround receptive fields



Colour at the retina



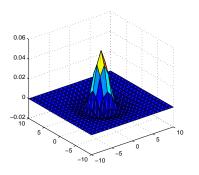
Colour at the retina

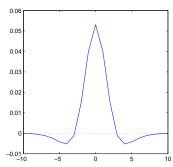


Centre-surround models

Centre-surround receptive fields are commonly described by one of two equations, giving the scaled response to a point of light shone at the retinal location (x, y). A difference-of-Gaussians (DoG) model:

$$D_{\text{DoG}}(x,y) = \frac{1}{2\pi\sigma_c^2} \exp\left(-\frac{(x-c_x)^2 + (y-c_y)^2}{2\sigma_c^2}\right) - \frac{1}{2\pi\sigma_s^2} \exp\left(-\frac{(x-c_x)^2 + (y-c_y)^2}{2\sigma_s^2}\right)$$

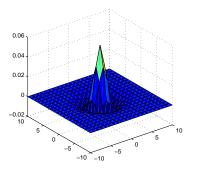


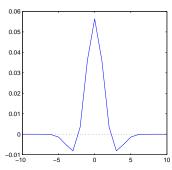


Centre-surround models

... or a Laplacian-of-Gaussian (LoG) model:

$$D_{\mathsf{LoG}}(x,y) = -
abla^2 \left[rac{1}{2\pi\sigma^2} \exp\left(-rac{(x-c_{\mathsf{x}})^2 + (y-c_{\mathsf{y}})^2}{2\sigma^2}
ight)
ight]$$





Linear receptive fields

The linear-like response apparent in the prototypical experiments can be generalised to give a predicted firing rate in response to an arbitrary stimulus s(x, y):

$$r(c_x, c_y; s(x, y)) = \int dx dy D_{c_x, c_y}(x, y) s(x, y)$$

The receptive field centres (c_x, c_y) are distributed over visual space.

If we let D() represent the RF function centred at 0, instead of at (c_x, c_y) , we can write:

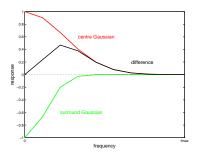
$$r(c_x,c_y;s(x,y))=\int dx\,dy\,D(c_x-x,c_y-y)s(x,y)$$

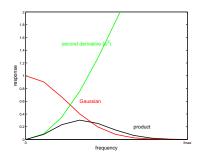
which looks like a convolution.

Transfer functions

Thus a repeated linear receptive field acts like a spatial filter, and can be characterised by its frequency-domain transfer function. (Indeed, much early visual processing is studied in terms of linear systems theory.)

Transfer functions for both DoG and LoG centre-surround models are **bandpass**. Taking 1D versions:





This accentuates mid-range **spatial** frequencies.

Transfer functions

Edge detection

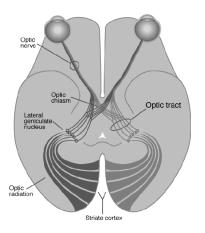
Bandpass filters emphasise edges:

orginal image

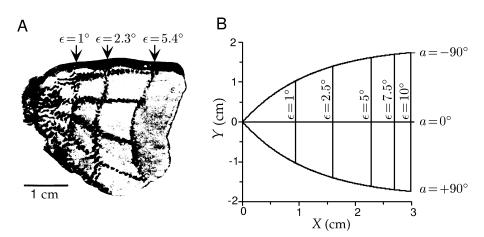
DoG responses

thresholded

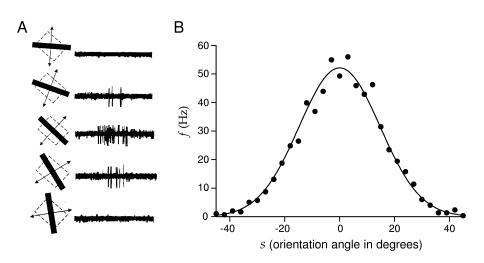
Thalamic relay



Visual cortex



Orientation selectivity



Linear receptive fields – simple cells

Linear response encoding:

$$r(t_0, s(x, y, t)) = \int_0^\infty d\tau \int dx \, dy \, s(x, y, t_0 - \tau) D(x, y, \tau)$$

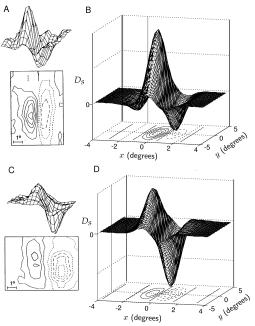
For separable receptive fields:

$$D(x, y, \tau) = D_s(x, y)D_t(\tau)$$

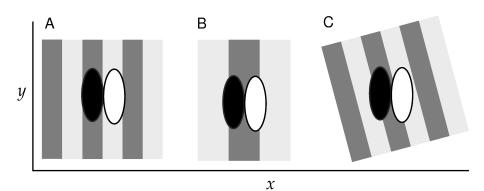
For simple cells:

$$D_s = \exp\left(-\frac{(x-c_x)^2}{2\sigma_x^2} - \frac{(y-c_y)^2}{2\sigma_y^2}\right)\cos(kx-\phi)$$

Linear response functions – simple cells



Simple cell orientation selectivity



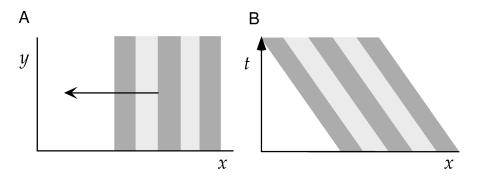
2D Fourier Transforms

Again, the best way to look at a filter is in the frequency domain, but now we need a 2D transform.

$$\begin{split} D(x,y) &= \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right) \cos(kx) \\ \widetilde{D}(\omega_x, \omega_y) &= \int dx \ dy \ e^{-i\omega_x x} e^{-i\omega_y y} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right) \cos(kx - \phi) \\ &= \int dx \ e^{-i\omega_x x} e^{-x^2/2\sigma_x^2} \cos(kx - \phi) \cdot \int dy \ e^{-i\omega_y y} e^{-y^2/2\sigma_y^2} \\ &= \sqrt{2\pi}\sigma_x \left[e^{-\sigma_x^2 \omega_x^2/2} \circ \pi [\delta(\omega_x - k) + \delta(\omega_x + k)] \right] \sqrt{2\pi}\sigma_y e^{-\sigma_y^2 \omega_y^2/2} \\ &= 2\pi^2 \sigma_x \sigma_y \left[e^{-\frac{1}{2}[(\omega_x - k)^2 \sigma_x^2 + \omega_y^2 \sigma_y^2]} + e^{-\frac{1}{2}[(\omega_x + k)^2 \sigma_x^2 + \omega_y^2 \sigma_y^2]} \right] \end{split}$$

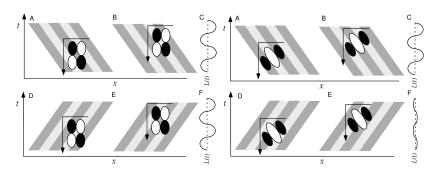
Easy to read spatial frequency tuning, bandwidth; orientation tuning and (for homework) bandwidth.

Drifting gratings



$$s(x, y, t) = G + A\cos(kx - \phi)\cos(\omega t)$$

Separable and inseparable response functions



Separable: motion sensitive; not direction sensitive

Inseparable: motion sensitive; and direction sensitive

Complex cells

Complex cells are sensitive to orientation, but, supposedly, not phase.

One model might be (neglecting time)

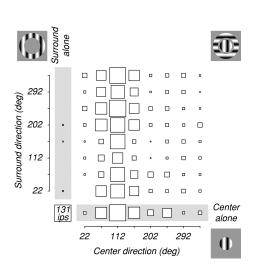
$$r(s(x,y)) = \left[\int dx \ dy \ s(x,y) \exp\left(-\frac{(x-c_x)^2}{2\sigma_x^2} - \frac{(y-c_y)^2}{2\sigma_y^2}\right) \cos(kx) \right]^2$$

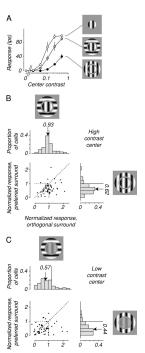
$$+ \left[\int dx \ dy \ s(x,y) \exp\left(-\frac{(x-c_x)^2}{2\sigma_x^2} - \frac{(y-c_y)^2}{2\sigma_y^2}\right) \cos(kx - \pi/2) \right]^2$$

But many cells do have some residual phase sensitivity. Quantified by $(f_1/f_0 \text{ ratio})$.

Stimulus-response functions (and constructive models) for complex cells are still a matter of debate.

Other V1 responses: surround effects

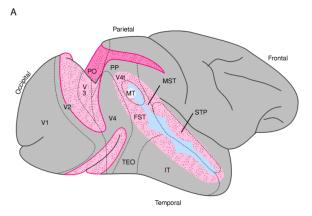


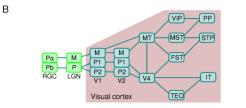


Other V1 responses

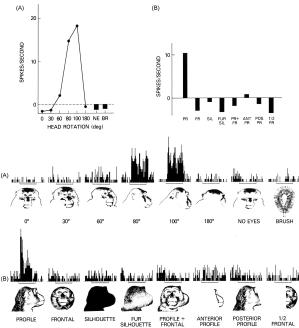
- end-stopping
- blobs and colour
 - . . .

Higher Visual Areas

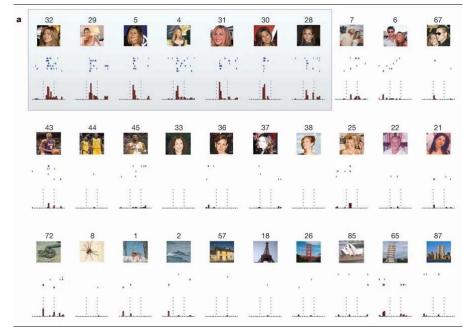




Object recognition



Grandmother cells (for certain definitions of grandmother)



Grandmother cells (for certain definitions of grandmother)

