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Coding so far ...

• Time-series for both spikes and stimuli

• Empirical — estimate function(s) given measured stimuli or movements and spikes



Population codes

• High dimensionality (cells × stimulus × time).

– usually limited to simple rate codes.
– even prosthetic work assumes instantaneous (lagged) coding

• Limited empirical data

– can record 10s - 100s of neurons.
– population size more like 104 - 106.
– theoretical inferences, based on single-cell and aggregate (fMRI, LFP, optical)

measurements .



Common approach

The most common sort of questions asked of population codes:

• given assumed encoding functions, how well can we (or downstream areas) de-
code the encoded stimulus value?

• what encoding schemes would be optimal, in the sense of allowing decoders to
estimate stimulus values as well as possible.

Before considering populations, we need to formulate some ideas about rate coding
in the context of single cells.



Rate coding

In the rate coding context, we imagine that the firing rate of a cell r represents a
single (possibly multidimensional) stimulus value s at any one time:

r = f (s).

Even if s and r are embedded in time-series we assume:

1. that coding is instantaneous (with a fixed lag),

2. that r (and therefore s) is constant over a short time ∆.

The actual number of spikes n produced in ∆ is then taken to be distributed around
r∆, often according to a Poisson distribution.



Tuning curves

The function f (s) is known as a tuning curve.

Commonly assumed forms:

• Gaussian r0 + rmax exp
[
−

1
2σ2(x − xpref)2

]
• Cosine r0 + rmax cos(θ − θpref)

• Wrapped Gaussian r0 + rmax

∑
n

exp
[
−

1
2σ2(θ − θpref − 2πn)2

]

• von Mises (“circular Gaussian”) r0 + rmax exp
[
κcos(θ − θpref)

]



Measuring the performance of rate codes: Discrete choice

Suppose we want to make a binary choice based on firing rate:

• present / absent (signal detection)

• up / down

• horizontal / vertical

Call one potential stimulus s0, the other s1.

P(n|s):
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ROC curves
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ROC curves
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Summary measures

• area under the ROC curve

– given n1 ∼ P(n|s1) and n0 ∼ P(n|s0), this equals P(n1 > n0)

• discriminability d′

– for equal variance Gaussians d′ =
µ1 − µ0

σ
.

– for any threshold d′ = Φ−1(1−FA)−Φ−1(1−HR) where Φ is a standard normal
cdf.

– definition unclear for non-Gaussian distributions.



Continuous estimation

Now consider a (one dimensional) stimulus that takes any real value (or angle).

• contrast

• orientation

• motion direction

• movement speed

Consider a neuron that fires n spikes in response to a stimulus s, according

P(n| f (s)∆)

Given n we attempt to estimate s. How well can we do?



Continuous estimation

Useful to consider a limit given N → ∞ measurements ni all generated by the same
stimulus s∗. Then the posterior over s is

log P(s|{ni}) =
∑

i

log P(ni|s) + log P(s) − log Z({ni})

and so taking N → ∞

1
N

log P(s|{ni})→
〈
log P(n|s)

〉
n|s∗ + 0 − log Z(s∗)

and so

P(s|{ni})→ eN〈log P(n|s)〉n|s∗/Z

= e−NKL[P(n|s∗)‖P(n|s)]/Z



Continuous estimation

Now, Taylor expand the KL divergence in s around s∗:

KL
[
P(n|s∗)‖P(n|s)

]
= −
〈
log P(n|s)

〉
n|s∗ +

〈
log P(n|s∗)

〉
n|s∗

= −
〈
log P(n|s∗)

〉
n|s∗ − (s − s∗)

〈
d log P(n|s)

ds

∣∣∣
s∗

〉
s∗
−

1
2

(s − s∗)2
〈

d2 log P(n|s)
ds2

∣∣∣
s∗

〉
s∗

+ . . .

+
〈
log P(n|s∗)

〉
n|s∗

= −
1
2

(s − s∗)2
〈

d2 log P(n|s)
ds2

∣∣∣
s∗

〉
s∗

+ . . .

=
1
2

(s − s∗)2J(s∗) + . . .

So in asymptopia, the posterior→ N (s∗, 1/J(s∗)).
J(s∗) is called the Fisher Information.

J(s∗) = −

〈
d2 log P(n|s)

ds2

∣∣∣
s∗

〉
s∗

=

〈(d log P(n|s)
ds

∣∣∣
s∗

)2
〉

s∗

(You will show that these are identical in the homework.)



Cramér-Rao bound

The Fisher Information is important even outside the large data limit due to a deeper
result that is due to Cramér and Rao.

This states that for any N, any unbiased estimator ŝ({ni}) of s will have the property
that〈

(ŝ({ni}) − s∗)2〉
ni|s∗
≥

1
J(s∗)

.

Thus, Fisher Information gives a lower bound on the variance of any unbiased es-
timator. This is called the Cramér-Rao bound. (There is also a version for biased
estimators).

The Fisher Information will be our primary tool to quantify the performance of a
population code.



Fisher Info and tuning curves

n = r∆ + noise; r = f (s)⇒

J(s∗)=

〈(
d
ds

∣∣∣
s∗

log P(n|s)
)2
〉

s∗

=

〈(
d

dr∆

∣∣∣
f (s∗)

log P(n|r∆)∆ f ′(s∗)
)2
〉

s∗

= Jnoise(r∆)∆2 f ′(s∗)2
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Fisher info for Poisson neurons

For Poisson neurons

P(n| f (s)) =
e− f (s) f (s)n

n!
so

Jnoise[ f (s∗)]=

〈(
d

d f

∣∣∣
f (s∗)

log P(n| f (s))
)2
〉

s∗

=

〈(
d

d f

∣∣∣
f (s∗)
− f (s) + n log f (s) − log n!

)2
〉

s∗

=

〈(
− 1 + n/ f (s∗)

)2
〉

s∗

=

〈
(n − f (s∗))2

f (s∗)2

〉
s∗

=
f (s∗)
f (s∗)2=

1
f (s∗)

[not surprising! f̂ (s) = n]

and

J[s∗]= f ′(s∗)2/ f (s∗)



Cooperative coding
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Cooperative coding

All of these are found in biological systems.

Issues:

1. redundancy and robustness (not scalar)

2. efficiency (not labelled line)

3. local computation (not scalar or distributed)

4. multiple values (not scalar)



Coding in multiple dimensions

Cartesian

 s
2

 s
1

• efficient

• problems with multiple values

Distributed

 s
2

 s
1

• represent multiple values

• may require more neurons



Cricket cercal system

ra(s) = rmax
a [cos(θ − θa)]+ = rmax

a [cT
av]+

cT
1c2 = 0

c3 = −c1

c4 = −c2

So, writing r̃a = ra/rmax
a :(

r̃1 − r̃3

r̃2 − r̃4

)
=

(
cT

1
cT

2

)
v

v = (c1c2)
(

r̃1 − r̃3

r̃2 − r̃4

)
= r̃1c1 − r̃3c3 + r̃2c2 − r̃4c4 =

∑
a

r̃aca

This is called population vector decoding.



Motor cortex (simplified)

Cosine tuning, randomly distributed preferred directions.

In general, population vector decoding works for

• cosine tuning

• cartesian or dense (tight) directions

But:

• is it optimal?

• does it generalise? (Gaussian tuning curves)

• how accurate is it?



Bayesian decoding

Take na ∼ Poisson[ fa(s)∆], independently for different cells.

Then

P(n|s) =
∏

a

e− fa(s)∆( fa(s)∆)na

na!

and

log P(s|n) = −
∑

a

fa(s)∆ + nalog( fa(s)∆) − log na! + log P(s)

Assume
∑

a fa(s) is independent of s for a homogeneous population, and prior is
flat.

d
ds

log P(s|n) =
d
ds

∑
a

nalog( fa(s)∆)

=
∑

a

na

fa(s)∆
f ′a(s)∆



Bayesian decoding

Now, consider fa(s) = e−(s−sa)2/2σ2
, so f ′a(s) = −(s − sa)/σ2e−(s−sa)2/2σ2

and set the derivative to 0:∑
a

na(s − sa)/σ2 = 0

ŝMAP =

∑
a nasa∑

a na

So the MAP estimate is a population average of preferred directions. Not exactly a
population vector.



Population Fisher Info

Fisher Informations for independent random variates add:

Jn(s) =

〈
−

d2

ds2 log P(n|s)
〉

=

〈
−

d2

ds2

∑
a

log P(na|s)

〉
=
∑

a

〈
−

d2

ds2 log P(na|s)
〉

=
∑

a

Jna(s).

= ∆
∑

a

f ′a(s)2

fa(s)



Optimal tuning properties

A considerable amount of work has been done in recent years on finding optimal
properties of tuning curves for rate-based population codes. Here, we reproduce
one such argument (from Zhang and Sejnowski, 1999).

Consider a population of cells that codes the value of a D dimensional stimulus,
s. Let the ath cell emit r spikes in an interval τ with probability distribution that is
conditionally independent of the other cells (given s) and has the form

Pa(r | s, τ) = S (r, f a(s), τ).

The tuning curve of the ath cell, f a(s), has the form

f a(s) = F · φ
(
(ξa)2) ; (ξa)2 =

D∑
i

(ξa
i )2; ξa

i =
si − ca

i

σ
,

where F is a maximal rate and the function φ is monotically decreasing. The param-
eters ca and σ give the centre of the ath tuning curve and the (common) width.



Optimal tuning properties

Now, the (i j)th term in the FI matrix for the ath cell is (by definition)

Ja
i j(s) = E

[
∂

∂si
log Pa(r | s, τ)

∂

∂s j
log Pa(r | s, τ)

]
Applying the chain rule repeatedly, we find that

∂

∂si
log Pa(r | s, τ) =

1
S (r, f a(s), τ)

∂

∂si
S (r, f a(s), τ)

=
S (2)(r, f a(s), τ)
S (r, f a(s), τ)

∂

∂si
f a(s)

(where S (2) indicates differentiation with respect to the second argument)

=
S (2)(r, f a(s), τ)
S (r, f a(s), τ)

Fφ′
(
(ξa)2) ∂

∂si

D∑
i

(ξa
i )2

=
S (2)(r, f a(s), τ)
S (r, f a(s), τ)

Fφ′
(
(ξa)2) 2(si − ca

i )
(σa

i )2



Optimal tuning properties

So,

Ja
i j(s) = E

[(
S (2)(r, f a(s), τ)
S (r, f a(s), τ)

)2
]

4F2 (φ′ ((ξa)2))2 (si − ca
i )(s j − ca

j)
σ4

= Aφ

(
(ξa)2, F, τ

) (si − ca
i )(s j − ca

j)
σ4

where the function Aφ does not depend explicitly on σ.



Optimal tuning properties

We assumed neurons were independent ⇒ Fisher information adds. Approximate
by integral over the tuning curve centres, assuming uniform density η of neurons.

Ji j(s) =
∑

a

Ja
i j(s)

≈

∫ +∞

−∞

dca
1 · · ·

∫ +∞

−∞

dca
D ηJa

i j(s)

=

∫ +∞

−∞

dca
1 · · ·

∫ +∞

−∞

dca
D ηAφ

(
(ξa)2, F, τ

) (si − ca
i )(s j − ca

j)
σ4

Change variables: ca
i → ξa

i

=

∫ +∞

−∞

σdξa
1 · · ·

∫ +∞

−∞

σdξa
D ηAφ

(
(ξa)2, F, τ

) ξa
i ξ

a
j

σ2

=
σD

σ2 η

∫ +∞

−∞

dξa
1 · · ·

∫ +∞

−∞

dξa
D Aφ

(
(ξa)2, F, τ

)
ξa

i ξ
a
j

Now, if i , j, integral is odd in both ξa
i and ξa

j , and thus vanishes. If i = j, then the
integral has some value D · Kφ(F, τ,D), independent of σ. Thus,

Jii = σD−2ηDKφ(F, τ,D)

and the total Fisher information is proportional to σD−2.



Optimal tuning properties

Thus optimal tuning width depends on the stimulus dimension.

• D = 1

⇒ σ→ 0 (although a lower limit is encountered when the tuning width falls below
the inter-cell spacing)

• D = 2

⇒ J independent of σ.

• D > 2

⇒ σ→ ∞ (actual limit set by valid stimuli).



More ...

• Correlated noise

• Extended s (feature maps etc.)

• Uncertainty
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