TNI: Computational Neuroscience

Instructors: Peter Latham
Maneesh Sahani
Peter Dayan

TAs: Loic Matthey, loic.matthey@gatsby.ucl.ac.uk
Ritwik Niyogi, ritwik.niyogi@gatsby.ucl.ac.uk
Website: www.gatsby.ucl.ac.uk/~Imatthey/teaching/tn1/

Lectures: Tuesday/Friday, 11:00-1:00.
Review: Tuesday, 4:30-6:30.

Homework: Assigned Friday, due Friday (1 week later).
first homework: assigned Oct. 8, due Oct. 15.



Theoretical Neuroscience

* neuroscience:
— how does the brain work?

* theoretical neuroscience:
— data analysis:
* how can we extract; characterize spikes/anatomy?

— mathematical neuroscience:
 reductive modeling of a natural phenomenon

— computational neuroscience:
 the brain computes...



There are about 150 trillion cubes of
this size in your brain!




Levels of Reduction
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Reductive Models

» descriptive: o
— characterize as a cubic spline ; |
» mechanistic: o[

— characterise in terms of gating: e

« explanatory model of spike, from
 descriptive model of the gate

* now: do a better job:




Marrian Analysis

* Interpretive patina around reductive model
— computation
 goal; intent
* logic of the strategy
— algorithm
» effective procedure for realizing computation
* representations (coding)

— Implementation
* neural substrate



Example #1: memory.

the problem:
recall events, typically based on partial information.




Example #1: memory.

the problem:
recall events, typically based on partial information.
associative or content-addressable memory.

an algorithm:
dynamical systems with fixed points.
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Example #1: memory.

the problem:
recall events, typically based on partial information.
associative or content-addressable memory.
BUT: which one to recall (depends on environment)

an algorithm:
dynamical systems with fixed points.

neural implementation:
Hopfield networks.

x; = sign(3; J;; x;)



Example #2: vision.

the problem (Marr):
2-D image on retina »
3-D reconstruction of a visual scene.



Example #2: vision.

the problem (modern version):
2-D image on retina »
recover the latent variables.
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Example #2: vision.

the problem (modern version):
2-D image on retina »

recover the latent variables.
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Example #2: vision.

the problem (modern version):
2-D image on retina »
reconstruction of latent variables.

an algorithm:
graphical models.

latent variables

1

low level representation




Example #2: vision.

the problem (modern version):
2-D image on retina »
reconstruction of latent variables.

an algorithm:
graphical models.

latent variables

T inference

low level representation




Example #2: vision.

the problem (modern version):
2-D image on retina »
reconstruction of latent variables.

an algorithm:
graphical models.

implementation in networks of neurons:
little clue.



Comment #1:

the problem:
the algorithm:
neural implementation:



Comment #1:

the problem: easier
the algorithm: harder
neural implementation: harder

often ignored!!!



Comment #1:

the problem: easier
the algorithm: harder
neural implementation: harder

A common approach:
Experimental observation - model

Usually very underconstrained!!!!



Comment #1:

the problem: easier
the algorithm: harder
neural implementation: harder

Example i: CPGs (central pattern generators)

\ rate

\ rate

t

Too easy!!!



Comment #1:

the problem: easier
the algorithm: harder
neural implementation: harder

Example ii: single cell modeling

cdv/dt=-g,(V-V,)-n*(V-V,) ..

dn/dt = ...

lots and lots of parameters ... which ones should you use?



Comment #1:

the problem: easier
the algorithm: harder
neural implementation: harder

Example iii: network modeling

lots and lots of parameters x thousands



Comment #2:
the problem:

the algorithm:
neural implementation:

You need to know a lot of maths

easier
harder
harder
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Marrian Conditioning

prediction: of important events

control: in the light of those predictions
e Ethology e Computation
— optimality — dynamic progr.
— appropriateness — Kalman filtering
e Psychology e Algorithm
— classical/operant — TD/delta rules
conditioning — simple weights

e Neurobiology

neuromodulators; midbrain; sub-cortical;
cortical structures



Comment #3:

the problem: easier
the algorithm: harder
neural implementation: harder

This is a good goal, but it’s hard to do in practice.

Our actual bread and butter:

[ ]
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2. Using sophisticated analysis to design simple experiments
that test hypotheses.

two experiments: RL and visual salience



Temporal Difference Prediction Error

TD error 5(0 — r(t)+V(t+1)—V(t)
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TD prediction error:
ventral striatum
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Visual Salience (Li/Zhaoping)

* problem:
— segmentation without classification
* algorithm:

— interacting neural elements with a connection
field

* Implementation:
_ horlzontal ConneCtlonS In V1' B Neural connection pattern.

Visual space, edge detectors, Solid: J. Dashed: W
and their interactions ‘

A sampling One of the edge
location detectors



Monocular Popout

A A dichoptic congruent stimulus in Experiment 1
Left eye input Right eye input
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Comment #4:

the problemn: easier
the algorithm: harder
neural implementation: harder

N

some algorithms are easy to implement on a computer
but hard in a brain, and vice-versa.

these are linked!!!



Comment #4:

hard for a brain, easy for a computer:

A-1

Z=x+y

fdx ...

optimal draughts

easy for a brain, hard for a computer:

speech recognition

go

inference from diverse, weak, hierarchical
statistical constraints



Comment #4:

the problem: easier
the algorithm: harder
neural implementation: harder

N

some algorithms are easy to implement on a computer
but hard in a brain, and vice-versa.

these are linked!!!

we should be looking for the vice-versa ones.

it can be hard to tell which is which.



Basic facts about the brain



Your brain

Primary Central

motor sulcus prmary
cortex somatosensory
cortex
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Spinal cord



Your cortex unfolded

neocortex (cognition)

6 layers

J

subcortical structures

S (emotions, reward,
homeostasis, much much
more)



A Inputs
from lateral geniculate nucleus

Your cortex unfolded
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1 mm?3 of cortex:

50,000 neurons

10000 connections/neuron
(=> 500 million connections)
4 km of axons



1 mm?3 of cortex:

50,000 neurons

10000 connections/neuron
(=> 500 million connections)
4 km of axons

1 mm? of a CPU:

1 million transistors

2 connections/transistor
(=> 2 million connections)
.002 km of wire



1 mm?3 of cortex:

50,000 neurons

10000 connections/neuron
(=> 500 million connections)
4 km of axons

whole brain (2 kg):

1011 neurons
1015 connections
8 million km of axons

1 mm? of a CPU:

1 million transistors

2 connections/transistor
(=> 2 million connections)
.002 km of wire

whole CPU:

10° transistors
2*10° connections
2 km of wire



1 mm?3 of cortex:

50,000 neurons

10000 connections/neuron
(=> 500 million connections)
4 km of axons

whole brain (2 kg):

1011 nheurons
101> connections
8 million km of axons

1 mm? of a CPU:

1 million transistors

2 connections/transistor
(=> 2 million connections)
.002 km of wire

whole CPU:

10° transistors
2*10° connections

2 km of wire
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voltage

dendrites (input)
soma (spike generation)

axon (output)

+40 mV
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neuron j neuron j

neuron j emits a spike:
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neuron j neuron j

neuron j emits a spike:
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neuron j neuron j

neuron j emits a spike:
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V on neuron i
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a. Anatomy. We know a lot about what is where. But be
careful about labels: neurons in motor cortex sometimes
respond to color.




a. Anatomy. We know a lot about what is where. But be
careful about labels: neurons in motor cortex sometimes
respond to color.

Connectivity. We know (more or less) which area
is connected to which.




The van Essen diagram




a. Anatomy. We know a lot about what is where. But be
careful about labels: neurons in motor cortex sometimes
respond to color.

Connectivity. We know (more or less) which area
is connected to which.




a. Anatomy. We know a lot about what is where. But be
careful about labels: neurons in motor cortex sometimes
respond to color.

Connectivity. We know (more or less) which area
is connected to which. We don’t know the wiring diagram
at the microscopic level.




a. Anatomy. We know a lot about what is where. But be
careful about labels: neurons in motor cortex sometimes
respond to color.

Connectivity. We know (more or less) which area
is connected to which. We don’t know the wiring diagram
at the microscopic level. But we might in a few decades!
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b. Single neurons. We know very well how point neurons work
(think Hodgkin Huxley).

Dendrites. Lots of potential for incredibly complex
processing.

My guess: all they do make neurons bigger and reduce
wiring length (see the work of Mitya Chklovskii).



<€ L >

m neurons AAAAAAAAAAAAAAAAAAAAA

>

nneurons AAAAAAAAAAAAAAAAA \”

total wire length without dendrites: ~nmL
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total wire length without dendrites: ~nmL

total wire length with dendrites: ~(n+m)L



b. Single neurons. We know very well how point neurons work
(think Hodgkin Huxley).

Dendrites. Lots of potential for incredibly complex
processing.

His guess: all they do is make neurons bigger and reduce
wiring length (see the work of Mitya Chklovskii).

Requires: dendritic democracy...

How much PEL would bet that: 20 p.



c. The neural code.

His guess: once you get away from periphery, it’s mainly
firing rate: an inhomogeneous Poisson process with
a refractory period is a good model of spike trains.

How much PEL would bet: £100.

The role of correlations. Still unknown.

His guess: don’t have one.

The roles of oscillations. Much more complicated




d. Networks of neurons.

* feedforward
°* many computations
* kernel-universality

* recurrent:
* ‘rate-based’ neural dynamics
» few key algorithms:
associative memory
selective amplification
resonance
* spike-based neural dynamics
* balanced networks
associative memory



e. Learning. We know a lot of facts (LTP, LTD, STDP).

¢ it’s not clear which, if any, are relevant.
¢ the relationship between learning rules and computation

is essentially unknown.

* supervised learning (cerebellum)
* unsupervised learning (neocortex)
* reinforcement learning (basal ganglia)



A word about learning (remember these numbers!!!):

You have about 10" synapses.

If it takes 1 bit of information to set a synapse,
you need 10'° bits to set all of them.

30 years = 10° seconds.
To set 1/10 of your synapses in 30 years,

you must absorb 100,000 bits/second.

Learning in the brain is almost completely unsupervised!!!



f. Where we know algorithms we know the neural
implementation (sort of):

sound localization, addition, reward learning
This is not a coincidence...
Remember David Marr:
1. the problem (computational level)
2. the strategy (algorithmic level)

3. how it’s actually done by networks of neurons
(implementational level)



What we know: PEL’s score (1-10).

a. Anatomy.

b. Single neurons.

c. The neural code.

d. Recurrent networks of neurons.
e. Learning.

The hard problems:

1. How does the brain extract latent variables?
2. How does it manipulate latent variables?

3. How does it learn to do both?

N WO O WU

1.001
1.002
1.001



Perception Action Cycle
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versus weakly tickled internal processing?
autopoiesis



Outline:

1. Systems neuroscience Dayan
2. Language of neurons: neural coding. Sahani
3. Basics: single neurons/axons/dendrites/synapses. Latham
4. Learning at the network and behavioral level. Dayan
5. What we know about networks (very little). Latham

6. Uncertainty Dayan



