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Overview

@ Review of convex optimization

@ Support vector classification, the C-SV machine
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Why we need optimization: SVM idea

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.
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Why we need optimization: SVM idea

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Smallest distance from each class to the separating hyperplane
w'x + bis called the margin.
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Why we need optimization: SVM idea

This problem can be expressed as follows:

2
max (margin) = max ( ) or min|w|? (1)
w, Iwl b
subject to
WTXi+b21 Iy =41, (2)
wlxi+b<—1 i yi=-1L

This is a convex optimization problem.
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Short overview of convex optimization



Convex set

O &9 B

(Figure from Boyd and Vandenberghe)

Leftmost set is convex, remaining two are not.

Every point in the set can be seen from any other point in the set,
along a straight line that never leaves the set.

Definition

C is convex if for all x;,x € C and any 0 < 6 < 1 we have

Ox1 + (1 — 0)xx € C, i.e. every point on the line between x; and x;
lies in C.
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Convex function: no local optima

*(y, f(y)

(z, f(x)) =

(Figure from Boyd and Vandenberghe)

Definition (Convex function)

A function f is convex if its domain domf is a convex set and if
Vx,y € domf, and any 0 < 0 <1,

fOx+(1—-0)y) <0f(x)+(1—0)f(y).

The function is strictly convex if the inequality is strict for x # y.
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Optimization and the Lagrangian

Optimization problem on x € R”,

minimize fy(x)
subject to fi(x) <0 i=1,....m (3)

e p* the optimal value of (3)
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Optimization and the Lagrangian

Optimization problem on x € R”,
minimize fy(x)

subject to fi(x) <0 i=1,....m (3)

e p* the optimal value of (3)

Ideally we would want an unconstrained problem
m
minimize fo(x) + Z I— (fi(x)),
i=1

0 uv<O,

oo u>0.
Why is this hard to solve?

where I_(u) =
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Lower bound interpretation of Lagrangian

The Lagrangian L : R" x R™ — R is an (easier to optimize)
lower bound on the original problem:

The A; are called lagrange multipliers or duaI variables.
To ensure a lower bound, we require A = 0.

= fi@)
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Lower bound interpretation of Lagrangian

The Lagrangian L : R" x R™ — R is an (easier to optimize)
lower bound on the original problem:

The A; are called lagrange multipliers or dual variables.

Why bother?
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Lower bound interpretation of Lagrangian

The Lagrangian L : R" x R™ — R is an (easier to optimize)
lower bound on the original problem:

The A; are called lagrange multipliers or dual variables.

Why bother?

@ The original problem was very hard to solve (constraints).
Minimizing the lower bound is easier (and can easily find the
closest lower bound).

@ Under "some conditions", the closest lower bound is tight:
here minimum of L(x, A) at true x* corresponding to p*.

Arthur Gretton Introduction to Machine Learning: Kernels



Lagrange dual: lower bound on optimum p*

The Lagrange dual function: minimize Lagrangian
When A = 0 and fj(x) < 0, Lagrange dual function is

g(A) = inf L(x, \). (4)
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Lagrange dual: lower bound on optimum p*

The Lagrange dual function: minimize Lagrangian
When A = 0 and fj(x) < 0, Lagrange dual function is

g(A) = inf L(x, \). (4)

We will show: (next slides) for any A = 0,

wherever

(including at fo(x*) = p*).
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Lagrange dual: lower bound on optimum p*

Simplest example: minimize over x the function
L(x,\) = fo(x) + AM(x)

(Figure from Boyd and Vandenberghe)

fo+Af1
A

(=

Reminders:
4
*
3 p | @ fo is function to
) \ '%f() be minimized.
\ A @ 1<0is
1 | inequality
éfl constraint
Y @ )\ > 0is Lagrange
1 multiplier
@ p* is minimum fp
731 —o8 0 05 l in constraint set
T

—> f1 <0
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Lagrange dual: lower bound on optimum p*

Simplest example:minimize over x the function
L(x,\) = fo(x) + AM(x)

(Figure from Boyd and Vandenberghe)

penalized fo+ Af1
5 )
Reminders:
4
3 @ fo is function to
9 be minimized.
- @ 1<0is
1 | inequality
éfl constraint
& @ )\ > 0is Lagrange
1 multiplier
@ p* is minimum fp
731 —o8 0 05 l in constraint set
T

—> f1 <0

Arthur Gretton Introduction to Machine Learning: Kernels



Lagrange dual: lower bound on optimum p*

Simplest example: minimize over x the function
L(x,\) = fo(x) + AM(x)

(Figure from Boyd and Vandenberghe)

rewarded fo+ Afi
Reminders:
4
3 | @ fp is function to
9 '%f() be minimized.
@ 1<0is
1 | inequality
%fl constraint
0 @ )\ >0is Lagrange
1 multiplier
@ p* is minimum fp
—9 J i i
St 05 0 0.5 1 In constraint set
T

—> f1 <0
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Lagrange dual is lower bound on p* (proof)

We now give a formal proof that Lagrange dual function g(\,v)
lower bounds p*.
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Lagrange dual is lower bound on p* (proof)

We now give a formal proof that Lagrange dual function g(\,v)
lower bounds p*.

Proof: Define X as “some point” that is feasible, i.e. f;(X) <0,
A>=0. Then

m

Z Aifi(X) <0

i=1
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Lagrange dual is lower bound on p* (proof)

We now give a formal proof that Lagrange dual function g(\,v)
lower bounds p*.

Proof: Define X as “some point” that is feasible, i.e. f;(X) <0,

A >=0. Then

m

Z Aifi(X) <0

Thus
g(\) = inf (fb(x)—l—ZAifi(x))

< @(i)+§mjA;ff(i)
< f(K).

This holds for every feasible X, hence lower bound holds.
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Best lower bound: maximize the dual

Closest (i.e. biggest) lower bound g(\) on the optimal solution p*
of original problem: Lagrange dual problem

maximize  g(\)
subject to A= 0. (5)

Dual optimal: solutions A* maximizing dual, d* is optimal value
(dual always easy to maximize: next slide).
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Best lower bound: maximize the dual

Closest (i.e. biggest) lower bound g(\) on the optimal solution p*
of original problem: Lagrange dual problem

maximize  g(\)
subject to A= 0. (5)

Dual optimal: solutions A* maximizing dual, d* is optimal value
(dual always easy to maximize: next slide).
Weak duality always holds:

d* < p*.

...but what is the point of finding a biggest lower bound on a
minimization problem?

Arthur Gretton Introduction to Machine Learning: Kernels



Best lower bound: maximize the dual

Best (i.e. biggest) lower bound g(\) on the optimal solution p* of
original problem: Lagrange dual problem

maximize g(\)
subject to A= 0. (6)

Dual optimal: solutions A* to the dual problem, d* is optimal
value (dual always easy to maximize: next slide).
Weak duality always holds:

d* < p*.

Strong duality: (does not always hold, conditions given later):
d* = p*.

If S.D. holds: solve the easy (concave) dual problem to find p*.

Arthur Gretton Introduction to Machine Learning: Kernels



Maximizing the dual is always easy

The Lagrange dual function: minimize Lagrangian (lower bound)
A) = inf L(x, ).
g(\) = inf 1(x))

Dual function is a pointwise infimum of affine functions of A, hence
concave in A with convex constraint set A > 0.

g(N) Example:
One inequality constraint,
L(x,A) = fo(x) + M (x),

and assume there are only four
T N possible values for x. Each line
represents a different x.
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How do we know if strong duality holds?

Conditions under which strong duality holds are called constraint
qualifications (they are sufficient, but not necessary)

(Probably) best known sufficient condition: Strong duality
holds if

@ Primal problem is convex, i.e. of the form

minimize fy(x)
subject to  fi(x) <0 i=1,...,n

for convex fy, affine fi,..., fm.
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A consequence of strong duality...

Assume primal is equal to the dual. What are the consequences?

@ x* solution of original problem (minimum of fy under
constraints),

@ \* solution to dual

fb(x*) (as&fned) g()‘*)
= inf [ % N f
(g definition) Ir)l <O(X) + ’Z_; i (X)>
< fo(x*)+ > N fi(x*
(inf definition) 0( ) IZ; ( )
< fo(x™),
(4)

(4): (x*, \*) satisfies A* = 0, and f;(x*) < 0.
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...Is complementary slackness

From previous slide,
m
D Nfix) =0, (7)
i=1

which is the condition of complementary slackness. This means

AP >0 = fi(x")=0,
filx*)<0 = X =0.

From )\;, read off which inequality constraints are strict.
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KKT conditions for global optimum
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KKT conditions for global optimum

Assume functions f; are differentiable and strong duality. Since x*
minimizes L(x, A*), derivative at x* is zero,

Vi(x ZX“Vf =0.
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KKT conditions for global optimum

Assume functions f; are differentiable and strong duality. Since x*
minimizes L(x, A*), derivative at x* is zero,

Vih(x*) + Z AV fi(x

KKT conditions definition: we are at global optimum,
(x, \,v) = (x*,\*) when (a) strong duality holds, and (b)

filx) < 0,i=1,...,m
Ai > 0,i=1...,m
Aifi(x) = 0,i=1,....m
Vo (x +Z)\Vf =0
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KKT conditions for global optimum

In summary: if
@ primal problem convex and
@ inequality constraints affine

then strong duality holds. If in addition
@ functions f; differentiable

then KKT conditions necessary and sufficient for optimality.
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Support vector classification



Reminder: linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Smallest distance from each class to the separating hyperplane
w'x + bis called the margin.
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Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

2
g mersin) = max () )
subject to
wlixi+b>1 iy =41, (9)
wlixi+b<—1 i y=-1

The resulting classifier is

y = sign(w' x + b),
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Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

2
max (margin) = max <”WH> (8)
subject to
wlixi+b>1 iy =41, (9)
wlixi+b<—1 i y=-1
The resulting classifier is
y = sign(w' x + b),
We can rewrite to obtain
1
max —— or min||w|?
w,b HWH w,b
subject to
yi(w'x; + b) > 1. (10)
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Maximum margin classifier: with errors allowed

Allow “errors™: points within the margin, or even on the wrong side
of the decision boundary. Ideally:

(1 &
min <2||w||2 +CX Ty (wixi+b) < 01> :
where C controls the tradeoff between maximum margin and loss.

...but this is too hard! (Why?)

Arthur Gretton Introduction to Machine Learning: Kernels



Maximum margin classifier: with errors allowed

Allow “errors™: points within the margin, or even on the wrong side
of the decision boudary. Ideally:

’ i=1

where C controls the tradeoff between maximum margin and loss.
Replace with convex upper bound:

o (310 + €30 (w7 8)) ).

with hinge loss,

l1-a 1—-a>0

0 otherwise.

e(oo:(l—an:{
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Hinge loss:
0(a) =(1-a)y = {(1) o cl)t;efwisg.
(1—a) A
I(a < 0)
9
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Support vector classification
Substituting in the hinge loss, we get
min 1HWH2 + Ciﬁ <y- (WTX,' + b)) .
w,b 2 ] !

How do you implement hinge loss with simple inequality
constraints (i.e. for convex optimization)?
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Support vector classification

Substituting in the hinge loss, we get

o (3101 €320 (o (w7 8)) ).
’ i=1

How do you implement hinge loss with simple inequality
constraints (i.e. for convex optimization)?

(1 "
VT};\& <2||W” JrC;fi) (11)

subject to!
& >0 y,'<WTXi+b>21—§i

'Either y; (w'x + b) > 1 and & = 0 as before, or y; (w'x; + b) < 1, and
then & > 0 takes the value satisfying y; (WTX,' + b) =1-¢.
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Support vector classification
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Support vector classification
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Support vector classification

@ Convex optimization problem over the variables w, b, ¢:

1 n
minimize fo(w, b, &) = EHW\F +CY ¢
i=1

subject to 1—§,-—y,-(WTx,-+b>§0 i=1,...,n
—& <0 i=1,...,n

(fo is convex, fi,. .., f, are affine).
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Support vector classification

@ Convex optimization problem over the variables w, b, ¢:

1 n
minimize fo(w, b, &) = EHW||2 +CY ¢
i=1

subject to 1—§,-—y,-(WTx,-+b>§0 i=1,...,n
—& <0 i=1,...,n
(fo is convex, fi,. .., f, are affine).

Strong duality holds, and the problem is differentiable, hence the
KKT conditions hold at the global optimum.
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Support vector classification: Lagrangian

The Lagrangian: L(w, b,§, a, A)

_ %HW||2+C ;m; a (1 —yi (WTX,- + b) - g,-)+; A(=€)
with dual variable constraints

a; >0, Ai > 0.

Minimize wrt the primal variables w, b, and £.
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Support vector classification: Lagrangian

The Lagrangian: L(w, b,§, a, A)
= ;lel2+cznjs,-+i s (1= yi (w4 ) — &)+ 3 A(-6)
i=1 i=1 1
with dual variable constraints
a; > 0, A > 0.

Minimize wrt the primal variables w, b, and £.
Derivative wrt w:

L ’ -
gw =w — iz_;a;y,'x,' =0 w = ;ai)/ixb (12)

Derivative wrt b:

oL
% == Zy,-a,- =0. (13)
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Support vector classification: Lagrangian

Derivative wrt &;:
L
ggi:Ca;)\;:O aj = C— ). (14)

Noting that A; > 0,
a; < C.
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Support vector classification: Lagrangian

Derivative wrt &;:
L
ggi:Ca;)\;:O ai=C— A\ (14)
Noting that A; > 0,
a; < C.

Now use complementary slackness:
Non-margin SVs: a; = C # 0:

@ We immediately have 1 — & = y; (WTX,‘ + b).

@ Also, from condition oj = C — \;, we have \; = 0, hence

possibly & > 0.
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Support vector classification: Lagrangian

Derivative wrt &;:

L
ggi:Ca;)\;:O aj = C— ). (14)
Noting that A; > 0,
a; < C.

Now use complementary slackness:
Non-margin SVs: «; = C # 0:
@ We immediately have 1 — & = y; (WTX,' + b).
@ Also, from condition oj = C — \;, we have \; = 0, hence
possibly & > 0.
Margin SVs: 0 < a; < C:
@ We again have 1 — & = y; (WTX,' + b)
@ This time, from a; = C — \;, we have \; # 0, hence & = 0.
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Support vector classification: Lagrangian

Derivative wrt &;:

L
ggi:Ca;)\;:O aj=C— . (14)
Noting that A; > 0,
a; < C.

Now use complementary slackness:
Non-margin SVs: «; = C # 0:
@ We immediately have 1 — & = y; (WTX,‘ + b).
@ Also, from condition oj = C — \;, we have \; = 0, hence
possibly & > 0.
Margin SVs: 0 < a; < C:
@ We again have 1 — & = y; (WTX,' + b)
@ This time, from a; = C — \;, we have \; # 0, hence & = 0.
Non-SVs: a; =0
@ We can allow: y; (WTX,' + b) >1-¢;
@ From a; = C — A;, we have \; # 0, hence & = 0.
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The support vectors

We observe:

@ The solution is sparse: points which are not on the margin, or
“margin errors”, have a; =0

@ The support vectors: only those points on the decision
boundary, or which are margin errors, contribute.

© Influence of the non-margin SVs is bounded, since their weight
cannot exceed C.
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Support vector classification: dual function

Thus, our goal is to maximize the dual,

gla,)) = %Hwyﬁ + cznjg,- + Zn:a,- (1 —y; (WTX,- + b) - g,-)
i=1 i=1

+Z)\i(—
= 7ZZany,yJX XJ+CZf: ZZO‘O‘JYIYJX Xj

i=1 j=1 i= ].j 1
*bzai)/i + ZO" ZO‘ i — Z — a;);
i=1 i=1 i=1
m 1 Om m
= Za; — E ZZa;ajy,-ij,-ij.
i=1 i=1 j=1
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Support vector classification: dual function

Maximize the dual,

m m m
gla) =2 ai Z D iy X,
i=1 =1 j=1
subject to the constraints
n
0<a; <C, Zyi@izo

i=1

This is a quadratic program.
Offset b: for the margin SVs, we have 1 = y; (WTX,' + b). Obtain b
from any of these, or take an average.
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Support vector classification: kernel version

Maximum margin classifier in RKHS: write the hinge loss
formulation

(IIW( I3 + CZQ(YI ¢ :))a))

for the RKHS H with kernel k(x, ). Use the result of the
representer theorem,

= Bio(x).
i—1

Maximizing the margin equivalent to minimizing ||w(-)[|3,: for
many RKHSs a smoothness constraint (e.g. Gaussian kernel).
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Support vector classification: kernel version

Substituting and introducing the &; variables, get
(1. "
min| =8 ' KB+ C ; 15
mir <2B 5 Z;&) (15)
where the matrix K has i, jth entry Kjj = k(x;, x;j), subject to
§>0 v Bik(xi,x)=1-§
j=1

Convex in 3,& since K is positive definite.
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Support vector classification: kernel version

Substituting and introducing the &; variables, get
1 -+ <
8K C ; 1
min <2B B+ Z;&) (15)
where the matrix K has i, jth entry Kjj = k(x;, x;j), subject to
§& =0 YIZ/BJ XI7XJ =&

Convex in 3,& since K is positive definite.

Dual:
Zal -3 Zza ijylyj X17)<j)7

i=1 j=1
subject to the constraints 0 < a; < C, and

= yici(x).
i=1
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Representer theorem



Learning problem: setting

Given a set of paired observations (x1, y1), ... (Xn, ¥n) (regression or
classification).
Find the function * in the RKHS 7 which satisfies

J(F7) = min J(F), (16)

where
J) = Ly(FGa), - Flxa)) + 2 (1)
Q is non-decreasing, and y is the vector of y;.
o Classification: L,(f(x1),...,f(xn)) = >_i_1 Ly ¢(x)<0
o Regression: L,(f(x1),...,f(xn)) = Sr_q(yi — f(x;))?
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Representer theorem

The representer theorem: solution to

min [L, (F(a). .. £Ge)) + 2 (1F13,)]

takes the form .
=" aip(x).
i=1

If Q is strictly increasing, all solutions have this form.
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Representer theorem: proof

Proof: Denote f; projection of f onto the subspace

span{¢p(x;): 1 <i<n}, (17)
such that
f=f+1f,
where fs = >0 1 aik(x;, ).
Regularizer:
1713, = 116015 + 1FL15, > 1617,
then

2 (I712) > 2 (1613,

so this term is minimized for f = f;.
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Representer theorem: proof

Proof (cont.): Individual terms f(x;) in the loss:

F(xi) = (f, d(xi))y = (s + fL, (%)) 3 = (fs, 0(xi)) 3¢ »

Ly(f(x1),...,f(xn)) = Ly(fs(x1), ..., fs(xn))-
Hence

@ Loss L(...) only depends on the component of f in the data
subspace,

@ Regularizer Q(...) minimized when f = f;.

o If Q is strictly non-decreasing, then ||, |,, = 0 is required at
the minimum.
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Support vector classification: the v-SVM

Hard to interpret C. Modify the formulation to get a more intuitive
parameter v.
Again, we drop b for simplicity. Solve

1 1<
. 2 )
min <2IIWH —vpt o _§1§,>
1=

w,p,€
subject to
p =20
& > 0
.
yiw xi > p—2§,

(now directly adjust margin width p).
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The v-SVM: Lagrangian

%HWH%—% Z{;—vp—i-z o (p —yiw ! X — fi) +Z Bi(=&i)+v(=p)
i=1 i=1 i=1

for dual variables a; > 0, 8; > 0, and v > 0.

Arthur Gretton Introduction to Machine Learning: Kernels



The v-SVM: Lagrangian

%HWH%—% Z{;—vp—i-z o (p —yiw ! X — fi) +Z Bi(=&i)+v(=p)
i=1 i=1 i=1

for dual variables a; > 0, 8; > 0, and v > 0.
Differentiating and setting to zero for each of the primal variables

w, &, p,
w = Za,y,x,

i+ B = %
v o= Z (19)
=1

From 3; > 0, equation (18) implies
0< o < n~t

(18)
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Complementary slackness (1)

Complementary slackness conditions:
Assume p > 0 at the global solution, hence v = 0, and

Za; = (20)
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Complementary slackness (1)

Complementary slackness conditions:
Assume p > 0 at the global solution, hence v = 0, and

Za; = (20)

Case of & > 0: complementary slackness states 3; = 0, hence from
(18) we have a; = n~!. Denote this set as N(a). Then

Z %: Z Oéiﬁzn:ai:’/a
i=1

ieN(a) ieN(a)

> IN(a)]

n

<v

)

and v is an upper bound on the number of non-margin SVs.
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Complementary slackness (2)

Case of & = 0: a; < n~1. Denote by M(«) the set of points
1> a; > 0. Then from (20),

n
V:;OZ;:Z+Z(11_ Z %7

ieN(a) ieM(a) ieM(a)UN()

thus

_ IN(@)] + [M(0)

—_ )

n

and v is a lower bound on the number of support vectors with
non-zero weight (both on the margin, and “margin errors”).
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Dual for v-SVM

Substituting into the Lagrangian, we get

m
= Z Z QYY) X+ = Z & —pv — Z > @iy %

Iljl i=1 j=1

+za,p Zag,_;(_a> (Za,_y>
== %Zzaiaj)’iijiT X;

i=1 j=1
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Dual for v-SVM

Substituting into the Lagrangian, we get

m
= Z Z QYY) X+ = Z & —pv — Z > @iy %

Iljl i=1 j=1

+za,p Zag,_;(_a> (Za,_y>
== %Zzaiaj)’iijiT X;

i=1 j=1
Maximize:
1 m m
-
i=1 j=1
subject to
é 1
dajzv  0<a<=
— n’
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