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.
Non-closed subspaces

@ Every finite-dimensional subspace of a normed space is closed.
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Non-closed subspaces

@ Every finite-dimensional subspace of a normed space is closed.

Example

Let ¥ = {f : [-1,1] = R, f continuous} , with ||f||_ = sup |f(x)|, and

F! its subspace of differentiable functions. Then F! is not closed.

@ lIdea: construct a sequence of
differentiable functions converging
in |- to £(x) = |x|:

—x—21"7 x < —=1/n,
fa(x) = 4 5x% x| <1/n,
X—5-, x>1/n.
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Non-closed subspaces

Example

Let H be an infinite-dimensional Hilbert space with orthonormal basis

U = {uj};Z,- Then span[U] (finite linear combinations of elements of U) is
not closed.

o Take h =772, aju; with a; > 0 and > 7°) a? < oc. Then
hy = Z}’Zl ajuj converges to h ¢ span[U].
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Non-closed subspaces

Example

Let H be an infinite-dimensional Hilbert space with orthonormal basis

U = {uj};Z,- Then span[U] (finite linear combinations of elements of U) is
not closed.

o Take h = > ajuj with a; > 0 and 2 a7 < co. Then
hn = 3271 ajuj converges to h ¢ span[U].
Recall:

@ In the proof of Riesz Theorem, we used: M closed subspace
—> M-"contains a non-zero element.

o Here: span[U]* = {0} (i.e., span[U] is dense in H).
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.
The story so far

o Hilbert space:
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The story so far
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The story so far
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The story so far

o Hilbert space: a complete space with an inner product

e Riesz Theorem: all linear & continuous functionals are representable by
inner products

e RKHS: a Hilbert space of functions for which evaluation is continuous

e thus, evaluation is representable by an inner product with some element
e can define k(-, x) as that representer of evaluation: reproducing kernel

o kernel as an inner product between features: k(x,x) = (¢(x), ¢(x'))y
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.
The story so far

o Hilbert space: a complete space with an inner product

e Riesz Theorem: all linear & continuous functionals are representable by
inner products

e RKHS: a Hilbert space of functions for which evaluation is continuous

e thus, evaluation is representable by an inner product with some element
e can define k(-, x) as that representer of evaluation: reproducing kernel

o kernel as an inner product between features: k(x,x) = (¢(x), ¢(x'))y

e reproducing kernel = kernel
o canonical feature ¢ : x — k(-, x)
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Overview

@ What is an RKHS?
@ Inner product between features
@ Positive definite function
@ Moore-Aronszajn Theorem

© Mercer representation of RKHS
@ Integral operator
@ Mercer’s theorem
@ Relation between Hy and Lo(X;v)

© Operations with kernels
@ Sum and product
@ Constructing new kernels

@ Proof sketch of Moore-Aronszajn
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Outline

@ What is an RKHS?
@ Inner product between features
@ Positive definite function
@ Moore-Aronszajn Theorem
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What is an RKHS? Inner product between features
Outline

@ What is an RKHS?

@ Inner product between features

© Mercer representation of RKHS

© Operations with kernels

@ Proof sketch of Moore-Aronszajn
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What is an RKHS? Inner product between features
(Just) Kernel

Definition (Kernel)
A function k : X x X — R is called a kernel on X if there exists a Hilbert
space (not necessarilly an RKHS) F and a map ¢ : X — F, such that

k(x,y) = (@(x), ¢(y)) #-

Foundations of RKHS March 19, 2013 8 / 50
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What is an RKHS? Inner product between features
(Just) Kernel

Definition (Kernel)

A function k : X x X — R is called a kernel on X if there exists a Hilbert
space (not necessarilly an RKHS) F and a map ¢ : X — F, such that

k(x,y) = (@(x), ¢(y)) #-

@ ¢ : X — Fis called a feature map,
@ F is called a feature space.

Corollary

Every reproducing kernel is a kernel (every RKHS is a valid feature
space).
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What is an RKHS? Inner product between features

Non-uniqueness of feature representation

Example
Consider X = R?, and k(x,y) = (x,y)*

k(x,y) = X12}/12 +X22)/22 + 2x1X0y1 Y2

= [ x4 ¥ V2xax ] vi

= [ X% X22 X1 X2 X1X2 ]

so we can use the feature maps ¢(x) = (xi,x3,v2x1x2) or
d(x)=[ x¥ ¢ xx xix |, with feature spaces H = R® or H = R*.

D. Sejdinovic, A. Gretton (Gatsby Unitsli Foundations of RKHS March 19, 2013 9 /50



What is an RKHS? Inner product between features

Non-uniqueness of feature representation

Example
Consider X = R?, and k(x,y) = (x,y)*

k(x,y) = X12}/12 +X22)/22 + 2x1X0y1 Y2

= [ x4 ¥ V2xax ] vi

= [ X% X22 X1 X2 X1X2 ]

so we can use the feature maps ¢(x) = (xi,x3,v2x1x2) or
d(x)=[ x¥ ¢ xx xix |, with feature spaces H = R® or H = R*.

Not RKHS!

D. Sejdinovic, A. Gretton (Gatsby Unitsli Foundations of RKHS March 19, 2013

9 /50



What is an RKHS? Inner product between features

Non-uniqueness of feature representation

Example
Consider X = R?, and k(x,y) = (x,y)*

k(x,y) = X12}/12 +X22)/22 + 2x1X0y1 Y2

= [ x4 ¥ V2xax ] vi

= [ X% X22 X1 X2 X1X2 ]

so we can use the feature maps ¢(x) = (xi,x3,v2x1x2) or
d(x)=[ x¥ ¢ xx xix |, with feature spaces H = R® or H = R*.

Not RKHS!

Evaluation is not defined on R3 or R*.
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WIEIREEV RN GEYEl  Positive definite function

Outline

@ What is an RKHS?

@ Positive definite function

© Mercer representation of RKHS

© Operations with kernels

@ Proof sketch of Moore-Aronszajn
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WIEIREEV RN GEYEl  Positive definite function

Positive definite functions

Definition (Positive definite functions)

A symmetric function h : X x X — R is positive definite if
Vn > 1, V(al,...an) € Rn, V(Xl,...,Xn) e X,

Xn: Zn) ajajh(x;, xj) = a'Ha > 0.

i=1 j=1
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WIEIREEV RN GEYEl  Positive definite function

Positive definite functions

Definition (Positive definite functions)

A symmetric function h : X x X — R is positive definite if
Vn>1, Y(a1,...a,) €ER" V(x1,...,x5) € X",

n

n
ZZ a,-ajh(x,-,xJ-) —a'Ha > 0.

i=1 j=1

h is strictly positive definite if for mutually distinct x;, the equality holds
only when all the a; are zero.
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WIEIREEV RN GEYEl  Positive definite function

Kernels are positive definite

Every inner product is a positive definite function, and more generally:

Fact
Every kernel is a positive definite function. J
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WIEIREEV RN GEYEl  Positive definite function

Kernels are positive definite

Every inner product is a positive definite function, and more generally:
Fact

Every kernel is a positive definite function. J

ZZa;ajk(x,-,xj-) = Zzaiaj <¢(Xl)a¢(xj)>]-‘
i=1 j=1 i=1 j=1
= <Z aip(xi), Y aj¢(xj)>
i=1 j=1 .
n 2
= Z ajo(x)|| =>0.
i=1 F
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WIEIREEV RN GEYEl  Positive definite function

So far

reproducing kernel = kernel = positive definite
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WIEIREEV RN GEYEl  Positive definite function

So far

reproducing kernel = kernel = positive definite

Is every positive definite function a reproducing kernel for some RKHS?
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What is an RKHS? Moore-Aronszajn Theorem
Outline

@ What is an RKHS?

@ Moore-Aronszajn Theorem

© Mercer representation of RKHS

© Operations with kernels

@ Proof sketch of Moore-Aronszajn
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)

Let k: X x X — R be positive definite. There is a unique RKHS
H C R* with reproducing kernel k.
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What is an RKHS? Moore-Aronszajn Theorem

Summary

reproducing kernel <= kernel <= positive definite
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What is an RKHS? Moore-Aronszajn Theorem

Summary

reproducing kernel <= kernel <= positive definite

set of all pd functions: RY**
1-1
—

set of all subspaces of RY with continuous evaluation:
Hilb(RY)
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WMleere-roezEn Tieers
Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can
even work in one or more of them, if it's convenient!)

(6(x), 6(V)es = aF +by3 +cV2nye = kly) = (ke ky)yy,

p(x)=[a= x2 b=xZ c=V2xix |
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What is an RKHS? Moore-Aronszajn Theorem

Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can

even work in one or more of them, if it's convenient!)

(6(x), 6(V)es = aF +by3 +cV2nye = kly) = (ke ky)yy,

p(x)=[a= x2 b=xZ c=V2xix |

(8060.00)) , =@t +byi +enp+dnye = kly) = e k),

12 b:X22 E:X1X2 d:X1X2 }

Foundations of RKHS March 19, 2013
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WMleere-roezEn Tieers
Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can

even work in one or more of them, if it's convenient!)

(6(x), 6(V)es = aF +by3 +cV2nye = kly) = (ke ky)yy,

p(x)=[a= x2 b=xZ c=V2xix |

<¢3(X), 5‘9(y)>R4 =3 +by + ey +dnys = kdy) = (ke kg,

qb(x):[ézxf Z):xz2 ¢ = x1X d:x1x2}

o Different feature maps give “coefficients” of k(-, x) in terms of
(different) simpler functions.
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What is an RKHS? Moore-Aronszajn Theorem

Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can

even work in one or more of them, if it's convenient!)

(6(x), 6(V)es = aF +by3 +cV2nye = kly) = (ke ky)yy,

p(x)=[a= x2 b=xZ c=V2xix |

<¢3(X), 5‘9(y)>R4 =3 +by + ey +dnys = kdy) = (ke kg,

Q‘)(X):[é:xl2 E):xz2 ¢ = x1X d:x1x2}

o Different feature maps give “coefficients” of k(-, x) in terms of
(different) simpler functions.

@ RKHS of k remains unique, regardless of the representation.

Foundations of RKHS March 19, 2013
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Mercer representation of RKHS
Outline

© Mercer representation of RKHS
@ Integral operator
@ Mercer’s theorem
@ Relation between Hy and Lo(X;v)
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Mercer representation of RKHS Integral operator
Outline

@ What is an RKHS?

© Mercer representation of RKHS
@ Integral operator

© Operations with kernels

@ Proof sketch of Moore-Aronszajn
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Mercer representation of RKHS Integral operator
Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)
o nor on k (apart from it being a positive definite function)
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Mercer representation of RKHS Integral operator
Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)
o nor on k (apart from it being a positive definite function)

@ Now, assume that:
e X is a compact metric space

e such as [a, b], every continuous function on X is bounded and
uniformly continuous
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Mercer representation of RKHS Integral operator
Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)
o nor on k (apart from it being a positive definite function)

@ Now, assume that:
e X is a compact metric space

e such as [a, b], every continuous function on X is bounded and
uniformly continuous

o k: X xX — Ris a continuous positive definite function
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Mercer representation of RKHS Integral operator

Integral operator of a kernel

Definition (Integral operator)

Let v be a finite Borel measure on X. For the linear map
5 Lz(/Y V) — C

(¢F) (<) /k Y)duly), fefelo(X:v),

its composition Ty = fx o Sx with the inclusion Iy : C(X) — La(X;v) is
said to be the integral operator of k.
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Proof that Skz? is continuous

‘(5;(7?) (x) — (Sk?> (x')

= | () k) )

= (e = ko) F) |
e (ke = ko)l 2 || F

IN

L2

p \/ [ (ko) = k) doty)

< y(X) H?HB max k(x,y) = k(X))

= |F
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Integral operator of a kernel (2)

T, = ISk

Ly(X;v) L2 (X5 v)
\ /
k
c(x)

Tk @ La(X;v) — Ly(X;v)
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Integral operator of a kernel (2)

T, = ISk

Lo(X;v) La(X;v)
\ /
k
C(X)

Tk @ La(X;v) — Ly(X;v)

Tk # Sk : (SJ) (x) is defined, while (Tk?) (x) is not!
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Properties of integral operators

o k symmetric = T self-adjoint: (f, Txg) = (T«f,g)
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Properties of integral operators

o k symmetric = T self-adjoint: (f, Txg) = (T«f,g)
@ k positive definite = Ty positive: (f, Txf) >0
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Properties of integral operators

o k symmetric = T self-adjoint: (f, Txg) = (T«f,g)
@ k positive definite = Ty positive: (f, Txf) >0

@ k continuous = Ty compact: if {f,} is bounded, then {Txf,} has
a convergent subsequence
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Mercer representation of RKHS Integral operator

Properties of integral operators

o k symmetric = T self-adjoint: (f, Txg) = (T«f,g)
@ k positive definite = Ty positive: (f, Txf) >0

@ k continuous = Ty compact: if {f,} is bounded, then {Txf,} has
a convergent subsequence

Theorem (Spectral theorem)

Let F be a Hilbert space,and T : F — F a compact, self-adjoint operator.
There is an at most countable ONS {uj} jes of F and {A;};.; with
[A1] > [A2] > -+ > 0 converging to zero such that

TF =Y XN(fu)yu, fEF.
Jjed
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Mercer representation of RKHS Mercer’s theorem

Outline

@ What is an RKHS?

© Mercer representation of RKHS

@ Mercer's theorem

© Operations with kernels

@ Proof sketch of Moore-Aronszajn
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.

@ A finite measure v on X with suppr = X.
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.
@ A finite measure v on X with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on
Ly(X;v)
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.
@ A finite measure v on X with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on

L2(X;v), so there exist ONS {&} jes and {\;};c,
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Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.
o A finite measure v on X with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on
L2(X;v), so there exist ONS {&} jc; and {A;};, (strictly positive
eigenvalues; J at most countable).

@ & is an equivalence class in the ONS of Ly(X;v)
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem

X a compact metric space; k: X x X — R a continuous kernel.

A finite measure v on X with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on
L2(X;v), so there exist ONS {&} jc; and {A;};, (strictly positive
eigenvalues; J at most countable).

@ & is an equivalence class in the ONS of Ly(X;v)
° g = )\JTISkéj € C(X) is a continuous function in the class &;:
/kej = éj.
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem

X a compact metric space; k: X x X — R a continuous kernel.

A finite measure v on X with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on
L2(X;v), so there exist ONS {&} jc; and {A;};, (strictly positive
eigenvalues; J at most countable).

@ & is an equivalence class in the ONS of Ly(X;v)
° g = )\JTISkéj € C(X) is a continuous function in the class &;:
/kej = éj.

Theorem (Mercer’s theorem)

Vx,y € X with convergence uniform on X X X':

k(xy) = D Ae(x)ely).

JjeJ
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (2)

k(x,y) = > Aei(x)eily)

jed

= ({Viet} {VAsW)}) .
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (2)

k(x,y) = > Aei(x)eily)

jed
= ({Viet} {VAsW)}) .
Another (Mercer) feature map:

b X — 2(J))

¢ x = {\/)Tjej(x)}

jed
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (2)

k(x,y) = > Aei(x)eily)

jed
= ({Viet} {VAsW)}) .
Another (Mercer) feature map:

b X — 2(J))

¢ x = {\/)Tjej(x)}

jed

Z (\/)Tjej(x))2 = k(x,x) <0

jed
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (3)

® Sum ., ajej(x) converges absolutely Vx € X' whenever sequence
{ai/V/Aj} € ()
1/2 1/2

Z\aj/ﬁj\z -Z\ﬁejmf
= H{aj/f} Vk(x, ).

()

> lajei(x)

jed

IN
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (3)

® Sum ., ajej(x) converges absolutely Vx € X' whenever sequence
{ai/V/Aj} € ()
1/2 1/2

Z\aj/ﬁj\z -Z\ﬁejmf
= H{aj/f} Vk(x, ).

> jeyajej is a well defined function on X

> lajei(x)

jed

IN

()
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Mercer representation of RKHS Mercer’s theorem

Mercer representation of RKHS

Theorem

Let X be a compact metric space and k : X x X — R a continuous kernel.
Define:

H = f:Zajej ; {aj/\/yj} e’y ,

JjeJ

with inner product:

<Z ajej,ijej> = LI)I
H Jj€J

JjeJ JjeJ

Then H is the RKHS of k.

D. Sejdinovic, A. Gretton (Gatsby Unitsli Foundations of RKHS March 19, 2013 29 / 50



Mercer representation of RKHS Mercer’s theorem

Mercer representation of RKHS

Theorem

Let X be a compact metric space and k : X x X — R a continuous kernel.
Define:

H = f:Zajej ; {aj/\/yj} e’y ,

JjeJ

with inner product:

<Z ajej,ijej> = LI)I
H Jj€J

JjeJ JjeJ

Then H is the RKHS of k.

RKHS is unique, so does not depend on v !
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Mercer representation of RKHS Mercer’s theorem

Proof

©Q (., -)5 is an inner product: if f =3, aje;
2
then(f,f),, = ZjeJiTjj > 0 if some a; >0

@ Let {f,} be Cauchy, f, = >, a\"e;. Then ||f, — finl3, =

Zjej M = H{aj(-")/\//\j-} — {aj(-m)/\/)Tj}H; < €, so must

have a limit because ¢2 is a Hilbert space.

2
Q k(-.x) =Y Nei(x)] g € H since 3 <A\F§>> = k(x,x) < o0

O (F k() = (Sjes ajer Djes ye(x)l ey, = Tjes 242 =
2 jesaiei(x) = f(x).
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Mercer representation of RKHS Mercer’s theorem
Smoothness interpretation
Gaussian kernel, k(x,y) = exp <—O’ |x — y||2> ,

>\j x b b<1
ei(x) o exp(—(c — a)x*)H;(xV2c),

a, b, ¢ are functions of o, and H; is jth order Hermite polynomial.

0.4 NOTE that |[f|[;, < ocisa

“smoothness” constraint:

Aj decay as ej become
“rougher” and

2 a7
HfHHk = ZjeJ Tjj

(Figure from Rasmussen and Williams)
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Mercer representation of RKHS Relation between H; and Ly (X;v)
Outline

@ What is an RKHS?

© Mercer representation of RKHS

@ Relation between Hy and Lo(X;v)

© Operations with kernels

@ Proof sketch of Moore-Aronszajn
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

Assume (&}, is ONB of L(X;v), and write F(j) = (f, &),

Tif =Y NF()E,  fela(Xiv)

jed
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

Assume (&}, is ONB of L(X;v), and write F(j) = (f, &),

Tif =Y NF()E,  fela(Xiv)

jed
T2 =" UNFG)E, e LX)
jed
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

Assume (&}, is ONB of L(X;v), and write F(j) = (f, &),

Tif =Y NF()E,  fela(Xiv)

jed
T2 =" UNFG)E, e LX)
jed

He = {f—Zajej ; {aj/\/yj}EEZ(J)}

jes

SO =113 <00 {Fi)} € 20) = 3 VAFl)es € Ha

jed jed
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

fely(Xv) &S {f(j)} e?() £ ST UNFG)e € He

jed
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

fely(Xv) &S {f(/)} e?() £ ST UNFG)e € He

jed

(.8, = ({0} 80) <foo &,y VA8 U) >

jed jed B
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Mercer representation of RKHS Relation between H; and Ly (X;v)
7‘[/( and LQ(X; V)

fely(Xv) &S {f(/)} e?() £ ST UNFG)e € He

jed

(.8, = ({0} 80) <fo )ej. Y Vg ) >

jed jed B

Ti/z induces an isometric isomorphism between
span{& :j e J} CLy(X;v) and H (and both are isometrically
isomorphic to £2(J)).
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el betem fitp el La(leh o)
Canonical feature map

fel(x) &5 {Fi)} e ) 5 3 Vi) € He

jed
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el betem fitp el La(leh o)
Canonical feature map

fel(x) &5 {Fi)} e ) 5 3 Vi) € He

jed

= Z VA (ﬁq(x)) &

jed
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el betem fitp el La(leh o)
Canonical feature map

fel(x) &5 {Fi)} e ) 5 3 Vi) € He

jed

)= VA (Vi) ¢

jed

Hi > k(- %xﬁ{\/»ej }662 J)

D. Sejdinovic, A. Gretton (Gatsby Unitsli Foundations of RKHS March 19, 2013 35 / 50



el betem fitp el La(leh o)
Canonical feature map

fel(x) &5 {Fi)} e ) 5 3 Vi) € He

jed

)= VA (Vi) ¢

jed
Hi > k(- %xﬁ{\/»ej }662 J)

Mercer feature map gives Fourier coefficients of the canonical feature map.
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Outline

© Operations with kernels
@ Sum and product
@ Constructing new kernels
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(O IYELTN PRV YOI Sum and product
Outline

@ What is an RKHS?

© Mercer representation of RKHS

© Operations with kernels
@ Sum and product

@ Proof sketch of Moore-Aronszajn
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Sirn rmd] prechs
Operations with kernels

Fact (Sum and scaling of kernels)

If k, ki, and ko are kernels on X', and oo > 0 is a scalar, then ak, ki + k>
are kernels.
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Sirn rmd] prechs
Operations with kernels

Fact (Sum and scaling of kernels)

If k, ki, and ko are kernels on X', and oo > 0 is a scalar, then ak, ki + k>
are kernels.

o A difference of kernels is not necessarily a kernel! This is because we
cannot have ki(x,x) — ka(x,x) = (p(x), #(x)),, < 0.
@ This gives the set of all kernels the geometry of a closed convex cone.
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Sirn rmd] prechs
Operations with kernels

Fact (Sum and scaling of kernels)

If k, ki, and ko are kernels on X', and oo > 0 is a scalar, then ak, ki + k>
are kernels.

o A difference of kernels is not necessarily a kernel! This is because we
cannot have ki(x,x) — ka(x,x) = (p(x), #(x)),, < 0.
@ This gives the set of all kernels the geometry of a closed convex cone.

Higrke = Hig + Hiy ={h + 1 A €Hyy, o € Hyy }
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Sirn rmd] prechs
Operations with kernels (2)

Fact (Product of kernels)
If ki and ko are kernels on X and ), then k = ki ® ko, given by:

k((6y), (hy) = k(s x)ka(y,y")
is a kernel on X x Y. If X =), then k = ky - ko, given by:
k(x,x) = ki(x,x)ka(x,x")

is a kernel on X.
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Sirn rmd] prechs
Operations with kernels (2)

Fact (Product of kernels)
If ki and ko are kernels on X and ), then k = ki ® ko, given by:

k((6y), (hy) = k(s x)ka(y,y")
is a kernel on X x Y. If X =), then k = ky - ko, given by:
k(x,x) = ki(x,x)ka(x,x")

is a kernel on X.

Hk1®k2 = Hkl ® sz
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(O IYELTN PRV YOI Sum and product

Summary

all kernels RY*¥
1-1
—

all function spaces with continuous evaluation Hilb(R?)
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(O IYELTN PRV YOI Sum and product

Summary

all kernels RY*¥
1-1
—

all function spaces with continuous evaluation Hilb(R?)

bijection between RY** and Hilb(RY) preserves geometric
structure
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Operations with kernels Constructing new kernels
Outline

@ What is an RKHS?

© Mercer representation of RKHS

© Operations with kernels

@ Constructing new kernels

@ Proof sketch of Moore-Aronszajn
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:

o trivial (linear) kernel on R? is k(x, x") = (x, x')
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:
o trivial (linear) kernel on R? is k(x, x") = (x, x')
o forany p(t) = amt™ + -+ + a1t + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on RY
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o forany p(t) = amt™ + -+ + a1t + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on RY
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:
o trivial (linear) kernel on R? is k(x, x") = (x, x')
o forany p(t) = amt™ + -+ + a1t + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on RY
e polynomial kernel: k(x,x") = ({x,x’) +¢)™, forc >0

e f(t) has Taylor series with non-negative coefficients
= k(x,x') = f((x,x')) is a kernel on RY
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Operations with kernels Constructing new kernels

Kernels on RY

New kernels from old:
o trivial (linear) kernel on R? is k(x, x") = (x, x')
o forany p(t) = amt™ + -+ + a1t + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on RY
e polynomial kernel: k(x,x") = ({x,x’) +¢)™, forc >0
e f(t) has Taylor series with non-negative coefficients
= k(x,x') = f((x,x')) is a kernel on RY
e exponential kernel: k(x,x’) = exp(o (x,x’)), for o > 0
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:

e polynomial kernel: k(x,x") = ({x,x') +¢)™, forc >0

e exponential kernel: k(x,x") = exp(o (x,x’)), for o > 0
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Operations with kernels Constructing new kernels
Gaussian kernel

Let ¢ : RY — R, ¢(x) = exp(—c ||x||?). Then, k is representable as an
inner product in R:

k(x,x") = ¢(x)p(x") = exp(—a ||x||?) exp(—c HX/H2) kernel!
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Operations with kernels Constructing new kernels
Gaussian kernel

Let ¢ : RY — R, ¢(x) = exp(—c ||x||?). Then, k is representable as an
inner product in R:

k(x,x") = ¢(x)p(x") = exp(—a ||x||?) exp(—c HX/H2) kernel!

kgauss(xyxl) = I;(val)kexp(xvxl)
= exp (—U [HXH2 + HX'H2 -2 <x,x’>])

= exp (—0’ Hx - x’Hz) kernel!
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Proof sketch of Moore-Aronszajn
Outline

@ Proof sketch of Moore-Aronszajn
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Moore-Aronszajn Theorem

Starting with a positive def. k, construct a pre-RKHS (an inner product
space of functions) Ho C R? with properties:

@ The evaluation functionals §, are continuous on H,

@ Any Ho-Cauchy sequence f, which converges pointwise to 0 also
converges in Ho-norm to 0
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Moore-Aronszajn Theorem (2)

pre-RKHS 7 = span {k(-,x) | x € X'} will be taken to be the set of
functions:

f(X) = Z(X,’k(X,X,’)
i=1
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step |)

Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(F.8)n, = DY ibik(x,y),

i=1 j=1

where f = 371, aik(,x;) and g = 3 7, Bik(-,y;), is a valid pre-RKHS.

v
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step |)
Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

<fg = Zzalﬁj Xla)/J

i=1 j=1

where f = 371, aik(,x;) and g = 3 7, Bik(-,y;), is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step II)

Let Ho be a pre-RKHS space. Define # to be the set of functions f € R*

for which there exists an Ho-Cauchy sequence {f,} converging pointwise
tof. Then, H is an RKHS.
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step |)
Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(F.8)y, = > aiBik(xi,y)),

i=1 j=1

where f = 371, aik(,x;) and g = 3 7, Bik(-,y;), is a valid pre-RKHS.

y
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step |)
Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(F.8)y, = > aiBik(xi,y)),

i=1 j=1

where f = 371, aik(,x;) and g = 3 7, Bik(-,y;), is a valid pre-RKHS.

4

@ The evaluation functionals d, are continuous on Hg

@ Any Hop-Cauchy sequence f, which converges pointwise to 0 also
converges in Ho-norm to 0
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Moore-Aronszajn Theorem (5)

Define # to be the set of functions f € R for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.
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Moore-Aronszajn Theorem (5)

Define # to be the set of functions f € R for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.

© We define the inner product between f, g € H as the limit of an inner
product of the Ho-Cauchy sequences {f,}, {gn} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

Define # to be the set of functions f € R for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.

© We define the inner product between f, g € H as the limit of an inner
product of the Ho-Cauchy sequences {f,}, {gn} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?

@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?
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Moore-Aronszajn Theorem (5)

Define # to be the set of functions f € R for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.

© We define the inner product between f, g € H as the limit of an inner
product of the Ho-Cauchy sequences {f,}, {gn} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?

@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?

© Are the evaluation functionals still continuous on H?

Q Is H complete (i.e., does every H-Cauchy sequence converge)?
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

Define # to be the set of functions f € R for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.

© We define the inner product between f, g € H as the limit of an inner
product of the Ho-Cauchy sequences {f,}, {gn} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?

@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?

© Are the evaluation functionals still continuous on H?

Q Is H complete (i.e., does every H-Cauchy sequence converge)?

o (1)+(2)+(3)+(4) = H is RKHS!
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Proof sketch of Moore-Aronszajn

Summary

reproducing kernel <= kernel <= positive definite
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Proof sketch of Moore-Aronszajn

Summary

reproducing kernel <= kernel <= positive definite

: XxX
all pd funiufns R
—

all function spaces with continuous evaluation Hilb(R*)
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