Foundations of Reproducing Kernel Hilbert Spaces II

Advanced Topics in Machine Learning

D. Sejdinovic, A. Gretton

Gatsby Unit
slides and notes are available at www.gatsby.ucl.ac.uk/~ dino/teaching

March 19, 2013

Non-closed subspaces

- Every finite-dimensional subspace of a normed space is closed.

Non-closed subspaces

- Every finite-dimensional subspace of a normed space is closed.

Example

Let $\mathcal{F}=\{f:[-1,1] \rightarrow \mathbb{R}, f$ continuous $\}$, with $\|f\|_{\infty}=\sup |f(x)|$, and \mathcal{F}^{1} its subspace of differentiable functions. Then \mathcal{F}^{1} is not closed.

- Idea: construct a sequence of differentiable functions converging in $\|\cdot\|_{\infty}$ to $f(x)=|x|$:

$$
f_{n}(x)= \begin{cases}-x-\frac{1}{2 n}, & x \leq-1 / n, \\ \frac{n}{2} x^{2}, & |x|<1 / n, \\ x-\frac{1}{2 n}, & x \geq 1 / n\end{cases}
$$

Non-closed subspaces

Example

Let \mathcal{H} be an infinite-dimensional Hilbert space with orthonormal basis $\mathcal{U}=\left\{u_{j}\right\}_{j=1}^{\infty}$. Then span $[\mathcal{U}]$ (finite linear combinations of elements of \mathcal{U}) is not closed.

- Take $h=\sum_{j=1}^{\infty} a_{j} u_{j}$ with $a_{j}>0$ and $\sum_{j=1}^{\infty} a_{j}^{2}<\infty$. Then $h_{n}=\sum_{j=1}^{n} a_{j} u_{j}$ converges to $h \notin \operatorname{span}[\mathcal{U}]$.

Non-closed subspaces

Example

Let \mathcal{H} be an infinite-dimensional Hilbert space with orthonormal basis $\mathcal{U}=\left\{u_{j}\right\}_{j=1}^{\infty}$. Then span $[\mathcal{U}]$ (finite linear combinations of elements of \mathcal{U}) is not closed.

- Take $h=\sum_{j=1}^{\infty} a_{j} u_{j}$ with $a_{j}>0$ and $\sum_{j=1}^{\infty} a_{j}^{2}<\infty$. Then $h_{n}=\sum_{j=1}^{n} a_{j} u_{j}$ converges to $h \notin \operatorname{span}[\mathcal{U}]$.
Recall:
- In the proof of Riesz Theorem, we used: M closed subspace $\Longrightarrow M^{\perp}$ contains a non-zero element.
- Here: $\operatorname{span}[\mathcal{U}]^{\perp}=\{0\}$ (i.e., $\operatorname{span}[\mathcal{U}]$ is dense in \mathcal{H}).

The story so far

- Hilbert space:

The story so far

- Hilbert space: a complete space with an inner product

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem:

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products
- RKHS:

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
- thus, evaluation is representable by an inner product

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
- thus, evaluation is representable by an inner product with some element

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
- thus, evaluation is representable by an inner product with some element
- can define $k(\cdot, x)$ as that representer of evaluation

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
- thus, evaluation is representable by an inner product with some element
- can define $k(\cdot, x)$ as that representer of evaluation: reproducing kernel

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
- thus, evaluation is representable by an inner product with some element
- can define $k(\cdot, x)$ as that representer of evaluation: reproducing kernel
- kernel as an inner product between features: $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
- thus, evaluation is representable by an inner product with some element
- can define $k(\cdot, x)$ as that representer of evaluation: reproducing kernel
- kernel as an inner product between features: $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$
- reproducing kernel \Longrightarrow kernel

The story so far

- Hilbert space: a complete space with an inner product
- Riesz Theorem: all linear \& continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
- thus, evaluation is representable by an inner product with some element
- can define $k(\cdot, x)$ as that representer of evaluation: reproducing kernel
- kernel as an inner product between features: $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$
- reproducing kernel \Longrightarrow kernel
- canonical feature $\phi: x \mapsto k(\cdot, x)$

Overview

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

(Just) Kernel

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called a kernel on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi: \mathcal{X} \rightarrow \mathcal{F}$, such that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{F}}$.

(Just) Kernel

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called a kernel on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi: \mathcal{X} \rightarrow \mathcal{F}$, such that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{F}}$.

- $\phi: \mathcal{X} \rightarrow \mathcal{F}$ is called a feature map,
- \mathcal{F} is called a feature space.

(Just) Kernel

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called a kernel on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi: \mathcal{X} \rightarrow \mathcal{F}$, such that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{F}}$.

- $\phi: \mathcal{X} \rightarrow \mathcal{F}$ is called a feature map,
- \mathcal{F} is called a feature space.

Corollary

Every reproducing kernel is a kernel (every RKHS is a valid feature space).

Non-uniqueness of feature representation

Example

Consider $\mathcal{X}=\mathbb{R}^{2}$, and $k(x, y)=\langle x, y\rangle^{2}$

$$
\begin{aligned}
k(x, y) & =x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =\left[\begin{array}{lll}
x_{1}^{2} & x_{2}^{2} & \sqrt{2} x_{1} x_{2}
\end{array}\right]\left[\begin{array}{c}
y_{1}^{2} \\
y_{2}^{2} \\
\sqrt{2} y_{1} y_{2}
\end{array}\right] \\
& =\left[\begin{array}{llll}
x_{1}^{2} & x_{2}^{2} & x_{1} x_{2} & x_{1} x_{2}
\end{array}\right]\left[\begin{array}{c}
y_{1}^{2} \\
y_{2}^{2} \\
y_{1} y_{2} \\
y_{1} y_{2}
\end{array}\right] .
\end{aligned}
$$

so we can use the feature maps $\phi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)$ or $\tilde{\phi}(x)=\left[\begin{array}{llll}x_{1}^{2} & x_{2}^{2} & x_{1} x_{2} & x_{1} x_{2}\end{array}\right]$, with feature spaces $\mathcal{H}=\mathbb{R}^{3}$ or $\tilde{\mathcal{H}}=\mathbb{R}^{4}$.

Non-uniqueness of feature representation

Example

Consider $\mathcal{X}=\mathbb{R}^{2}$, and $k(x, y)=\langle x, y\rangle^{2}$

$$
\begin{aligned}
k(x, y) & =x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =\left[\begin{array}{lll}
x_{1}^{2} & x_{2}^{2} & \sqrt{2} x_{1} x_{2}
\end{array}\right]\left[\begin{array}{c}
y_{1}^{2} \\
y_{2}^{2} \\
\sqrt{2} y_{1} y_{2}
\end{array}\right] \\
& =\left[\begin{array}{llll}
x_{1}^{2} & x_{2}^{2} & x_{1} x_{2} & x_{1} x_{2}
\end{array}\right]\left[\begin{array}{c}
y_{1}^{2} \\
y_{2}^{2} \\
y_{1} y_{2} \\
y_{1} y_{2}
\end{array}\right] .
\end{aligned}
$$

so we can use the feature maps $\phi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)$ or
$\tilde{\phi}(x)=\left[\begin{array}{llll}x_{1}^{2} & x_{2}^{2} & x_{1} x_{2} & x_{1} x_{2}\end{array}\right]$, with feature spaces $\mathcal{H}=\mathbb{R}^{3}$ or $\tilde{\mathcal{H}}=\mathbb{R}^{4}$.

Not RKHS!

Non-uniqueness of feature representation

Example

Consider $\mathcal{X}=\mathbb{R}^{2}$, and $k(x, y)=\langle x, y\rangle^{2}$

$$
\begin{aligned}
k(x, y) & =x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =\left[\begin{array}{lll}
x_{1}^{2} & x_{2}^{2} & \sqrt{2} x_{1} x_{2}
\end{array}\right]\left[\begin{array}{c}
y_{1}^{2} \\
y_{2}^{2} \\
\sqrt{2} y_{1} y_{2}
\end{array}\right] \\
& =\left[\begin{array}{llll}
x_{1}^{2} & x_{2}^{2} & x_{1} x_{2} & x_{1} x_{2}
\end{array}\right]\left[\begin{array}{c}
y_{1}^{2} \\
y_{2}^{2} \\
y_{1} y_{2} \\
y_{1} y_{2}
\end{array}\right] .
\end{aligned}
$$

so we can use the feature maps $\phi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)$ or $\tilde{\phi}(x)=\left[\begin{array}{llll}x_{1}^{2} & x_{2}^{2} & x_{1} x_{2} & x_{1} x_{2}\end{array}\right]$, with feature spaces $\mathcal{H}=\mathbb{R}^{3}$ or $\tilde{\mathcal{H}}=\mathbb{R}^{4}$.

Not RKHS!

Evaluation is not defined on \mathbb{R}^{3} or \mathbb{R}^{4}.

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between $\mathcal{H}_{\boldsymbol{k}}$ and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Positive definite functions

Definition (Positive definite functions)

A symmetric function $h: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is positive definite if $\forall n \geq 1, \forall\left(a_{1}, \ldots a_{n}\right) \in \mathbb{R}^{n}, \forall\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} h\left(x_{i}, x_{j}\right)=\mathbf{a}^{\top} \mathbf{H} \mathbf{a} \geq 0
$$

Positive definite functions

Definition (Positive definite functions)

A symmetric function $h: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is positive definite if $\forall n \geq 1, \forall\left(a_{1}, \ldots a_{n}\right) \in \mathbb{R}^{n}, \forall\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} h\left(x_{i}, x_{j}\right)=\mathbf{a}^{\top} \mathbf{H} \mathbf{a} \geq 0
$$

h is strictly positive definite if for mutually distinct x_{i}, the equality holds only when all the a_{i} are zero.

Kernels are positive definite

Every inner product is a positive definite function, and more generally:

Fact

Every kernel is a positive definite function.

Kernels are positive definite

Every inner product is a positive definite function, and more generally:

Fact

Every kernel is a positive definite function.

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j}\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle_{\mathcal{F}} \\
& =\left\langle\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right), \sum_{j=1}^{n} a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{F}} \\
& =\left\|\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)\right\|_{\mathcal{F}}^{2} \geq 0
\end{aligned}
$$

So far

reproducing kernel \Longrightarrow kernel \Longrightarrow positive definite

So far
reproducing kernel \Longrightarrow kernel \Longrightarrow positive definite
Is every positive definite function a reproducing kernel for some RKHS?

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)
Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be positive definite. There is a unique RKHS $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ with reproducing kernel k.

Summary

reproducing kernel \Longleftrightarrow kernel \Longleftrightarrow positive definite

Summary

reproducing kernel \Longleftrightarrow kernel \Longleftrightarrow positive definite set of all pd functions: $\mathbb{R}_{+}^{\mathcal{X} \times \mathcal{X}}$
set of all subspaces of $\begin{array}{r}\stackrel{\mathbb{R}^{\mathcal{X}} \text { with }}{\stackrel{1-1}{\longrightarrow}} \\ \operatorname{Hilb}\left(\mathbb{R}^{\mathcal{X}}\right)\end{array}$

Non-uniqueness of feature representation

- There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$
\begin{gathered}
\langle\phi(x), \phi(y)\rangle_{\mathbb{R}^{3}}=a y_{1}^{2}+b y_{2}^{2}+c \sqrt{2} y_{1} y_{2}=k_{x}(y)=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}_{k}} \\
\phi(x)=\left[\begin{array}{lll}
a=x_{1}^{2} & b=x_{2}^{2} & c=\sqrt{2} x_{1} x_{2}
\end{array}\right]
\end{gathered}
$$

Non-uniqueness of feature representation

- There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$
\begin{gathered}
\langle\phi(x), \phi(y)\rangle_{\mathbb{R}^{3}}=a y_{1}^{2}+b y_{2}^{2}+c \sqrt{2} y_{1} y_{2}=k_{x}(y)=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}_{k}} \\
\phi(x)=\left[\begin{array}{lll}
a=x_{1}^{2} & b=x_{2}^{2} \quad c=\sqrt{2} x_{1} x_{2}
\end{array}\right] \\
\langle\tilde{\phi}(x), \tilde{\phi}(y)\rangle_{\mathbb{R}^{4}}=\tilde{a} y_{1}^{2}+\tilde{b} y_{2}^{2}+\tilde{c} y_{1} y_{2}+\tilde{d} y_{1} y_{2}=k_{x}(y)=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}_{k}} \\
\tilde{\phi}(x)=\left[\begin{array}{llll}
\tilde{a}=x_{1}^{2} & \tilde{b}=x_{2}^{2} & \tilde{c}=x_{1} x_{2} \quad \tilde{d}=x_{1} x_{2}
\end{array}\right]
\end{gathered}
$$

Non-uniqueness of feature representation

- There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$
\begin{gathered}
\langle\phi(x), \phi(y)\rangle_{\mathbb{R}^{3}}=a y_{1}^{2}+b y_{2}^{2}+c \sqrt{2} y_{1} y_{2}=k_{x}(y)=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}_{k}} \\
\phi(x)=\left[\begin{array}{lll}
a=x_{1}^{2} & b=x_{2}^{2} \quad c=\sqrt{2} x_{1} x_{2}
\end{array}\right] \\
\langle\tilde{\phi}(x), \tilde{\phi}(y)\rangle_{\mathbb{R}^{4}}=\tilde{a} y_{1}^{2}+\tilde{b} y_{2}^{2}+\tilde{c} y_{1} y_{2}+\tilde{d} y_{1} y_{2}=k_{x}(y)=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}_{k}} \\
\tilde{\phi}(x)=\left[\begin{array}{llll}
\tilde{a}=x_{1}^{2} & \tilde{b}=x_{2}^{2} & \tilde{c}=x_{1} x_{2} & \tilde{d}=x_{1} x_{2}
\end{array}\right]
\end{gathered}
$$

- Different feature maps give "coefficients" of $k(\cdot, x)$ in terms of (different) simpler functions.

Non-uniqueness of feature representation

- There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$
\begin{gathered}
\langle\phi(x), \phi(y)\rangle_{\mathbb{R}^{3}}=a y_{1}^{2}+b y_{2}^{2}+c \sqrt{2} y_{1} y_{2}=k_{x}(y)=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}_{k}} \\
\phi(x)=\left[\begin{array}{lll}
a=x_{1}^{2} & b=x_{2}^{2} \quad c=\sqrt{2} x_{1} x_{2}
\end{array}\right] \\
\langle\tilde{\phi}(x), \tilde{\phi}(y)\rangle_{\mathbb{R}^{4}}=\tilde{a} y_{1}^{2}+\tilde{b} y_{2}^{2}+\tilde{c} y_{1} y_{2}+\tilde{d} y_{1} y_{2}=k_{x}(y)=\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}_{k}} \\
\tilde{\phi}(x)=\left[\begin{array}{llll}
\tilde{a}=x_{1}^{2} & \tilde{b}=x_{2}^{2} & \tilde{c}=x_{1} x_{2} & \tilde{d}=x_{1} x_{2}
\end{array}\right]
\end{gathered}
$$

- Different feature maps give "coefficients" of $k(\cdot, x)$ in terms of (different) simpler functions.
- RKHS of k remains unique, regardless of the representation.

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels
(4) Proof sketch of Moore-Aronszajn

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Assumptions

- So far, no assumptions on:
- \mathcal{X} (apart from it being a non-empty set)
- nor on k (apart from it being a positive definite function)

Assumptions

- So far, no assumptions on:
- \mathcal{X} (apart from it being a non-empty set)
- nor on k (apart from it being a positive definite function)
- Now, assume that:

Assumptions

- So far, no assumptions on:
- \mathcal{X} (apart from it being a non-empty set)
- nor on k (apart from it being a positive definite function)
- Now, assume that:
- \mathcal{X} is a compact metric space
- such as $[a, b]$, every continuous function on \mathcal{X} is bounded and uniformly continuous

Assumptions

- So far, no assumptions on:
- \mathcal{X} (apart from it being a non-empty set)
- nor on k (apart from it being a positive definite function)
- Now, assume that:
- \mathcal{X} is a compact metric space
- such as $[a, b]$, every continuous function on \mathcal{X} is bounded and uniformly continuous
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a continuous positive definite function

Integral operator of a kernel

Definition (Integral operator)

Let ν be a finite Borel measure on \mathcal{X}. For the linear map

$$
\begin{aligned}
S_{k}: L_{2}(\mathcal{X} ; \nu) & \rightarrow \mathcal{C}(\mathcal{X}) \\
\left(S_{k} \tilde{f}\right)(x) & =\int k(x, y) f(y) d \nu(y), \quad f \in \tilde{f} \in L_{2}(\mathcal{X} ; \nu),
\end{aligned}
$$

its composition $T_{k}=I_{k} \circ S_{k}$ with the inclusion $I_{k}: \mathcal{C}(\mathcal{X}) \hookrightarrow L_{2}(\mathcal{X} ; \nu)$ is said to be the integral operator of k.

Proof that $S_{k} \tilde{f}$ is continuous

$$
\begin{aligned}
\left|\left(S_{k} \tilde{f}\right)(x)-\left(s_{k} \tilde{f}\right)\left(x^{\prime}\right)\right| & =\left|\int\left(k(x, y)-k\left(x^{\prime}, y\right)\right) f(y) d \nu(y)\right| \\
& =\left|\left\langle I_{k}\left(k_{x}-k_{x^{\prime}}\right), \tilde{f}\right\rangle_{L^{2}}\right| \\
& \leq\left\|I_{k}\left(k_{x}-k_{\left.x^{\prime}\right)}\right)\right\|_{L^{2}}\|\tilde{f}\|_{L^{2}} \\
& =\|\tilde{f}\|_{L^{2}} \sqrt{\int\left(k(x, y)-k\left(x^{\prime}, y\right)\right)^{2} d \nu(y)} \\
& \leq \nu(\mathcal{X})\|\tilde{f}\|_{L^{2}} \max \left|k(x, y)-k\left(x^{\prime}, y\right)\right|
\end{aligned}
$$

Integral operator of a kernel (2)

Integral operator of a kernel (2)

$T_{k}: L_{2}(\mathcal{X} ; \nu) \rightarrow L_{2}(\mathcal{X} ; \nu)$
$T_{k} \neq S_{k}:\left(S_{k} \tilde{f}\right)(x)$ is defined, while $\left(T_{k} \tilde{f}\right)(x)$ is not!

Properties of integral operators

- k symmetric $\Longrightarrow T_{k}$ self-adjoint: $\left\langle f, T_{k} g\right\rangle=\left\langle T_{k} f, g\right\rangle$

Properties of integral operators

- k symmetric $\Longrightarrow T_{k}$ self-adjoint: $\left\langle f, T_{k} g\right\rangle=\left\langle T_{k} f, g\right\rangle$
- k positive definite $\Longrightarrow T_{k}$ positive: $\left\langle f, T_{k} f\right\rangle \geq 0$

Properties of integral operators

- k symmetric $\Longrightarrow T_{k}$ self-adjoint: $\left\langle f, T_{k} g\right\rangle=\left\langle T_{k} f, g\right\rangle$
- k positive definite $\Longrightarrow T_{k}$ positive: $\left\langle f, T_{k} f\right\rangle \geq 0$
- k continuous $\Longrightarrow T_{k}$ compact: if $\left\{f_{n}\right\}$ is bounded, then $\left\{T_{k} f_{n}\right\}$ has a convergent subsequence

Properties of integral operators

- k symmetric $\Longrightarrow T_{k}$ self-adjoint: $\left\langle f, T_{k} g\right\rangle=\left\langle T_{k} f, g\right\rangle$
- k positive definite $\Longrightarrow T_{k}$ positive: $\left\langle f, T_{k} f\right\rangle \geq 0$
- k continuous $\Longrightarrow T_{k}$ compact: if $\left\{f_{n}\right\}$ is bounded, then $\left\{T_{k} f_{n}\right\}$ has a convergent subsequence

Theorem (Spectral theorem)

Let \mathcal{F} be a Hilbert space,and $T: \mathcal{F} \rightarrow \mathcal{F}$ a compact, self-adjoint operator. There is an at most countable ONS $\left\{u_{j}\right\}_{j \in J}$ of \mathcal{F} and $\left\{\lambda_{j}\right\}_{j \in J}$ with $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots>0$ converging to zero such that

$$
T f=\sum_{j \in J} \lambda_{j}\left\langle f, u_{j}\right\rangle_{\mathcal{F}} u_{j}, \quad f \in \mathcal{F} .
$$

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Mercer's theorem

- \mathcal{X} a compact metric space; $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel.

Mercer's theorem

- \mathcal{X} a compact metric space; $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with $\operatorname{supp} \nu=\mathcal{X}$.

Mercer's theorem

- \mathcal{X} a compact metric space; $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with supp $\nu=\mathcal{X}$.
- Integral operator T_{k} is then compact, positive and self-adjoint on $L_{2}(\mathcal{X} ; \nu)$

Mercer's theorem

- \mathcal{X} a compact metric space; $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with supp $\nu=\mathcal{X}$.
- Integral operator T_{k} is then compact, positive and self-adjoint on $L_{2}(\mathcal{X} ; \nu)$, so there exist $\operatorname{ONS}\left\{\tilde{e}_{j}\right\}_{j \in J}$ and $\left\{\lambda_{j}\right\}_{j \in J}$

Mercer's theorem

- \mathcal{X} a compact metric space; $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with supp $\nu=\mathcal{X}$.
- Integral operator T_{k} is then compact, positive and self-adjoint on $L_{2}(\mathcal{X} ; \nu)$, so there exist $\operatorname{ONS}\left\{\tilde{e}_{j}\right\}_{j \in J}$ and $\left\{\lambda_{j}\right\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).

Mercer's theorem

- \mathcal{X} a compact metric space; $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with supp $\nu=\mathcal{X}$.
- Integral operator T_{k} is then compact, positive and self-adjoint on $L_{2}(\mathcal{X} ; \nu)$, so there exist $\operatorname{ONS}\left\{\tilde{e}_{j}\right\}_{j \in J}$ and $\left\{\lambda_{j}\right\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).
- \tilde{e}_{j} is an equivalence class in the ONS of $L_{2}(\mathcal{X} ; \nu)$

Mercer's theorem

- \mathcal{X} a compact metric space; $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with supp $\nu=\mathcal{X}$.
- Integral operator T_{k} is then compact, positive and self-adjoint on $L_{2}(\mathcal{X} ; \nu)$, so there exist $\operatorname{ONS}\left\{\tilde{e}_{j}\right\}_{j \in J}$ and $\left\{\lambda_{j}\right\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).
- \tilde{e}_{j} is an equivalence class in the ONS of $L_{2}(\mathcal{X} ; \nu)$
- $e_{j}=\lambda_{j}^{-1} S_{k} \tilde{e}_{j} \in \mathcal{C}(\mathcal{X})$ is a continuous function in the class \tilde{e}_{j} : $I_{k} e_{j}=\tilde{e}_{j}$.

Mercer's theorem

- \mathcal{X} a compact metric space; $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with supp $\nu=\mathcal{X}$.
- Integral operator T_{k} is then compact, positive and self-adjoint on $L_{2}(\mathcal{X} ; \nu)$, so there exist $\operatorname{ONS}\left\{\tilde{e}_{j}\right\}_{j \in J}$ and $\left\{\lambda_{j}\right\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).
- \tilde{e}_{j} is an equivalence class in the ONS of $L_{2}(\mathcal{X} ; \nu)$
- $e_{j}=\lambda_{j}^{-1} S_{k} \tilde{e}_{j} \in \mathcal{C}(\mathcal{X})$ is a continuous function in the class \tilde{e}_{j} : $I_{k} e_{j}=\tilde{e}_{j}$.

Theorem (Mercer's theorem)
$\forall x, y \in \mathcal{X}$ with convergence uniform on $\mathcal{X} \times \mathcal{X}$:

$$
k(x, y)=\sum_{j \in J} \lambda_{j} e_{j}(x) e_{j}(y) .
$$

Mercer's theorem (2)

$$
\begin{aligned}
k(x, y) & =\sum_{j \in J} \lambda_{j} e_{j}(x) e_{j}(y) \\
& =\left\langle\left\{\sqrt{\lambda_{j}} e_{j}(x)\right\},\left\{\sqrt{\lambda_{j}} e_{j}(y)\right\}\right\rangle_{\ell^{2}(J)}
\end{aligned}
$$

Mercer's theorem (2)

$$
\begin{aligned}
k(x, y) & =\sum_{j \in J} \lambda_{j} e_{j}(x) e_{j}(y) \\
& =\left\langle\left\{\sqrt{\lambda_{j}} e_{j}(x)\right\},\left\{\sqrt{\lambda_{j}} e_{j}(y)\right\}\right\rangle_{\ell^{2}(J)}
\end{aligned}
$$

Another (Mercer) feature map:

$$
\begin{aligned}
\phi: \mathcal{X} & \rightarrow \ell^{2}(J) \\
\phi: x & \mapsto\left\{\sqrt{\lambda_{j}} e_{j}(x)\right\}_{j \in J}
\end{aligned}
$$

Mercer's theorem (2)

$$
\begin{aligned}
k(x, y) & =\sum_{j \in J} \lambda_{j} e_{j}(x) e_{j}(y) \\
& =\left\langle\left\{\sqrt{\lambda_{j}} e_{j}(x)\right\},\left\{\sqrt{\lambda_{j}} e_{j}(y)\right\}\right\rangle_{\ell^{2}(J)}
\end{aligned}
$$

Another (Mercer) feature map:

$$
\begin{aligned}
& \phi: \mathcal{X} \rightarrow \ell^{2}(J) \\
& \phi: x \mapsto\left\{\sqrt{\lambda_{j}} e_{j}(x)\right\}_{j \in J} \\
& \sum_{j \in J}\left(\sqrt{\lambda_{j}} e_{j}(x)\right)^{2}=k(x, x)<\infty
\end{aligned}
$$

Mercer's theorem (3)

- Sum $\sum_{j \in J} a_{j} e_{j}(x)$ converges absolutely $\forall x \in \mathcal{X}$ whenever sequence $\left\{a_{j} / \sqrt{\lambda_{j}}\right\} \in \ell^{2}(J):$

$$
\begin{aligned}
\sum_{j \in J}\left|a_{j} e_{j}(x)\right| & \leq\left[\sum_{j \in J}\left|a_{j} / \sqrt{\lambda_{j}}\right|^{2}\right]^{1 / 2} \cdot\left[\sum_{j \in J}\left|\sqrt{\lambda_{j}} e_{j}(x)\right|^{2}\right]^{1 / 2} \\
& =\left\|\left\{a_{j} / \sqrt{\lambda_{j}}\right\}\right\|_{\ell^{2}(J)} \sqrt{k(x, x)} .
\end{aligned}
$$

Mercer's theorem (3)

- Sum $\sum_{j \in J} a_{j} e_{j}(x)$ converges absolutely $\forall x \in \mathcal{X}$ whenever sequence $\left\{a_{j} / \sqrt{\lambda_{j}}\right\} \in \ell^{2}(J):$

$$
\begin{aligned}
\sum_{j \in J}\left|a_{j} e_{j}(x)\right| & \leq\left[\sum_{j \in J}\left|a_{j} / \sqrt{\lambda_{j}}\right|^{2}\right]^{1 / 2} \cdot\left[\sum_{j \in J}\left|\sqrt{\lambda_{j}} e_{j}(x)\right|^{2}\right]^{1 / 2} \\
& =\left\|\left\{a_{j} / \sqrt{\lambda_{j}}\right\}\right\|_{\ell^{2}(J)} \sqrt{k(x, x)} .
\end{aligned}
$$

$\sum_{j \in J} a_{j} e_{j}$ is a well defined function on \mathcal{X}

Mercer representation of RKHS

Theorem
Let \mathcal{X} be a compact metric space and $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel. Define:

$$
\mathcal{H}=\left\{f=\sum_{j \in J} a_{j} e_{j}:\left\{a_{j} / \sqrt{\lambda_{j}}\right\} \in \ell^{2}(J)\right\},
$$

with inner product:

$$
\left\langle\sum_{j \in J} a_{j} e_{j}, \sum_{j \in J} b_{j} e_{j}\right\rangle_{\mathcal{H}}=\sum_{j \in J} \frac{a_{j} b_{j}}{\lambda_{j}} .
$$

Then \mathcal{H} is the RKHS of k.

Mercer representation of RKHS

Theorem
Let \mathcal{X} be a compact metric space and $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a continuous kernel. Define:

$$
\mathcal{H}=\left\{f=\sum_{j \in J} a_{j} e_{j}:\left\{a_{j} / \sqrt{\lambda_{j}}\right\} \in \ell^{2}(J)\right\},
$$

with inner product:

$$
\left\langle\sum_{j \in J} a_{j} e_{j}, \sum_{j \in J} b_{j} e_{j}\right\rangle_{\mathcal{H}}=\sum_{j \in J} \frac{a_{j} b_{j}}{\lambda_{j}} .
$$

Then \mathcal{H} is the RKHS of k.
RKHS is unique, so does not depend on ν !

Proof

(1) $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is an inner product: if $f=\sum_{j \in J} a_{j} e_{j}$
then $\langle f, f\rangle_{\mathcal{H}}=\sum_{j \in J} \frac{a_{j}^{2}}{\lambda_{j}}>0$ if some $a_{j}>0$
(2) Let $\left\{f_{n}\right\}$ be Cauchy, $f_{n}=\sum_{j \in J} a_{j}^{(n)} e_{j}$. Then $\left\|f_{n}-f_{m}\right\|_{\mathcal{H}}^{2}=$
$\sum_{j \in J} \frac{\left(a_{j}^{(n)}-a_{j}^{(m)}\right)^{2}}{\lambda_{j}}=\left\|\left\{a_{j}^{(n)} / \sqrt{\lambda_{j}}\right\}-\left\{a_{j}^{(m)} / \sqrt{\lambda_{j}}\right\}\right\|_{\ell^{2}}^{2}<\epsilon$, so must have a limit because ℓ^{2} is a Hilbert space.
(3) $k(\cdot, x)=\sum_{j \in J}\left[\lambda_{j} e_{j}(x)\right] e_{j} \in \mathcal{H}$ since $\sum_{j \in J}\left(\frac{\lambda_{j} e_{j}(x)}{\sqrt{\lambda_{j}}}\right)^{2}=k(x, x)<\infty$
(1) $\langle f, k(\cdot, x)\rangle_{\mathcal{H}}=\left\langle\sum_{j \in J} a_{j} e_{j}, \sum_{j \in J}\left[\lambda_{j} e_{j}(x)\right] e_{j}\right\rangle_{\mathcal{H}}=\sum_{j \in J} \frac{a_{j} \lambda_{j} e_{j}(x)}{\lambda_{j}}=$ $\sum_{j \in J} a_{j} e_{j}(x)=f(x)$.

Smoothness interpretation

Gaussian kernel, $k(x, y)=\exp \left(-\sigma\|x-y\|^{2}\right)$,

$$
\begin{aligned}
& \lambda_{j} \propto b^{j} \quad b<1 \\
& e_{j}(x) \propto \\
& \exp \left(-(c-a) x^{2}\right) H_{j}(x \sqrt{2 c})
\end{aligned}
$$

a, b, c are functions of σ, and H_{j} is j th order Hermite polynomial.

$$
\begin{aligned}
& \text { NOTE that }\|f\|_{\mathcal{H}_{k}}<\infty \text { is a } \\
& \text { "smoothness" constraint: } \\
& \lambda_{j} \text { decay as } e_{j} \text { become } \\
& \text { "rougher" and } \\
& \|f\|_{\mathcal{H}_{k}}^{2}=\sum_{j \in J} \frac{a_{j}^{2}}{\lambda_{j}}
\end{aligned}
$$

(Figure from Rasmussen and Williams)

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

\mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$

Assume $\left\{\tilde{e}_{j}\right\}_{j \in J}$ is ONB of $L_{2}(\mathcal{X} ; \nu)$, and write $\hat{f}(j)=\left\langle f, \tilde{e}_{j}\right\rangle_{L_{2}}$

$$
T_{k} f=\sum_{j \in J} \lambda_{j} \hat{f}(j) \tilde{e}_{j}, \quad f \in L_{2}(\mathcal{X} ; \nu)
$$

\mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$

Assume $\left\{\tilde{e}_{j}\right\}_{j \in J}$ is ONB of $L_{2}(\mathcal{X} ; \nu)$, and write $\hat{f}(j)=\left\langle f, \tilde{e}_{j}\right\rangle_{L_{2}}$

$$
\begin{aligned}
T_{k} f & =\sum_{j \in J} \lambda_{j} \hat{f}(j) \tilde{e}_{j},
\end{aligned} \quad f \in L_{2}(\mathcal{X} ; \nu), ~=\sum_{j \in J} \sqrt{\lambda_{j} \hat{f}(j) \tilde{e}_{j},} \quad f \in L_{2}(\mathcal{X} ; \nu)
$$

\mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$

Assume $\left\{\tilde{e}_{j}\right\}_{j \in J}$ is ONB of $L_{2}(\mathcal{X} ; \nu)$, and write $\hat{f}(j)=\left\langle f, \tilde{e}_{j}\right\rangle_{L_{2}}$

$$
\begin{gathered}
T_{k} f=\sum_{j \in J} \lambda_{j} \hat{f}(j) \tilde{e}_{j}, \quad f \in L_{2}(\mathcal{X} ; \nu) \\
T_{k}^{1 / 2} f=\sum_{j \in J} \sqrt{\lambda_{j} \hat{f}}(j) \tilde{e}_{j}, \quad f \in L_{2}(\mathcal{X} ; \nu) \\
\mathcal{H}_{k}=\left\{f=\sum_{j \in J} a_{j} e_{j}:\left\{a_{j} / \sqrt{\lambda_{j}}\right\} \in \ell^{2}(J)\right\} \\
\sum_{j \in J}|\hat{f}(j)|^{2}=\|f\|_{2}^{2}<\infty \Rightarrow\{\hat{f}(j)\} \in \ell^{2}(J) \Rightarrow \sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j} \in \mathcal{H}_{k}
\end{gathered}
$$

\mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$

$$
f \in L_{2}(\mathcal{X} ; \nu) \stackrel{1-1}{\longleftrightarrow}\{\hat{f}(j)\} \in \ell^{2}(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j} \in \mathcal{H}_{k}
$$

\mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$

$$
\begin{gathered}
f \in L_{2}(\mathcal{X} ; \nu) \stackrel{1-1}{\longleftrightarrow}\{\hat{f}(j)\} \in \ell^{2}(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j} \in \mathcal{H}_{k} \\
\langle f, g\rangle_{L_{2}}=\langle\{\hat{f}(j)\},\{\hat{g}(j)\}\rangle_{\ell^{2}(J)}=\left\langle\sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j}, \sum_{j \in J} \sqrt{\lambda_{j}} \hat{g}(j) e_{j}\right\rangle_{\mathcal{H}_{k}}
\end{gathered}
$$

\mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$

$$
\begin{gathered}
f \in L_{2}(\mathcal{X} ; \nu) \stackrel{1-1}{\longleftrightarrow}\{\hat{f}(j)\} \in \ell^{2}(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j} \in \mathcal{H}_{k} \\
\langle f, g\rangle_{L_{2}}=\langle\{\hat{f}(j)\},\{\hat{g}(j)\}\rangle_{\ell^{2}(J)}=\left\langle\sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j}, \sum_{j \in J} \sqrt{\lambda_{j}} \hat{g}(j) e_{j}\right\rangle_{\mathcal{H}_{k}}
\end{gathered}
$$

$T_{k}^{1 / 2}$ induces an isometric isomorphism between $\operatorname{span}\left\{\tilde{e}_{j}: j \in J\right\} \subseteq L_{2}(\mathcal{X} ; \nu)$ and \mathcal{H}_{k} (and both are isometrically isomorphic to $\left.\ell^{2}(J)\right)$.

Canonical feature map

$$
f \in L_{2}(\mathcal{X} ; \nu) \stackrel{1-1}{\longleftrightarrow}\{\hat{f}(j)\} \in \ell^{2}(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j} \in \mathcal{H}_{k}
$$

Canonical feature map

$$
\begin{gathered}
f \in L_{2}(\mathcal{X} ; \nu) \stackrel{1-1}{\longleftrightarrow}\{\hat{f}(j)\} \in \ell^{2}(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j} \in \mathcal{H}_{k} \\
k(\cdot, x)=\sum_{j \in J} \sqrt{\lambda_{j}}\left(\sqrt{\lambda_{j}} e_{j}(x)\right) e_{j}
\end{gathered}
$$

Canonical feature map

$$
\begin{gathered}
f \in L_{2}(\mathcal{X} ; \nu) \stackrel{1-1}{\longleftrightarrow}\{\hat{f}(j)\} \in \ell^{2}(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j} \in \mathcal{H}_{k} \\
k(\cdot, x)=\sum_{j \in J} \sqrt{\lambda_{j}}\left(\sqrt{\lambda_{j}} e_{j}(x)\right) e_{j} \\
\mathcal{H}_{k} \ni k(\cdot, x) \leftarrow x \rightarrow\left\{\sqrt{\lambda_{j}} e_{j}(x)\right\} \in \ell^{2}(J)
\end{gathered}
$$

Canonical feature map

$$
\begin{gathered}
f \in L_{2}(\mathcal{X} ; \nu) \stackrel{1-1}{\longleftrightarrow}\{\hat{f}(j)\} \in \ell^{2}(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j} \in \mathcal{H}_{k} \\
k(\cdot, x)=\sum_{j \in J} \sqrt{\lambda_{j}}\left(\sqrt{\lambda_{j}} e_{j}(x)\right) e_{j} \\
\mathcal{H}_{k} \ni k(\cdot, x) \leftarrow x \rightarrow\left\{\sqrt{\lambda_{j}} e_{j}(x)\right\} \in \ell^{2}(J)
\end{gathered}
$$

Mercer feature map gives Fourier coefficients of the canonical feature map.

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RIKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Operations with kernels

Fact (Sum and scaling of kernels)
If k, k_{1}, and k_{2} are kernels on \mathcal{X}, and $\alpha \geq 0$ is a scalar, then $\alpha k, k_{1}+k_{2}$ are kernels.

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k_{1}, and k_{2} are kernels on \mathcal{X}, and $\alpha \geq 0$ is a scalar, then $\alpha k, k_{1}+k_{2}$ are kernels.

- A difference of kernels is not necessarily a kernel! This is because we cannot have $k_{1}(x, x)-k_{2}(x, x)=\langle\phi(x), \phi(x)\rangle_{\mathcal{H}}<0$.
- This gives the set of all kernels the geometry of a closed convex cone.

Fact (Sum and scaling of kernels)

If k, k_{1}, and k_{2} are kernels on \mathcal{X}, and $\alpha \geq 0$ is a scalar, then $\alpha k, k_{1}+k_{2}$ are kernels.

- A difference of kernels is not necessarily a kernel! This is because we cannot have $k_{1}(x, x)-k_{2}(x, x)=\langle\phi(x), \phi(x)\rangle_{\mathcal{H}}<0$.
- This gives the set of all kernels the geometry of a closed convex cone.

$$
\mathcal{H}_{k_{1}+k_{2}}=\mathcal{H}_{k_{1}}+\mathcal{H}_{k_{2}}=\left\{f_{1}+f_{2}: f_{1} \in \mathcal{H}_{k_{1}}, f_{2} \in \mathcal{H}_{k_{2}}\right\}
$$

Operations with kernels (2)

Fact (Product of kernels)

If k_{1} and k_{2} are kernels on \mathcal{X} and \mathcal{Y}, then $k=k_{1} \otimes k_{2}$, given by:

$$
k\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=k_{1}\left(x, x^{\prime}\right) k_{2}\left(y, y^{\prime}\right)
$$

is a kernel on $\mathcal{X} \times \mathcal{Y}$. If $\mathcal{X}=\mathcal{Y}$, then $k=k_{1} \cdot k_{2}$, given by:

$$
k\left(x, x^{\prime}\right):=k_{1}\left(x, x^{\prime}\right) k_{2}\left(x, x^{\prime}\right)
$$

is a kernel on \mathcal{X}.

Operations with kernels (2)

Fact (Product of kernels)

If k_{1} and k_{2} are kernels on \mathcal{X} and \mathcal{Y}, then $k=k_{1} \otimes k_{2}$, given by:

$$
k\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=k_{1}\left(x, x^{\prime}\right) k_{2}\left(y, y^{\prime}\right)
$$

is a kernel on $\mathcal{X} \times \mathcal{Y}$. If $\mathcal{X}=\mathcal{Y}$, then $k=k_{1} \cdot k_{2}$, given by:

$$
k\left(x, x^{\prime}\right):=k_{1}\left(x, x^{\prime}\right) k_{2}\left(x, x^{\prime}\right)
$$

is a kernel on \mathcal{X}.

$$
\mathcal{H}_{k_{1} \otimes k_{2}} \cong \mathcal{H}_{k_{1}} \otimes \mathcal{H}_{k_{2}}
$$

Summary

all kernels $\mathbb{R}_{+}^{\mathcal{X} \times \mathcal{X}}$

$\stackrel{1-1}{\longleftrightarrow}$
all function spaces with continuous evaluation $\operatorname{Hilb}\left(\mathbb{R}^{\mathcal{X}}\right)$

Summary

all kernels $\mathbb{R}_{+}^{\mathcal{X} \times \mathcal{X}}$

$$
\stackrel{1-1}{\longleftrightarrow}
$$

all function spaces with continuous evaluation $\operatorname{Hilb}\left(\mathbb{R}^{\mathcal{X}}\right)$

bijection between $\mathbb{R}_{+}^{\mathcal{X} \times \mathcal{X}}$ and $\operatorname{Hilb}\left(\mathbb{R}^{\mathcal{X}}\right)$ preserves geometric structure

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Kernels on \mathbb{R}^{d}

New kernels from old:

- trivial (linear) kernel on \mathbb{R}^{d} is $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$

Kernels on \mathbb{R}^{d}

New kernels from old:

- trivial (linear) kernel on \mathbb{R}^{d} is $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$
- for any $p(t)=a_{m} t^{m}+\cdots+a_{1} t+a_{0}$ with $a_{i} \geq 0$
$\Longrightarrow k\left(x, x^{\prime}\right)=p\left(\left\langle x, x^{\prime}\right\rangle\right)$ is a kernel on \mathbb{R}^{d}

Kernels on \mathbb{R}^{d}

New kernels from old:

- trivial (linear) kernel on \mathbb{R}^{d} is $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$
- for any $p(t)=a_{m} t^{m}+\cdots+a_{1} t+a_{0}$ with $a_{i} \geq 0$
$\Longrightarrow k\left(x, x^{\prime}\right)=p\left(\left\langle x, x^{\prime}\right\rangle\right)$ is a kernel on \mathbb{R}^{d}
- polynomial kernel: $k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{m}$, for $c \geq 0$

Kernels on \mathbb{R}^{d}

New kernels from old:

- trivial (linear) kernel on \mathbb{R}^{d} is $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$
- for any $p(t)=a_{m} t^{m}+\cdots+a_{1} t+a_{0}$ with $a_{i} \geq 0$
$\Longrightarrow k\left(x, x^{\prime}\right)=p\left(\left\langle x, x^{\prime}\right\rangle\right)$ is a kernel on \mathbb{R}^{d}
- polynomial kernel: $k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{m}$, for $c \geq 0$
- $f(t)$ has Taylor series with non-negative coefficients $\Longrightarrow k\left(x, x^{\prime}\right)=f\left(\left\langle x, x^{\prime}\right\rangle\right)$ is a kernel on \mathbb{R}^{d}

Kernels on \mathbb{R}^{d}

New kernels from old:

- trivial (linear) kernel on \mathbb{R}^{d} is $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$
- for any $p(t)=a_{m} t^{m}+\cdots+a_{1} t+a_{0}$ with $a_{i} \geq 0$
$\Longrightarrow k\left(x, x^{\prime}\right)=p\left(\left\langle x, x^{\prime}\right\rangle\right)$ is a kernel on \mathbb{R}^{d}
- polynomial kernel: $k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{m}$, for $c \geq 0$
- $f(t)$ has Taylor series with non-negative coefficients $\Longrightarrow k\left(x, x^{\prime}\right)=f\left(\left\langle x, x^{\prime}\right\rangle\right)$ is a kernel on \mathbb{R}^{d}
- exponential kernel: $k\left(x, x^{\prime}\right)=\exp \left(\sigma\left\langle x, x^{\prime}\right\rangle\right)$, for $\sigma>0$

Kernels on \mathbb{R}^{d}

New kernels from old:

- polynomial kernel: $k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{m}$, for $c \geq 0$
- exponential kernel: $k\left(x, x^{\prime}\right)=\exp \left(\sigma\left\langle x, x^{\prime}\right\rangle\right)$, for $\sigma>0$

Gaussian kernel

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}, \phi(x)=\exp \left(-\sigma\|x\|^{2}\right)$. Then, \tilde{k} is representable as an inner product in \mathbb{R} :

$$
\tilde{k}\left(x, x^{\prime}\right)=\phi(x) \phi\left(x^{\prime}\right)=\exp \left(-\sigma\|x\|^{2}\right) \exp \left(-\sigma\left\|x^{\prime}\right\|^{2}\right) \quad \text { kernel! }
$$

Gaussian kernel

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}, \phi(x)=\exp \left(-\sigma\|x\|^{2}\right)$. Then, \tilde{k} is representable as an inner product in \mathbb{R} :

$$
\tilde{k}\left(x, x^{\prime}\right)=\phi(x) \phi\left(x^{\prime}\right)=\exp \left(-\sigma\|x\|^{2}\right) \exp \left(-\sigma\left\|x^{\prime}\right\|^{2}\right) \quad \text { kernel! }
$$

$$
\begin{aligned}
\operatorname{kgauss}\left(x, x^{\prime}\right) & =\tilde{k}\left(x, x^{\prime}\right) k_{\exp }\left(x, x^{\prime}\right) \\
& =\exp \left(-\sigma\left[\|x\|^{2}+\left\|x^{\prime}\right\|^{2}-2\left\langle x, x^{\prime}\right\rangle\right]\right) \\
& =\exp \left(-\sigma\left\|x-x^{\prime}\right\|^{2}\right) \quad \text { kernel! }
\end{aligned}
$$

Outline

(1) What is an RKHS?

- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem
(2) Mercer representation of RKHS
- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_{k} and $L_{2}(\mathcal{X} ; \nu)$
(3) Operations with kernels
- Sum and product
- Constructing new kernels

4 Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem

Starting with a positive def. k, construct a pre-RKHS (an inner product space of functions) $\mathcal{H}_{0} \subset \mathbb{R}^{\mathcal{X}}$ with properties:
(1) The evaluation functionals δ_{x} are continuous on \mathcal{H}_{0},
(2) Any \mathcal{H}_{0}-Cauchy sequence f_{n} which converges pointwise to 0 also converges in \mathcal{H}_{0}-norm to 0

Moore-Aronszajn Theorem (2)

pre-RKHS $\mathcal{H}_{0}=\operatorname{span}\{k(\cdot, x) \mid x \in \mathcal{X}\}$ will be taken to be the set of functions:

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)
$$

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step I)
Space $\mathcal{H}_{0}=\operatorname{span}\{k(\cdot, x) \mid x \in \mathcal{X}\}$, endowed with the inner product

$$
\langle f, g\rangle_{\mathcal{H}_{0}}=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(x_{i}, y_{j}\right)
$$

where $f=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right)$ and $g=\sum_{j=1}^{m} \beta_{j} k\left(\cdot, y_{j}\right)$, is a valid pre-RKHS.

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step I)
Space $\mathcal{H}_{0}=\operatorname{span}\{k(\cdot, x) \mid x \in \mathcal{X}\}$, endowed with the inner product

$$
\langle f, g\rangle_{\mathcal{H}_{0}}=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(x_{i}, y_{j}\right)
$$

where $f=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right)$ and $g=\sum_{j=1}^{m} \beta_{j} k\left(\cdot, y_{j}\right)$, is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step II)

Let \mathcal{H}_{0} be a pre-RKHS space. Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_{0}-Cauchy sequence $\left\{f_{n}\right\}$ converging pointwise to f. Then, \mathcal{H} is an RKHS.

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step I)
Space $\mathcal{H}_{0}=\operatorname{span}\{k(\cdot, x) \mid x \in \mathcal{X}\}$, endowed with the inner product

$$
\langle f, g\rangle_{\mathcal{H}_{0}}=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(x_{i}, y_{j}\right),
$$

where $f=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right)$ and $g=\sum_{j=1}^{m} \beta_{j} k\left(\cdot, y_{j}\right)$, is a valid pre-RKHS.

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step I)
Space $\mathcal{H}_{0}=\operatorname{span}\{k(\cdot, x) \mid x \in \mathcal{X}\}$, endowed with the inner product

$$
\langle f, g\rangle_{\mathcal{H}_{0}}=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(x_{i}, y_{j}\right),
$$

where $f=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right)$ and $g=\sum_{j=1}^{m} \beta_{j} k\left(\cdot, y_{j}\right)$, is a valid pre-RKHS.
(1) The evaluation functionals δ_{x} are continuous on \mathcal{H}_{0}
(2) Any \mathcal{H}_{0}-Cauchy sequence f_{n} which converges pointwise to 0 also converges in \mathcal{H}_{0}-norm to 0

Moore-Aronszajn Theorem (5)

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_{0}-Cauchy sequence $\left\{f_{n}\right\}$ converging pointwise to f. Clearly, $\mathcal{H}_{0} \subseteq \mathcal{H}$.

Moore-Aronszajn Theorem (5)

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_{0}-Cauchy sequence $\left\{f_{n}\right\}$ converging pointwise to f. Clearly, $\mathcal{H}_{0} \subseteq \mathcal{H}$.
(1) We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the \mathcal{H}_{0}-Cauchy sequences $\left\{f_{n}\right\},\left\{g_{n}\right\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?

Moore-Aronszajn Theorem (5)

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_{0}-Cauchy sequence $\left\{f_{n}\right\}$ converging pointwise to f. Clearly, $\mathcal{H}_{0} \subseteq \mathcal{H}$.
(1) We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the \mathcal{H}_{0}-Cauchy sequences $\left\{f_{n}\right\},\left\{g_{n}\right\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
(2) An inner product space must satisfy $\langle f, f\rangle_{\mathcal{H}}=0$ iff $f=0$. Is this true when we define the inner product on \mathcal{H} as above?

Moore-Aronszajn Theorem (5)

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_{0}-Cauchy sequence $\left\{f_{n}\right\}$ converging pointwise to f. Clearly, $\mathcal{H}_{0} \subseteq \mathcal{H}$.
(1) We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the \mathcal{H}_{0}-Cauchy sequences $\left\{f_{n}\right\},\left\{g_{n}\right\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
(2) An inner product space must satisfy $\langle f, f\rangle_{\mathcal{H}}=0$ iff $f=0$. Is this true when we define the inner product on \mathcal{H} as above?
(3) Are the evaluation functionals still continuous on \mathcal{H} ?

Moore-Aronszajn Theorem (5)

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_{0}-Cauchy sequence $\left\{f_{n}\right\}$ converging pointwise to f. Clearly, $\mathcal{H}_{0} \subseteq \mathcal{H}$.
(1) We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the \mathcal{H}_{0}-Cauchy sequences $\left\{f_{n}\right\},\left\{g_{n}\right\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
(2) An inner product space must satisfy $\langle f, f\rangle_{\mathcal{H}}=0$ iff $f=0$. Is this true when we define the inner product on \mathcal{H} as above?
(3) Are the evaluation functionals still continuous on \mathcal{H} ?
(1) Is \mathcal{H} complete (i.e., does every \mathcal{H}-Cauchy sequence converge)?

Moore-Aronszajn Theorem (5)

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_{0}-Cauchy sequence $\left\{f_{n}\right\}$ converging pointwise to f. Clearly, $\mathcal{H}_{0} \subseteq \mathcal{H}$.
(1) We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the \mathcal{H}_{0}-Cauchy sequences $\left\{f_{n}\right\},\left\{g_{n}\right\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
(2) An inner product space must satisfy $\langle f, f\rangle_{\mathcal{H}}=0$ iff $f=0$. Is this true when we define the inner product on \mathcal{H} as above?
(3) Are the evaluation functionals still continuous on \mathcal{H} ?
(1) Is \mathcal{H} complete (i.e., does every \mathcal{H}-Cauchy sequence converge)?

- $(1)+(2)+(3)+(4) \Longrightarrow \mathcal{H}$ is RKHS!

Summary

reproducing kernel \Longleftrightarrow kernel \Longleftrightarrow positive definite

Summary

reproducing kernel \Longleftrightarrow kernel \Longleftrightarrow positive definite

all pd functions $\mathbb{R}_{+}^{\mathcal{X} \times \mathcal{X}}$

$$
\stackrel{1}{1-1}
$$

all function spaces with continuous evaluation $\operatorname{Hilb}\left(\mathbb{R}^{\mathcal{X}}\right)$

