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Non-closed subspaces

Every �nite-dimensional subspace of a normed space is closed.

Example

Let F = {f : [−1, 1]→ R , f continuous} , with ‖f ‖∞ = sup |f (x)|, and
F1 its subspace of di�erentiable functions. Then F1 is not closed.

Idea: construct a sequence of
di�erentiable functions converging
in ‖·‖∞ to f (x) = |x |:

fn(x) =


−x − 1

2n
, x ≤ −1/n,

n
2
x2, |x | < 1/n,

x − 1

2n
, x ≥ 1/n.
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Non-closed subspaces

Example

Let H be an in�nite-dimensional Hilbert space with orthonormal basis

U = {uj}∞j=1. Then span[U ] (�nite linear combinations of elements of U) is
not closed.

Take h =
∑∞

j=1 ajuj with aj > 0 and
∑∞

j=1 a
2
j <∞. Then

hn =
∑n

j=1 ajuj converges to h /∈ span[U ].

Recall:

In the proof of Riesz Theorem, we used: M closed subspace

=⇒ M⊥contains a non-zero element.

Here: span[U ]⊥ = {0} (i.e., span[U ] is dense in H).
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The story so far

Hilbert space:

Riesz Theorem:

RKHS:

thus, evaluation is representable by an inner product
can de�ne k(·, x) as that representer of evaluation

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

reproducing kernel =⇒ kernel
canonical feature φ : x 7→ k(·, x)
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Overview

1 What is an RKHS?

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem

2 Mercer representation of RKHS

Integral operator

Mercer's theorem

Relation between Hk and L2(X ; ν)
3 Operations with kernels

Sum and product

Constructing new kernels

4 Proof sketch of Moore-Aronszajn
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What is an RKHS? Inner product between features

(Just) Kernel

De�nition (Kernel)

A function k : X × X → R is called a kernel on X if there exists a Hilbert

space (not necessarilly an RKHS) F and a map φ : X → F , such that

k(x , y) = 〈φ(x), φ(y)〉F .

φ : X → F is called a feature map,

F is called a feature space.

Corollary

Every reproducing kernel is a kernel (every RKHS is a valid feature

space).
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What is an RKHS? Inner product between features

Non-uniqueness of feature representation

Example

Consider X = R2, and k(x , y) = 〈x , y〉2

k(x , y) = x
2
1 y

2
1 + x

2
2 y

2
2 + 2x1x2y1y2

=
[

x21 x22
√
2x1x2

]  y21
y22√
2y1y2



=
[

x21 x22 x1x2 x1x2
] 

y21
y22
y1y2
y1y2

.
so we can use the feature maps φ(x) =

(
x21 , x

2
2 ,
√
2x1x2

)
or

φ̃(x) =
[

x21 x22 x1x2 x1x2
]
, with feature spaces H = R3 or H̃ = R4.

Not RKHS!

Evaluation is not de�ned on R3 or R4.
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What is an RKHS? Positive de�nite function
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What is an RKHS? Positive de�nite function

Positive de�nite functions

De�nition (Positive de�nite functions)

A symmetric function h : X × X → R is positive de�nite if

∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajh(xi , xj) = a>Ha ≥ 0.
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What is an RKHS? Positive de�nite function

Kernels are positive de�nite

Every inner product is a positive de�nite function, and more generally:

Fact

Every kernel is a positive de�nite function.

n∑
i=1

n∑
j=1

aiajk(xi , xj) =
n∑

i=1

n∑
j=1

aiaj 〈φ(xi ), φ(xj)〉F

=

〈
n∑

i=1

aiφ(xi ),
n∑

j=1

ajφ(xj)

〉
F

=

∥∥∥∥∥
n∑

i=1

aiφ(xi )

∥∥∥∥∥
2

F

≥ 0.
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What is an RKHS? Positive de�nite function

So far

reproducing kernel =⇒ kernel =⇒ positive de�nite

Is every positive de�nite function a reproducing kernel for some RKHS?
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)

Let k : X × X → R be positive de�nite. There is a unique RKHS

H ⊂ RX with reproducing kernel k.
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What is an RKHS? Moore-Aronszajn Theorem

Summary

reproducing kernel ⇐⇒ kernel ⇐⇒ positive de�nite

set of all pd functions: RX×X+
1−1←→

set of all subspaces of RX with continuous evaluation:
Hilb(RX )
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What is an RKHS? Moore-Aronszajn Theorem

Non-uniqueness of feature representation

There are (in�nitely) many feature space representations (and we can

even work in one or more of them, if it's convenient!)

〈φ(x), φ(y)〉R3 = ay2
1
+ by2

2
+ c
√
2y1y2 = kx(y) = 〈kx , ky 〉Hk

φ(x) =
[
a = x2

1
b = x2

2
c =
√
2x1x2

]

〈
φ̃(x), φ̃(y)

〉
R4

= ãy2
1
+ b̃y2

2
+ c̃y1y2 + d̃y1y2 = kx(y) = 〈kx , ky 〉Hk

φ̃(x) =
[
ã = x2

1
b̃ = x2

2
c̃ = x1x2 d̃ = x1x2

]
Di�erent feature maps give �coe�cients� of k(·, x) in terms of

(di�erent) simpler functions.

RKHS of k remains unique, regardless of the representation.
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= ãy2
1
+ b̃y2

2
+ c̃y1y2 + d̃y1y2 = kx(y) = 〈kx , ky 〉Hk

φ̃(x) =
[
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Mercer representation of RKHS

Outline

1 What is an RKHS?

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem

2 Mercer representation of RKHS

Integral operator

Mercer's theorem

Relation between Hk and L2(X ; ν)
3 Operations with kernels

Sum and product

Constructing new kernels

4 Proof sketch of Moore-Aronszajn
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Mercer representation of RKHS Integral operator

Assumptions

So far, no assumptions on:

X (apart from it being a non-empty set)
nor on k (apart from it being a positive de�nite function)

Now, assume that:

X is a compact metric space

such as [a, b], every continuous function on X is bounded and

uniformly continuous

k : X × X → R is a continuous positive de�nite function
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Mercer representation of RKHS Integral operator

Integral operator of a kernel

De�nition (Integral operator)

Let ν be a �nite Borel measure on X . For the linear map

Sk : L2(X ; ν) → C(X ),(
Sk f̃
)
(x) =

ˆ
k(x , y)f (y)dν(y), f ∈ f̃ ∈ L2(X ; ν),

its composition Tk = Ik ◦ Sk with the inclusion Ik : C(X ) ↪→ L2(X ; ν) is
said to be the integral operator of k .
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Mercer representation of RKHS Integral operator

Proof that Sk f̃ is continuous

∣∣∣(Sk f̃ ) (x)− (Sk f̃ ) (x ′)∣∣∣ =

∣∣∣∣ˆ (k(x , y)− k(x ′, y)
)
f (y)dν(y)

∣∣∣∣
=

∣∣∣〈Ik (kx − kx ′) , f̃
〉
L2

∣∣∣
≤ ‖Ik (kx − kx ′)‖L2

∥∥∥f̃ ∥∥∥
L2

=
∥∥∥f̃ ∥∥∥

L2

√ˆ
(k(x , y)− k(x ′, y))2 dν(y)

≤ ν(X )
∥∥∥f̃ ∥∥∥

L2
max
y

∣∣k(x , y)− k(x ′, y)
∣∣
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Mercer representation of RKHS Integral operator

Integral operator of a kernel (2)

L2(X ; ν) L2(X ; ν)

C(X )

Sk

Tk = IkSk

Ik

Tk : L2(X ; ν) → L2(X ; ν)

Tk 6= Sk :
(
Sk f̃
)
(x) is de�ned, while

(
Tk f̃

)
(x) is not!
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Mercer representation of RKHS Integral operator

Properties of integral operators

k symmetric =⇒ Tk self-adjoint: 〈f ,Tkg〉 = 〈Tk f , g〉

k positive de�nite =⇒ Tk positive: 〈f ,Tk f 〉 ≥ 0

k continuous =⇒ Tk compact: if {fn} is bounded, then {Tk fn} has
a convergent subsequence

Theorem (Spectral theorem)

Let F be a Hilbert space,and T : F → F a compact, self-adjoint operator.

There is an at most countable ONS {uj} j∈J of F and {λj}j∈J with

|λ1| ≥ |λ2| ≥ · · · > 0 converging to zero such that

Tf =
∑
j∈J

λj 〈f , uj〉F uj , f ∈ F .
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Mercer representation of RKHS Mercer's theorem

Outline

1 What is an RKHS?
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem

X a compact metric space; k : X × X → R a continuous kernel.

A �nite measure ν on X with suppν = X .
Integral operator Tk is then compact, positive and self-adjoint on

L2(X ; ν)
ẽj is an equivalence class in the ONS of L2(X ; ν)
ej = λ−1j Sk ẽj ∈ C(X ) is a continuous function in the class ẽj :

Ikej = ẽj .

Theorem (Mercer's theorem)

∀x , y ∈ X with convergence uniform on X × X :

k(x , y) =
∑
j∈J

λjej(x)ej(y).
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L2(X ; ν), so there exist ONS {ẽj} j∈J and {λj}j∈J (strictly positive

eigenvalues; J at most countable).
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem (2)

k(x , y) =
∑
j∈J

λjej(x)ej(y)

=
〈{√

λjej(x)
}
,
{√

λjej(y)
}〉

`2(J)

Another (Mercer) feature map:

φ : X → `2(J)

φ : x 7→
{√

λjej(x)
}
j∈J

∑
j∈J

(√
λjej(x)

)2
= k(x , x) <∞
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem (3)

Sum
∑

j∈J ajej(x) converges absolutely ∀x ∈ X whenever sequence{
aj/
√
λj
}
∈ `2(J):

∑
j∈J
|ajej(x)| ≤

∑
j∈J

∣∣∣aj/√λj ∣∣∣2
1/2 ·

∑
j∈J

∣∣∣√λjej(x)∣∣∣2
1/2

=
∥∥∥{aj/√λj}∥∥∥

`2(J)

√
k(x , x).

∑
j∈J ajej is a well de�ned function on X
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem (3)

Sum
∑

j∈J ajej(x) converges absolutely ∀x ∈ X whenever sequence{
aj/
√
λj
}
∈ `2(J):

∑
j∈J
|ajej(x)| ≤

∑
j∈J

∣∣∣aj/√λj ∣∣∣2
1/2 ·

∑
j∈J

∣∣∣√λjej(x)∣∣∣2
1/2

=
∥∥∥{aj/√λj}∥∥∥

`2(J)

√
k(x , x).

∑
j∈J ajej is a well de�ned function on X
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Mercer representation of RKHS Mercer's theorem

Mercer representation of RKHS

Theorem

Let X be a compact metric space and k : X ×X → R a continuous kernel.

De�ne:

H =

f =
∑
j∈J

ajej :
{
aj/
√
λj

}
∈ `2(J)

 ,

with inner product: 〈∑
j∈J

ajej ,
∑
j∈J

bjej

〉
H

=
∑
j∈J

ajbj

λj
.

Then H is the RKHS of k.

RKHS is unique, so does not depend on ν !
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Mercer representation of RKHS Mercer's theorem

Proof

1 〈·, ·〉H is an inner product: if f =
∑

j∈J ajej

then〈f , f 〉H =
∑

j∈J
a2
j

λj
> 0 if some aj > 0

2 Let {fn} be Cauchy, fn =
∑

j∈J a
(n)
j ej . Then ‖fn − fm‖2H =∑

j∈J

(
a
(n)
j
−a(m)

j

)2
λj

=
∥∥∥{a(n)j /

√
λj

}
−
{
a
(m)
j /

√
λj

}∥∥∥2
`2
< ε, so must

have a limit because `2 is a Hilbert space.

3 k(·, x) =∑j∈J [λjej(x)] ej ∈ H since
∑

j∈J

(
λjej (x)√

λj

)2

= k(x , x) <∞

4 〈f , k(·, x)〉H =
〈∑

j∈J ajej ,
∑

j∈J [λjej(x)] ej

〉
H
=
∑

j∈J
ajλjej (x)

λj
=∑

j∈J ajej(x) = f (x).

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 19, 2013 30 / 50



Mercer representation of RKHS Mercer's theorem

Smoothness interpretation

Gaussian kernel, k(x , y) = exp
(
−σ ‖x − y‖2

)
,

λj ∝ bj b < 1

ej(x) ∝ exp(−(c − a)x2)Hj(x
√
2c),

a, b, c are functions of σ, and Hj is jth order Hermite polynomial.

NOTE that ‖f ‖Hk
<∞ is a

�smoothness� constraint:

λj decay as ej become

�rougher� and

‖f ‖2Hk
=
∑

j∈J
a2
j

λj

(Figure from Rasmussen and Williams)

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 19, 2013 31 / 50



Mercer representation of RKHS Relation between H
k
and L2(X ; ν)

Outline

1 What is an RKHS?

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem

2 Mercer representation of RKHS

Integral operator

Mercer's theorem

Relation between Hk and L2(X ; ν)
3 Operations with kernels

Sum and product

Constructing new kernels

4 Proof sketch of Moore-Aronszajn
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Mercer representation of RKHS Relation between H
k
and L2(X ; ν)

Hk and L2(X ; ν)
Assume {ẽj}j∈J is ONB of L2(X ; ν), and write f̂ (j) = 〈f , ẽj〉L2

Tk f =
∑
j∈J

λj f̂ (j)ẽj , f ∈ L2(X ; ν)

T
1/2
k f =

∑
j∈J

√
λj f̂ (j)ẽj , f ∈ L2(X ; ν)

Hk =

f =
∑
j∈J

ajej :
{
aj/
√
λj

}
∈ `2(J)


∑
j∈J

∣∣∣f̂ (j)∣∣∣2 = ‖f ‖22 <∞⇒ {
f̂ (j)

}
∈ `2(J) ⇒

∑
j∈J

√
λj f̂ (j)ej ∈ Hk

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 19, 2013 33 / 50



Mercer representation of RKHS Relation between H
k
and L2(X ; ν)

Hk and L2(X ; ν)
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Mercer representation of RKHS Relation between H
k
and L2(X ; ν)

Hk and L2(X ; ν)

f ∈ L2(X ; ν) 1−1←→
{
f̂ (j)

}
∈ `2(J) 1−1←→

∑
j∈J

√
λj f̂ (j)ej ∈ Hk

〈f , g〉L2 =
〈{

f̂ (j)
}
, {ĝ(j)}

〉
`2(J)

=

〈∑
j∈J

√
λj f̂ (j)ej ,

∑
j∈J

√
λj ĝ(j)ej

〉
Hk

T
1/2
k induces an isometric isomorphism between

span {ẽj : j ∈ J} ⊆L2(X ; ν) and Hk (and both are isometrically

isomorphic to `2(J)).
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Mercer representation of RKHS Relation between H
k
and L2(X ; ν)

Canonical feature map

f ∈ L2(X ; ν) 1−1←→
{
f̂ (j)

}
∈ `2(J) 1−1←→

∑
j∈J

√
λj f̂ (j)ej ∈ Hk

k(·, x) =
∑
j∈J

√
λj

(√
λjej(x)

)
ej

Hk 3 k(·, x)←x→
{√

λjej(x)
}
∈ `2(J)

Mercer feature map gives Fourier coe�cients of the canonical feature map.
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Operations with kernels

Outline

1 What is an RKHS?

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem

2 Mercer representation of RKHS

Integral operator

Mercer's theorem

Relation between Hk and L2(X ; ν)
3 Operations with kernels

Sum and product

Constructing new kernels

4 Proof sketch of Moore-Aronszajn
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Operations with kernels Sum and product

Outline
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Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem

2 Mercer representation of RKHS
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Operations with kernels Sum and product

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k1, and k2 are kernels on X , and α ≥ 0 is a scalar, then αk, k1 + k2
are kernels.

A di�erence of kernels is not necessarily a kernel! This is because we

cannot have k1(x , x)− k2(x , x) = 〈φ(x), φ(x)〉H < 0.

This gives the set of all kernels the geometry of a closed convex cone.

Hk1+k2 = Hk1 +Hk2 = {f1 + f2 : f1 ∈ Hk1 , f2 ∈ Hk2}
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Operations with kernels Sum and product

Operations with kernels (2)

Fact (Product of kernels)

If k1 and k2 are kernels on X and Y, then k = k1 ⊗ k2, given by:

k
(
(x , y), (x ′, y ′)

)
:= k1(x , x

′)k2(y , y
′)

is a kernel on X × Y. If X = Y, then k = k1 · k2, given by:

k
(
x , x ′

)
:= k1(x , x

′)k2(x , x
′)

is a kernel on X .

Hk1⊗k2
∼= Hk1 ⊗Hk2
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Operations with kernels Sum and product

Summary

all kernels RX×X+
1−1←→

all function spaces with continuous evaluation Hilb(RX )

bijection between RX×X+ and Hilb(RX ) preserves geometric
structure
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Operations with kernels Constructing new kernels

Outline

1 What is an RKHS?

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem

2 Mercer representation of RKHS

Integral operator

Mercer's theorem

Relation between Hk and L2(X ; ν)
3 Operations with kernels

Sum and product

Constructing new kernels

4 Proof sketch of Moore-Aronszajn
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Operations with kernels Constructing new kernels

Kernels on Rd

New kernels from old:

trivial (linear) kernel on Rd is k(x , x ′) = 〈x , x ′〉

for any p(t) = amt
m + · · ·+ a1t + a0 with ai ≥ 0

=⇒ k(x , x ′) = p(〈x , x ′〉) is a kernel on Rd

polynomial kernel: k(x , x ′) = (〈x , x ′〉+ c)m, for c ≥ 0

f (t) has Taylor series with non-negative coe�cients

=⇒ k(x , x ′) = f (〈x , x ′〉) is a kernel on Rd

exponential kernel: k(x , x ′) = exp(σ 〈x , x ′〉), for σ > 0
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Operations with kernels Constructing new kernels

Gaussian kernel

Let φ : Rd → R, φ(x) = exp(−σ ‖x‖2). Then, k̃ is representable as an

inner product in R:

k̃(x , x ′) = φ(x)φ(x ′) = exp(−σ ‖x‖2) exp(−σ
∥∥x ′∥∥2) kernel!

kgauss(x , x
′) = k̃(x , x ′)kexp(x , x

′)

= exp
(
−σ
[
‖x‖2 +

∥∥x ′∥∥2 − 2
〈
x , x ′

〉])
= exp

(
−σ
∥∥x − x ′

∥∥2) kernel!
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Proof sketch of Moore-Aronszajn

Outline

1 What is an RKHS?

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem

2 Mercer representation of RKHS

Integral operator

Mercer's theorem

Relation between Hk and L2(X ; ν)
3 Operations with kernels

Sum and product

Constructing new kernels

4 Proof sketch of Moore-Aronszajn
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem

Starting with a positive def. k , construct a pre-RKHS (an inner product

space of functions) H0 ⊂ RX with properties:

1 The evaluation functionals δx are continuous on H0,

2 Any H0-Cauchy sequence fn which converges pointwise to 0 also

converges in H0-norm to 0
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (2)

pre-RKHS H0 = span {k(·, x) | x ∈ X} will be taken to be the set of

functions:

f (x) =
n∑

i=1

αik(x , xi )
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step I)

Space H0 = span {k(·, x) | x ∈ X}, endowed with the inner product

〈f , g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(xi , yj),

where f =
∑n

i=1 αik(·, xi ) and g =
∑m

j=1 βjk(·, yj), is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step II)

Let H0 be a pre-RKHS space. De�ne H to be the set of functions f ∈ RX
for which there exists an H0-Cauchy sequence {fn} converging pointwise

to f . Then, H is an RKHS.
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step I)

Space H0 = span {k(·, x) | x ∈ X}, endowed with the inner product

〈f , g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(xi , yj),

where f =
∑n

i=1 αik(·, xi ) and g =
∑m

j=1 βjk(·, yj), is a valid pre-RKHS.

1 The evaluation functionals δx are continuous on H0

2 Any H0-Cauchy sequence fn which converges pointwise to 0 also

converges in H0-norm to 0
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

De�ne H to be the set of functions f ∈ RX for which there exists an

H0-Cauchy sequence {fn} converging pointwise to f . Clearly, H0 ⊆ H.

1 We de�ne the inner product between f , g ∈ H as the limit of an inner

product of the H0-Cauchy sequences {fn}, {gn} converging to f and

g respectively. Is this inner product well de�ned, i.e., independent of

the sequences used?

2 An inner product space must satisfy 〈f , f 〉H = 0 i� f = 0. Is this true

when we de�ne the inner product on H as above?

3 Are the evaluation functionals still continuous on H?
4 Is H complete (i.e., does every H-Cauchy sequence converge)?

(1)+(2)+(3)+(4) =⇒ H is RKHS!

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 19, 2013 49 / 50



Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

De�ne H to be the set of functions f ∈ RX for which there exists an

H0-Cauchy sequence {fn} converging pointwise to f . Clearly, H0 ⊆ H.
1 We de�ne the inner product between f , g ∈ H as the limit of an inner

product of the H0-Cauchy sequences {fn}, {gn} converging to f and

g respectively. Is this inner product well de�ned, i.e., independent of

the sequences used?

2 An inner product space must satisfy 〈f , f 〉H = 0 i� f = 0. Is this true

when we de�ne the inner product on H as above?

3 Are the evaluation functionals still continuous on H?
4 Is H complete (i.e., does every H-Cauchy sequence converge)?

(1)+(2)+(3)+(4) =⇒ H is RKHS!

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 19, 2013 49 / 50



Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

De�ne H to be the set of functions f ∈ RX for which there exists an

H0-Cauchy sequence {fn} converging pointwise to f . Clearly, H0 ⊆ H.
1 We de�ne the inner product between f , g ∈ H as the limit of an inner

product of the H0-Cauchy sequences {fn}, {gn} converging to f and

g respectively. Is this inner product well de�ned, i.e., independent of

the sequences used?

2 An inner product space must satisfy 〈f , f 〉H = 0 i� f = 0. Is this true

when we de�ne the inner product on H as above?

3 Are the evaluation functionals still continuous on H?
4 Is H complete (i.e., does every H-Cauchy sequence converge)?

(1)+(2)+(3)+(4) =⇒ H is RKHS!

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 19, 2013 49 / 50



Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

De�ne H to be the set of functions f ∈ RX for which there exists an

H0-Cauchy sequence {fn} converging pointwise to f . Clearly, H0 ⊆ H.
1 We de�ne the inner product between f , g ∈ H as the limit of an inner

product of the H0-Cauchy sequences {fn}, {gn} converging to f and

g respectively. Is this inner product well de�ned, i.e., independent of

the sequences used?

2 An inner product space must satisfy 〈f , f 〉H = 0 i� f = 0. Is this true

when we de�ne the inner product on H as above?

3 Are the evaluation functionals still continuous on H?

4 Is H complete (i.e., does every H-Cauchy sequence converge)?

(1)+(2)+(3)+(4) =⇒ H is RKHS!

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 19, 2013 49 / 50



Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

De�ne H to be the set of functions f ∈ RX for which there exists an

H0-Cauchy sequence {fn} converging pointwise to f . Clearly, H0 ⊆ H.
1 We de�ne the inner product between f , g ∈ H as the limit of an inner

product of the H0-Cauchy sequences {fn}, {gn} converging to f and

g respectively. Is this inner product well de�ned, i.e., independent of

the sequences used?

2 An inner product space must satisfy 〈f , f 〉H = 0 i� f = 0. Is this true

when we de�ne the inner product on H as above?

3 Are the evaluation functionals still continuous on H?
4 Is H complete (i.e., does every H-Cauchy sequence converge)?

(1)+(2)+(3)+(4) =⇒ H is RKHS!

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 19, 2013 49 / 50



Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

De�ne H to be the set of functions f ∈ RX for which there exists an

H0-Cauchy sequence {fn} converging pointwise to f . Clearly, H0 ⊆ H.
1 We de�ne the inner product between f , g ∈ H as the limit of an inner

product of the H0-Cauchy sequences {fn}, {gn} converging to f and

g respectively. Is this inner product well de�ned, i.e., independent of

the sequences used?

2 An inner product space must satisfy 〈f , f 〉H = 0 i� f = 0. Is this true

when we de�ne the inner product on H as above?

3 Are the evaluation functionals still continuous on H?
4 Is H complete (i.e., does every H-Cauchy sequence converge)?

(1)+(2)+(3)+(4) =⇒ H is RKHS!

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 19, 2013 49 / 50



Proof sketch of Moore-Aronszajn

Summary

reproducing kernel ⇐⇒ kernel ⇐⇒ positive de�nite

all pd functions RX×X+
1−1←→

all function spaces with continuous evaluation Hilb(RX )
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