Foundations of Reproducing Kernel Hilbert Spaces Advanced Topics in Machine Learning

D. Sejdinovic, A. Gretton

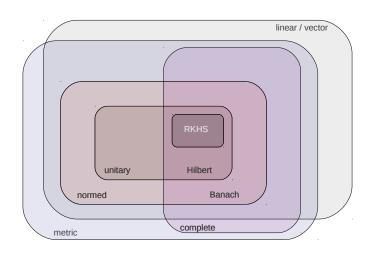
Gatsby Unit

March 6, 2012

Overview

- Elementary Hilbert space theory
 - Norm. Inner product. Orthogonality
 - Convergence. Complete spaces
 - Linear operators. Riesz representation
- What is an RKHS?
 - Evaluation functionals view of RKHS
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem

RKHS: a function space with a very special structure



Outline

- Elementary Hilbert space theory
 - Norm. Inner product. Orthogonality
 - Convergence. Complete spaces
 - Linear operators. Riesz representation
- What is an RKHS?
 - Evaluation functionals view of RKHS
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem

Normed vector space

Definition (Norm)

Let \mathcal{F} be a vector space over the field \mathbb{R} of real numbers (or \mathbb{C}). A function $\|\cdot\|_{\mathcal{F}}: \mathcal{F} \to [0,\infty)$ is said to be *a norm* on \mathcal{F} if

Normed vector space

Definition (Norm)

Let \mathcal{F} be a vector space over the field \mathbb{R} of real numbers (or \mathbb{C}). A function $\|\cdot\|_{\mathcal{F}}: \mathcal{F} \to [0,\infty)$ is said to be *a norm* on \mathcal{F} if

- $\|\lambda f\|_{\mathcal{F}} = |\lambda| \|f\|_{\mathcal{F}}, \ \forall \lambda \in \mathbb{R}, \ \forall f \in \mathcal{F} \ (positive \ homogeneity),$

In every normed vector space, one can define a metric induced by the norm:

$$d(f,g) = \|f - g\|_{\mathcal{F}}.$$

→□▶ ◆□▶ ◆重▶ ◆重▶ ■ のQで

 \bullet ($\mathbb{R}, |\cdot|$), ($\mathbb{C}, |\cdot|$)

- $(\mathbb{R}, |\cdot|)$, $(\mathbb{C}, |\cdot|)$
- $\mathcal{F} = \mathbb{R}^d$: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}, \ p \ge 1$

- $(\mathbb{R}, |\cdot|), (\mathbb{C}, |\cdot|)$
- $\mathcal{F} = \mathbb{R}^d$: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}, \ p \ge 1$
 - p = 1: Manhattan
 - p = 2: Euclidean
 - $p \to \infty$: maximum norm, $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$

- $(\mathbb{R}, |\cdot|)$, $(\mathbb{C}, |\cdot|)$
- $\mathcal{F} = \mathbb{R}^d$: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}, \ p \ge 1$
 - p = 1: Manhattan
 - p = 2: Euclidean
 - $p o \infty$: maximum norm, $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$
- $\mathcal{F} = C[a,b]$: $||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p \ge 1$

Inner product

Definition (Inner product)

Let $\mathcal F$ be a vector space over $\mathbb R$. A function $\langle\cdot,\cdot\rangle_{\mathcal F}:\mathcal F\times\mathcal F\to\mathbb R$ is said to be an inner product on $\mathcal F$ if

- $\langle f,g \rangle_{\mathcal{F}} = \langle g,f \rangle_{\mathcal{F}}$ (conjugate symmetry if over \mathbb{C})
- $\{f,f\}_{\mathcal{F}} \geq 0 \text{ and } \langle f,f\rangle_{\mathcal{F}} = 0 \text{ if and only if } f = 0.$

Inner product

Definition (Inner product)

Let $\mathcal F$ be a vector space over $\mathbb R$. A function $\langle\cdot,\cdot\rangle_{\mathcal F}:\mathcal F\times\mathcal F\to\mathbb R$ is said to be an inner product on $\mathcal F$ if

- $\langle f,g \rangle_{\mathcal{F}} = \langle g,f \rangle_{\mathcal{F}}$ (conjugate symmetry if over \mathbb{C})
- $(f, f)_{\mathcal{F}} \geq 0$ and $(f, f)_{\mathcal{F}} = 0$ if and only if f = 0.

In every inner product vector space, one can define *a norm* induced by the inner product:

$$||f||_{\mathcal{F}} = \langle f, f \rangle_{\mathcal{F}}^{1/2}$$
.

- (ロ) (型) (注) (注) (注) (注) の(C

Examples of inner product

•
$$\mathcal{F} = \mathbb{R}^d$$
: $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^d x_i y_i$

Examples of inner product

- $\mathcal{F} = \mathbb{R}^d$: $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^d x_i y_i$
- $\mathcal{F} = C[a,b]$: $\langle f,g \rangle = \int_a^b f(x)g(x)dx$

Examples of inner product

- $\mathcal{F} = \mathbb{R}^d$: $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^d x_i y_i$
- $\mathcal{F} = C[a,b]$: $\langle f,g \rangle = \int_a^b f(x)g(x)dx$
- $\mathcal{F} = \mathbb{R}^{d \times d}$: $\langle \mathbf{A}, \mathbf{B} \rangle = Tr \left(AB^{\top} \right)$

Angles. Orthogonality

Angle θ between $f,g \in \mathcal{F} \setminus \{0\}$ is given by:

$$\cos \theta = \frac{\langle f, g \rangle_{\mathcal{F}}}{\|f\|_{\mathcal{F}} \|g\|_{\mathcal{F}}}$$

Definition

We say that f is orthogonal to g and write $f \perp g$, if $\langle f, g \rangle_{\mathcal{F}} = 0$. For $M \subset \mathcal{F}$, the orthogonal complement of M is:

$$M^{\perp} := \{g \in \mathcal{F} : f \perp g, \forall f \in M\}.$$

→□▶ →□▶ → □▶ → □ ● の○○

Angles. Orthogonality

Angle θ between $f, g \in \mathcal{F} \setminus \{0\}$ is given by:

$$\cos \theta = \frac{\langle f, g \rangle_{\mathcal{F}}}{\|f\|_{\mathcal{F}} \|g\|_{\mathcal{F}}}$$

Definition

We say that f is orthogonal to g and write $f \perp g$, if $\langle f, g \rangle_{\mathcal{F}} = 0$. For $M \subset \mathcal{F}$, the orthogonal complement of M is:

$$M^{\perp} := \{g \in \mathcal{F} : f \perp g, \forall f \in M\}.$$

• M^{\perp} is a linear subspace of \mathcal{F} ; $M \cap M^{\perp} \subseteq \{0\}$

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q ()

Key relations in inner product space

- $|\langle f, g \rangle| \le ||f|| \cdot ||g||$ (Cauchy-Schwarz inequality)
- $2 \|f\|^2 + 2 \|g\|^2 = \|f + g\|^2 + \|f g\|^2$ (the parallelogram law)
- $4\langle f, g \rangle = \|f + g\|^2 \|f g\|^2$ (the polarization identity)

Key relations in inner product space

- $|\langle f, g \rangle| \le ||f|| \cdot ||g||$ (Cauchy-Schwarz inequality)
- $2 \|f\|^2 + 2 \|g\|^2 = \|f + g\|^2 + \|f g\|^2$ (the parallelogram law)
- $4\langle f,g\rangle = \|f+g\|^2 \|f-g\|^2$ (the polarization identity)
- $f \perp g \implies ||f||^2 + ||g||^2 = ||f + g||^2$ (Pythagorean theorem)

Outline

- Elementary Hilbert space theory
 - Norm. Inner product. Orthogonality
 - Convergence. Complete spaces
 - Linear operators. Riesz representation
- What is an RKHS?
 - Evaluation functionals view of RKHS
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem

Cauchy sequence

Definition (Convergent sequence)

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ is said to *converge* to $f \in \mathcal{F}$ if for every $\epsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$, such that for all $n \geq N$, $\|f_n - f\|_{\mathcal{F}} < \epsilon$.

Definition (Cauchy sequence)

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F},\|\cdot\|_{\mathcal{F}})$ is said to be a Cauchy (fundamental) sequence if for every $\epsilon>0$, there exists $N=N(\varepsilon)\in\mathbb{N}$, such that for all $n,m\geq N$, $\|f_n-f_m\|_{\mathcal{F}}<\epsilon$.

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₽
♥

Cauchy sequence

Definition (Convergent sequence)

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ is said to *converge* to $f \in \mathcal{F}$ if for every $\epsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$, such that for all $n \geq N$, $\|f_n - f\|_{\mathcal{F}} < \epsilon$.

Definition (Cauchy sequence)

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F},\|\cdot\|_{\mathcal{F}})$ is said to be a Cauchy (fundamental) sequence if for every $\epsilon>0$, there exists $N=N(\varepsilon)\in\mathbb{N}$, such that for all $n,m\geq N$, $\|f_n-f_m\|_{\mathcal{F}}<\epsilon$.

From
$$||f_n - f_m||_{\mathcal{F}} \le ||f_n - f||_{\mathcal{F}} + ||f - f_m||_{\mathcal{F}}$$
, convergent \Rightarrow Cauchy.

Cauchy sequence

Definition (Convergent sequence)

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ is said to *converge* to $f \in \mathcal{F}$ if for every $\epsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$, such that for all $n \geq N$, $\|f_n - f\|_{\mathcal{F}} < \epsilon$.

Definition (Cauchy sequence)

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F},\|\cdot\|_{\mathcal{F}})$ is said to be a Cauchy (fundamental) sequence if for every $\epsilon>0$, there exists $N=N(\varepsilon)\in\mathbb{N}$, such that for all $n,m\geq N$, $\|f_n-f_m\|_{\mathcal{F}}<\epsilon$.

From
$$||f_n - f_m||_{\mathcal{F}} \le ||f_n - f||_{\mathcal{F}} + ||f - f_m||_{\mathcal{F}}$$
, convergent \Rightarrow Cauchy.

Cauchy⇒convergent

4日ト 4億ト 4億ト 4億ト 億 99℃

Examples

Example

1, 1.4, 1.414, 1.4142, ... is a Cauchy sequence in $\mathbb Q$ which does not converge - because $\sqrt{2}\notin\mathbb Q$.

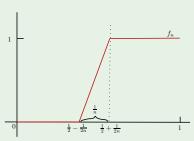
Examples

Example

1, 1.4, 1.414, 1.4142, ... is a Cauchy sequence in $\mathbb Q$ which does not converge - because $\sqrt{2}\notin\mathbb Q$.

Example

C[0,1] with the norm $\|f\|_2 = \left(\int_0^1 |f(x)|^2 dx\right)^{1/2}$, a sequence $\{f_n\}$ does not have a continuous limit!



Complete space

Definition (Complete space)

A metric space \mathcal{F} is said to be *complete* if every Cauchy sequence $\{f_n\}_{n=1}^{\infty}$ in \mathcal{F} converges: it has a limit, and this limit is in \mathcal{F} .

• i.e., one can find $f \in \mathcal{F}$, s.t. $\lim_{n \to \infty} \|f_n - f\|_{\mathcal{F}} = 0$.

4□▶ 4□▶ 4□▶ 4□▶ □ ♥90€

Complete space

Definition (Complete space)

A metric space \mathcal{F} is said to be *complete* if every Cauchy sequence $\{f_n\}_{n=1}^{\infty}$ in \mathcal{F} converges: it has a limit, and this limit is in \mathcal{F} .

- ullet i.e., one can find $f\in\mathcal{F}$, s.t. $\lim_{n o\infty}\|f_n-f\|_{\mathcal{F}}=0.$
- Complete + norm = Banach

Complete space

Definition (Complete space)

A metric space \mathcal{F} is said to be *complete* if every Cauchy sequence $\{f_n\}_{n=1}^{\infty}$ in \mathcal{F} converges: it has a limit, and this limit is in \mathcal{F} .

- i.e., one can find $f \in \mathcal{F}$, s.t. $\lim_{n \to \infty} \|f_n f\|_{\mathcal{F}} = 0$.
- Complete + norm = Banach
- Complete + inner product = Hilbert

Examples of Hilbert spaces

Example

For an index set A, the space $\ell^2(A)$ of sequences $\{x_\alpha\}_{\alpha\in A}$ of real numbers, satisfying $\sum_{\alpha\in A}|x_\alpha|^2<\infty$, endowed with the inner product

$$\langle \{x_{\alpha}\}, \{y_{\alpha}\} \rangle_{\ell^{2}(A)} = \sum_{\alpha \in A} x_{\alpha} y_{\alpha}$$

is a Hilbert space.

→□▶ ◆□▶ ◆重▶ ◆重▶ ■ のQで

Examples of Hilbert spaces (2)

Example

If μ is a positive measure on $\mathcal{X} \subset \mathbb{R}^d$, then the space

$$L_2(\mathcal{X};\mu) := \left\{ f: \mathcal{X} \to \mathbb{R} \;\middle|\; \|f\|_2 = \left(\int_{\mathcal{X}} |f(x)|^2 d\mu\right)^{1/2} < \infty \right\}$$

is a Hilbert space with inner product

$$\langle f, g \rangle = \int_{\mathcal{X}} f(x)g(x)d\mu.$$

→ □ ト → □ ト → 重 ト → 重 → りへで

Examples of Hilbert spaces (2)

Example

If μ is a positive measure on $\mathcal{X} \subset \mathbb{R}^d$, then the space

$$L_2(\mathcal{X};\mu) := \left\{ f: \mathcal{X} \to \mathbb{R} \;\middle|\; \|f\|_2 = \left(\int_{\mathcal{X}} |f(x)|^2 d\mu\right)^{1/2} < \infty \right\}$$

is a Hilbert space with inner product

$$\langle f, g \rangle = \int_{\mathcal{X}} f(x)g(x)d\mu.$$

• Strictly speaking, $L_2(\mathcal{X}; \mu)$ is the space of equivalence classes of functions that differ by at most a set of μ -measure zero.

→ロト → □ ト → 重 ト → 重 ・ り Q (*)

Closed vs. Complete

- Closed: $M \subseteq \mathcal{F}$ is closed (in \mathcal{F}) if it contains limits of all sequences in M that converge in \mathcal{F}
- Complete: M is complete (with no reference to a larger space) if all Cauchy sequences in M converge in M

Closed vs. Complete

- Closed: $M \subseteq \mathcal{F}$ is closed (in \mathcal{F}) if it contains limits of all sequences in M that converge in \mathcal{F}
- Complete: M is complete (with no reference to a larger space) if all Cauchy sequences in M converge in M
- If M is a **closed subspace** of a Hilbert space \mathcal{F} , then:

$$M + M^{\perp} = \left\{ m + m^{\perp} : m \in M, m^{\perp} \in M^{\perp} \right\} = \mathcal{F}.$$

• In particular, for closed subspace $M \subsetneq \mathcal{F}$, $M^{\perp} \neq \{0\}$.

| **イロト 4回ト 4** 巨ト 4 巨ト | 巨 | 夕久()

Outline

- Elementary Hilbert space theory
 - Norm. Inner product. Orthogonality
 - Convergence. Complete spaces
 - Linear operators. Riesz representation
- What is an RKHS?
 - Evaluation functionals view of RKHS
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem

Linear operators

Definition (Linear operator)

Consider a function $A: \mathcal{F} \to \mathcal{G}$, where \mathcal{F} and \mathcal{G} are both vector spaces over \mathbb{R} . A is said to be a **linear operator** if

$$A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 (A f_1) + \alpha_2 (A f_2) \quad \forall \alpha_1, \alpha_2 \in \mathbb{R}, f_1, f_2 \in \mathcal{F}.$$

Linear operators

Definition (Linear operator)

Consider a function $A: \mathcal{F} \to \mathcal{G}$, where \mathcal{F} and \mathcal{G} are both vector spaces over \mathbb{R} . A is said to be a **linear operator** if

$$A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 (A f_1) + \alpha_2 (A f_2) \quad \forall \alpha_1, \alpha_2 \in \mathbb{R}, f_1, f_2 \in \mathcal{F}.$$

Operators with $\mathcal{G} = \mathbb{R}$ are called **functionals**.

Linear operators

Definition (Linear operator)

Consider a function $A: \mathcal{F} \to \mathcal{G}$, where \mathcal{F} and \mathcal{G} are both vector spaces over \mathbb{R} . A is said to be a **linear operator** if

$$A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 (A f_1) + \alpha_2 (A f_2) \quad \forall \alpha_1, \alpha_2 \in \mathbb{R}, f_1, f_2 \in \mathcal{F}.$$

Operators with $\mathcal{G} = \mathbb{R}$ are called **functionals**.

Example

For $g \in \mathcal{F}$, $A_g : \mathcal{F} \to \mathbb{R}$, defined with $A_g f = \langle f, g \rangle_{\mathcal{F}}$ is a linear functional.

$$A_{\mathbf{g}}(\alpha_{1}f_{1} + \alpha_{2}f_{2}) = \langle \alpha_{1}f_{1} + \alpha_{2}f_{2}, \mathbf{g} \rangle_{\mathcal{F}}$$

$$= \alpha_{1} \langle f_{1}, \mathbf{g} \rangle_{\mathcal{F}} + \alpha_{2} \langle f_{2}, \mathbf{g} \rangle_{\mathcal{F}}$$

$$= \alpha_{1}A_{\mathbf{g}}f_{1} + \alpha_{2}A_{\mathbf{g}}f_{2}.$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९○

Continuity

Definition (Continuity)

Consider a function $A: \mathcal{F} \to \mathcal{G}$, where \mathcal{F} and \mathcal{G} are both normed vector spaces over \mathbb{R} . A is said to be **continuous** at $f_0 \in \mathcal{F}$, if for every $\epsilon > 0$, there exists a $\delta = \delta(\epsilon, f_0) > 0$, s.t.

$$\|f - f_0\|_{\mathcal{F}} < \delta \qquad \Longrightarrow \qquad \|Af - Af_0\|_{\mathcal{G}} < \epsilon.$$

A is **continuous** on \mathcal{F} , if it is continuous at every point of \mathcal{F} .

Continuity

Definition (Continuity)

Consider a function $A: \mathcal{F} \to \mathcal{G}$, where \mathcal{F} and \mathcal{G} are both normed vector spaces over \mathbb{R} . A is said to be **continuous** at $f_0 \in \mathcal{F}$, if for every $\epsilon > 0$, there exists a $\delta = \delta(\epsilon, f_0) > 0$, s.t.

$$\|f - f_0\|_{\mathcal{F}} < \delta \qquad \Longrightarrow \qquad \|Af - Af_0\|_{\mathcal{G}} < \epsilon.$$

A is **continuous** on \mathcal{F} , if it is continuous at every point of \mathcal{F} .

Example

For $g\in\mathcal{F}$, $A_g:\mathcal{F}\to\mathbb{R}$, defined with $A_g(f):=\langle f,g\rangle_{\mathcal{F}}$ is continuous on \mathcal{F} :

$$|A_g f_1 - A_g f_2| = |\langle f_1 - f_2, g \rangle_{\mathcal{F}}| \le ||g||_{\mathcal{F}} ||f_1 - f_2||_{\mathcal{F}},$$

so can take $\delta = \varepsilon / \|g\|_{\mathcal{F}}$ (also Lipschitz!).

Boundedness

Definition (Operator norm)

The operator norm of a linear operator $A:\mathcal{F} o\mathcal{G}$ is defined as

$$||A|| = \sup_{f \in \mathcal{F}} \frac{||Af||_{\mathcal{G}}}{||f||_{\mathcal{F}}}$$

If $||A|| < \infty$, A is called a **bounded linear operator**.

Boundedness

Definition (Operator norm)

The operator norm of a linear operator $A: \mathcal{F} \to \mathcal{G}$ is defined as

$$||A|| = \sup_{f \in \mathcal{F}} \frac{||Af||_{\mathcal{G}}}{||f||_{\mathcal{F}}}$$

If $||A|| < \infty$, A is called a **bounded linear operator**.

 $\|A\|$ is the smallest number λ such that the inequality $\|Af\|_{\mathcal{G}} \leq \lambda \|f\|_{\mathcal{F}}$ holds for every $f \in \mathcal{F}$.

Boundedness

Definition (Operator norm)

The operator norm of a linear operator $A:\mathcal{F} o\mathcal{G}$ is defined as

$$||A|| = \sup_{f \in \mathcal{F}} \frac{||Af||_{\mathcal{G}}}{||f||_{\mathcal{F}}}$$

If $||A|| < \infty$, A is called a **bounded linear operator**.

 $\|A\|$ is the smallest number λ such that the inequality $\|Af\|_{\mathcal{G}} \leq \lambda \|f\|_{\mathcal{F}}$ holds for every $f \in \mathcal{F}$.

bounded operator \neq bounded function

→□▶ →□▶ → □▶ → □ ♥ ♀♀

- ullet Linear operator $A:\mathcal{F} o\mathcal{G}$ maps linear subspaces to linear subspaces
 - $Null(A) = A^{-1}(\{0\})$ is a linear subspace of ${\mathcal F}$
 - $Im(A) = A(\mathcal{F})$ is a linear subspace of \mathcal{G} .
- ullet Continuous function $A:\mathcal{F} o\mathcal{G}$ maps to open (closed) sets from open (closed) sets
 - If A is also linear, $Null(A) = A^{-1}(\{0\})$ is a **closed subspace** of \mathcal{F} .
- Bounded linear operator A: F o G maps bounded sets to bounded sets

Continuous operator ≡ Bounded operator

Theorem

Let $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ and $(\mathcal{G}, \|\cdot\|_{\mathcal{G}})$ be normed linear spaces. If L is a linear operator, then the following three conditions are equivalent:

- 1 L is a bounded operator.
- L is continuous on F.
- ullet L is continuous at one point of \mathcal{F} .

Proof

Dual space

Definition (Topological dual)

If \mathcal{F} is a normed space, then the space \mathcal{F}' of *continuous linear* functionals $A: \mathcal{F} \to \mathbb{R}$ is called the topological dual space of \mathcal{F} .

Dual space

Definition (Topological dual)

If \mathcal{F} is a normed space, then the space \mathcal{F}' of *continuous linear* functionals $A:\mathcal{F}\to\mathbb{R}$ is called the topological dual space of \mathcal{F} .

We have seen that $A_g := \langle \cdot, g \rangle_{\mathcal{F}}$ are continuous linear functionals.

Dual space

Definition (Topological dual)

If \mathcal{F} is a normed space, then the space \mathcal{F}' of *continuous linear* functionals $A:\mathcal{F}\to\mathbb{R}$ is called the topological dual space of \mathcal{F} .

We have seen that $A_{\mathbf{g}}:=\langle\cdot,\mathbf{g}
angle_{\mathcal{F}}$ are continuous linear functionals.

Theorem (Riesz representation)

In a Hilbert space \mathcal{F} , for every continous linear functional $L \in \mathcal{F}'$, there exists a unique $g \in \mathcal{F}$, such that

$$Lf \equiv \langle f, g \rangle_{\mathcal{F}}$$
.

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣り(で

Proof of Riesz representation

Proof.

Let $L \in \mathcal{F}'$. If $Lf \equiv 0$, then $Lf = \langle f, 0 \rangle_{\mathcal{F}}$, so g = 0. Otherwise, $M = Null(L) \subsetneq \mathcal{F}$ is a closed linear linear subspace of \mathcal{F} , so there must exist $h \in M^{\perp}$, with $\|h\|_{\mathcal{F}} = 1$. We claim that we can take g = (Lh)h. Indeed, for $f \in \mathcal{F}$, take $u_f = (Lf)h - (Lh)f$. Clearly $u_f \in M$. Thus,

$$0 = \langle u_f, h \rangle_{\mathcal{F}}$$

$$= \langle (Lf)h - (Lh)f, h \rangle_{\mathcal{F}}$$

$$= (Lf) ||h||_{\mathcal{F}}^2 - (Lh) \langle f, h \rangle_{\mathcal{F}}$$

$$= Lf - \langle f, (Lh)h \rangle_{\mathcal{F}}.$$

Orthonormal basis

• orthonormal set $\{u_{\alpha}\}_{{\alpha}\in A}$, s.t.

$$\langle u_{\alpha}, u_{\beta} \rangle_{\mathcal{F}} = \begin{cases} 1, & \alpha = \beta \\ 0, & \alpha \neq \beta \end{cases}$$

• if also basis, define $\hat{f}(\alpha) = \langle f, u_{\alpha} \rangle_{\mathcal{F}}$

$$f = \sum_{\alpha \in A} \hat{f}(\alpha) u_{\alpha}$$

$$\langle f, g \rangle_{\mathcal{F}} = \sum_{\alpha \in A} \hat{f}(\alpha) \hat{g}(\alpha)$$

$$= \left\langle \left\{ \hat{f}(\alpha) \right\}, \left\{ \hat{g}(\alpha) \right\} \right\rangle_{\ell^{2}(A)}$$

◆□▶ ◆□▶ ◆불▶ ◆불▶ · 불 · 虳익♡

Isometric isomorphism

Definition (Hilbert space isomorphism)

Two Hilbert spaces $\mathcal H$ and $\mathcal F$ are said to be *isometrically isomorphic* if there is a linear bijective map $U:\mathcal H\to\mathcal F$, which preserves the inner product, i.e., $\langle h_1,h_2\rangle_{\mathcal H}=\langle Uh_1,Uh_2\rangle_{\mathcal F}$.

Isometric isomorphism

Definition (Hilbert space isomorphism)

Two Hilbert spaces $\mathcal H$ and $\mathcal F$ are said to be isometrically isomorphic if there is a linear bijective map $U:\mathcal H\to\mathcal F$, which preserves the inner product, i.e., $\langle h_1,h_2\rangle_{\mathcal H}=\langle Uh_1,Uh_2\rangle_{\mathcal F}$.

Riesz representation gives an isomorphism $g \mapsto \langle \cdot, g \rangle_{\mathcal{F}}$ between \mathcal{F} and \mathcal{F}' : dual space of a Hilbert space is also a Hilbert space.

Isometric isomorphism

Definition (Hilbert space isomorphism)

Two Hilbert spaces $\mathcal H$ and $\mathcal F$ are said to be isometrically isomorphic if there is a linear bijective map $U:\mathcal H\to\mathcal F$, which preserves the inner product, i.e., $\langle h_1,h_2\rangle_{\mathcal H}=\langle Uh_1,Uh_2\rangle_{\mathcal F}$.

Riesz representation gives an isomorphism $g \mapsto \langle \cdot, g \rangle_{\mathcal{F}}$ between \mathcal{F} and \mathcal{F}' : dual space of a Hilbert space is also a Hilbert space.

Theorem

Every Hilbert space has an orthonormal basis. Thus, all Hilbert spaces are isometrically isomorphic to $\ell^2(A)$, for some set A. We can take $A = \mathbb{N}$ iff Hilbert space is separable.

Hilbert space:

ullet is a vector space over $\mathbb R$ (or $\mathbb C$)

- ullet is a vector space over $\mathbb R$ (or $\mathbb C$)
- comes equipped with an inner product, a norm and a metric

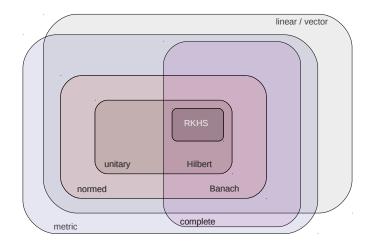
- is a vector space over \mathbb{R} (or \mathbb{C})
- comes equipped with an inner product, a norm and a metric
- is complete with respect to its metric

- is a vector space over \mathbb{R} (or \mathbb{C})
- comes equipped with an inner product, a norm and a metric
- is complete with respect to its metric
- continuity and boundedness of linear operators are equivalent

- ullet is a vector space over $\mathbb R$ (or $\mathbb C$)
- comes equipped with an inner product, a norm and a metric
- is complete with respect to its metric
- continuity and boundedness of linear operators are equivalent
- all continuous linear functionals arise from the inner product

- Elementary Hilbert space theory
 - Norm. Inner product. Orthogonality
 - Convergence. Complete spaces
 - Linear operators. Riesz representation
- What is an RKHS?
 - Evaluation functionals view of RKHS
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem

RKHS: a function space with a very special structure



Foundations of RKHS

Evaluation functional

Definition (Evaluation functional)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$, defined on a non-empty set \mathcal{X} . For a fixed $x \in \mathcal{X}$, map $\delta_x : \mathcal{H} \to \mathbb{R}$, $\delta_x : f \mapsto f(x)$ is called the (Dirac) evaluation functional at x.

Evaluation functional

Definition (Evaluation functional)

Let $\mathcal H$ be a Hilbert space of functions $f:\mathcal X\to\mathbb R$, defined on a non-empty set $\mathcal X$. For a fixed $x\in\mathcal X$, map $\delta_x:\mathcal H\to\mathbb R$, $\delta_x:f\mapsto f(x)$ is called the (Dirac) evaluation functional at x.

• Evaluation functional is always linear: For $f, g \in \mathcal{H}$ and $\alpha, \beta \in \mathbb{R}$, $\delta_x(\alpha f + \beta g) = (\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x) = \alpha \delta_x(f) + \beta \delta_x(g)$.

Evaluation functional

Definition (Evaluation functional)

Let $\mathcal H$ be a Hilbert space of functions $f:\mathcal X\to\mathbb R$, defined on a non-empty set $\mathcal X$. For a fixed $x\in\mathcal X$, map $\delta_x:\mathcal H\to\mathbb R$, $\delta_x:f\mapsto f(x)$ is called the (Dirac) evaluation functional at x.

- Evaluation functional is always linear: For $f, g \in \mathcal{H}$ and $\alpha, \beta \in \mathbb{R}$, $\delta_x(\alpha f + \beta g) = (\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x) = \alpha \delta_x(f) + \beta \delta_x(g)$.
- But is it continuous?

→□▶ →□▶ → □▶ → □ ♥ ♀♀

Discontinuous evaluation

Example

 $\mathcal{H}=L_2([0,1])$, with metric

$$||f_1-f_2||_{L_2([0,1])} = \left(\int_0^1 |f_1(x)-f_2(x)|^2 dx\right)^{1/2}.$$

Consider the sequence of functions $\{q_n\}_{n=1}^{\infty}$, where $q_n=x^n$. Then: $\lim_{n\to\infty}\|q_n-0\|_{L_2([0,1])}=0$, i.e., $\{q_n\}$ converges to "zero function" in L_2 norm, but does not get close to zero function everywhere:

$$1 = \lim_{n \to \infty} \delta_1(q_n) \neq \delta_1(\lim_{n \to \infty} q_n) = 0.$$

→□▶ ◆□▶ ◆重▶ ◆重▶ ■ のQで

Discontinuous evaluation

Example

 $\mathcal{H}=L_2([0,1])$, with metric

$$||f_1-f_2||_{L_2([0,1])} = \left(\int_0^1 |f_1(x)-f_2(x)|^2 dx\right)^{1/2}.$$

Consider the sequence of functions $\{q_n\}_{n=1}^{\infty}$, where $q_n=x^n$. Then: $\lim_{n\to\infty}\|q_n-0\|_{L_2([0,1])}=0$, i.e., $\{q_n\}$ converges to "zero function" in L_2 norm, but does not get close to zero function everywhere:

$$1 = \lim_{n \to \infty} \delta_1(q_n) \neq \delta_1(\lim_{n \to \infty} q_n) = 0.$$

 δ_1 is not continuous!

<ロ > → □ > → □ > → □ > → □ ● → ○ へ ○ ○

RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$, defined on a non-empty set \mathcal{X} is said to be a Reproducing Kernel Hilbert Space (RKHS) if $\delta_x \in \mathcal{H}'$, $\forall x \in \mathcal{X}$.

RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$, defined on a non-empty set \mathcal{X} is said to be a Reproducing Kernel Hilbert Space (RKHS) if $\delta_x \in \mathcal{H}'$, $\forall x \in \mathcal{X}$.

Theorem (Norm convergence implies pointwise convergence)

If
$$\lim_{n\to\infty} \|f_n - f\|_{\mathcal{H}} = 0$$
, then $\lim_{n\to\infty} f_n(x) = f(x)$, $\forall x \in \mathcal{X}$.

RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$, defined on a non-empty set \mathcal{X} is said to be a Reproducing Kernel Hilbert Space (RKHS) if $\delta_x \in \mathcal{H}'$, $\forall x \in \mathcal{X}$.

Theorem (Norm convergence implies pointwise convergence)

If
$$\lim_{n\to\infty} \|f_n - f\|_{\mathcal{H}} = 0$$
, then $\lim_{n\to\infty} f_n(x) = f(x)$, $\forall x \in \mathcal{X}$.

If two functions $f,g \in \mathcal{H}$ are close in the norm of \mathcal{H} , then f(x) and g(x)are close for all $x \in \mathcal{X}$

Will discuss three distinct concepts:

- reproducing kernel
- inner product between features (kernel)
- positive definite function

Will discuss three distinct concepts:

- reproducing kernel
- inner product between features (kernel)
- positive definite function

...and then show that they are all equivalent.

- Elementary Hilbert space theory
 - Norm. Inner product. Orthogonality
 - Convergence. Complete spaces
 - Linear operators. Riesz representation
- What is an RKHS?
 - Evaluation functionals view of RKHS
 - Reproducing kernel
 - Inner product between features
 - Positive definite function.
 - Moore-Aronszajn Theorem

Reproducing kernel

Definition (Reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$ defined on a non-empty set \mathcal{X} . A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if it satisfies

- $\forall x \in \mathcal{X}, k_x = k(\cdot, x) \in \mathcal{H},$
- $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

Reproducing kernel

Definition (Reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$ defined on a non-empty set \mathcal{X} . A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if it satisfies

- $\forall x \in \mathcal{X}, k_x = k(\cdot, x) \in \mathcal{H}$
- $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

In particular, for any
$$x, y \in \mathcal{X}$$
, $k(x,y) = \langle k(\cdot,y), k(\cdot,x) \rangle_{\mathcal{H}} = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}$.

Reproducing kernel of an RKHS

Theorem

If it exists, reproducing kernel is unique.

Theorem

H is a reproducing kernel Hilbert space if and only if it has a reproducing kernel.

Outline

- Elementary Hilbert space theory
 - Norm. Inner product. Orthogonality
 - Convergence. Complete spaces
 - Linear operators. Riesz representation
- What is an RKHS?
 - Evaluation functionals view of RKHS
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem

Functions representable as inner products

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *kernel* on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi: \mathcal{X} \to \mathcal{F}$, such that $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$.

Functions representable as inner products

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a kernel on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi: \mathcal{X} \to \mathcal{F}$, such that $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$.

- ullet note that we dropped 'reproducing', as ${\mathcal F}$ may not be an RKHS.
- $\phi: \mathcal{X} \to \mathcal{F}$ is called a **feature map**,
- F is called a feature space.

Functions representable as inner products

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *kernel* on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi: \mathcal{X} \to \mathcal{F}$, such that $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$.

- ullet note that we dropped 'reproducing', as ${\mathcal F}$ may not be an RKHS.
- ϕ : $\mathcal{X} \to \mathcal{F}$ is called a **feature map**,
- ullet ${\cal F}$ is called a **feature space**.

Corollary

Every **reproducing kernel** is a **kernel** (can take $\phi : x \mapsto k(\cdot, x)$, $k(x, y) = \langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}}$, i.e., RKHS \mathcal{H} is a feature space).

4□ > 4□ > 4□ > 4□ > 4□ > 900

Example

Consider
$$\mathcal{X} = \mathbb{R}^2$$
, and $k(x,y) = \langle x,y \rangle^2$

$$k(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1 y_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 & x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1 y_2 \\ y_1 y_2 \end{bmatrix}.$$

so we can use the feature maps $\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ or $\tilde{\phi}(x) = \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix}$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

4 D > 4 D > 4 E > 4 E > E = 99 C

Example

Consider
$$\mathcal{X} = \mathbb{R}^2$$
, and $k(x,y) = \langle x,y \rangle^2$

$$k(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1 y_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 & x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1 y_2 \\ y_1 y_2 \end{bmatrix}.$$

so we can use the feature maps $\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ or $\tilde{\phi}(x) = \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix}$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

Not RKHS!

4 D > 4 P > 4 B > 4 B > 9 Q Q

Outline

- Elementary Hilbert space theory
 - Norm. Inner product. Orthogonality
 - Convergence. Complete spaces
 - Linear operators. Riesz representation
- What is an RKHS?
 - Evaluation functionals view of RKHS
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem

Positive definite functions

Definition (Positive definite functions)

A symmetric function $h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite if $\forall n \geq 1, \ \forall (a_1, \dots a_n) \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j h(x_i, x_j) = \mathbf{a}^\top \mathbf{H} \mathbf{a} \geq 0.$$

The function $h(\cdot, \cdot)$ is *strictly* positive definite if for mutually distinct x_i , the equality holds only when all the a_i are zero.

→□▶ →□▶ → □▶ → □ ♥ ♀ ♥ ♀ ♥

Kernels are positive definite

Every inner product is a positive definite function, and more generally:

Fact

Every kernel is a positive definite function.

So far

reproducing kernel \implies kernel \implies positive definite

So far

reproducing kernel \implies kernel \implies positive definite

Is every positive definite function a reproducing kernel for some RKHS?

Theorem (Moore-Aronszajn - Part I)

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be positive definite. There is a **unique RKHS** $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ with reproducing kernel k.

Example

Consider
$$\mathcal{X} = \mathbb{R}^2$$
, and $k(x,y) = \langle x,y \rangle^2$

$$k(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1 y_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 & x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1 y_2 \\ y_1 y_2 \end{bmatrix}.$$

so we can use the feature maps $\phi(x) = \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1x_2 \end{bmatrix}$ or $\tilde{\phi}(x) = \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix}$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

Example

Consider
$$\mathcal{X} = \mathbb{R}^2$$
, and $k(x,y) = \langle x,y \rangle^2$

$$k(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1 y_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 & x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1 y_2 \\ y_1 y_2 \end{bmatrix}.$$

so we can use the feature maps $\phi(x) = \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1x_2 \end{bmatrix}$ or $ilde{\phi}(x)=\left[egin{array}{ccc} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{array}
ight]$, with feature spaces $\mathcal{H}=\mathbb{R}^3$ or $ilde{\mathcal{H}}=\mathbb{R}^4$.

 \mathcal{H} and $\tilde{\mathcal{H}}$ are not RKHS - RKHS of k is unique

• There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\langle \phi(x), \phi(y) \rangle_{\mathbb{R}^{3}} = ay_{1}^{2} + by_{2}^{2} + c\sqrt{2}y_{1}y_{2} = k_{x}(y) = \langle k_{x}, k_{y} \rangle_{\mathcal{H}_{k}}$$

$$\phi(x) = \begin{bmatrix} a = x_{1}^{2} & b = x_{2}^{2} & c = \sqrt{2}x_{1}x_{2} \end{bmatrix}$$

 There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\langle \phi(x), \phi(y) \rangle_{\mathbb{R}^{3}} = ay_{1}^{2} + by_{2}^{2} + c\sqrt{2}y_{1}y_{2} = k_{x}(y) = \langle k_{x}, k_{y} \rangle_{\mathcal{H}_{k}}$$

$$\phi(x) = \begin{bmatrix} a = x_{1}^{2} & b = x_{2}^{2} & c = \sqrt{2}x_{1}x_{2} \end{bmatrix}$$

$$\left\langle \tilde{\phi}(x), \tilde{\phi}(y) \right\rangle_{\mathbb{R}^4} = \tilde{a}y_1^2 + \tilde{b}y_2^2 + \tilde{c}y_1y_2 + \tilde{d}y_1y_2 = k_x(y) = \left\langle k_x, k_y \right\rangle_{\mathcal{H}_k}$$

$$\tilde{\phi}(x) = \begin{bmatrix} \tilde{a} = x_1^2 & \tilde{b} = x_2^2 & \tilde{c} = x_1x_2 & \tilde{d} = x_1x_2 \end{bmatrix}$$

- ◀ □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ 🧸 를 - 🔊 Q @

 There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\langle \phi(x), \phi(y) \rangle_{\mathbb{R}^{3}} = ay_{1}^{2} + by_{2}^{2} + c\sqrt{2}y_{1}y_{2} = k_{x}(y) = \langle k_{x}, k_{y} \rangle_{\mathcal{H}_{k}}$$

$$\phi(x) =$$

$$\left[a = x_{1}^{2} \quad b = x_{2}^{2} \quad c = \sqrt{2}x_{1}x_{2} \right]$$

$$\begin{split} \left\langle \tilde{\phi}(x), \tilde{\phi}(y) \right\rangle_{\mathbb{R}^4} &= \tilde{a}y_1^2 + \tilde{b}y_2^2 + \tilde{c}y_1y_2 + \tilde{d}y_1y_2 &= k_x(y) = \left\langle k_x, k_y \right\rangle_{\mathcal{H}_k} \\ \tilde{\phi}(x) &= \\ \left[\tilde{a} = x_1^2 \quad \tilde{b} = x_2^2 \quad \tilde{c} = x_1x_2 \quad \tilde{d} = x_1x_2 \right] \end{split}$$

• But what remains unique?

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q G

• There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\begin{split} \langle \phi(x), \phi(y) \rangle_{\mathbb{R}^{3}} &= ay_{1}^{2} + by_{2}^{2} + c\sqrt{2}y_{1}y_{2} &= k_{x}(y) = \langle k_{x}, k_{y} \rangle_{\mathcal{H}_{k}} \\ \phi(x) &= \\ \left[a = x_{1}^{2} \quad b = x_{2}^{2} \quad c = \sqrt{2}x_{1}x_{2} \right] \end{split}$$

$$\begin{split} \left\langle \tilde{\phi}(x), \tilde{\phi}(y) \right\rangle_{\mathbb{R}^4} &= \tilde{a}y_1^2 + \tilde{b}y_2^2 + \tilde{c}y_1y_2 + \tilde{d}y_1y_2 &= k_x(y) = \left\langle k_x, k_y \right\rangle_{\mathcal{H}_k} \\ \tilde{\phi}(x) &= \\ \left[\tilde{a} = x_1^2 \quad \tilde{b} = x_2^2 \quad \tilde{c} = x_1x_2 \quad \tilde{d} = x_1x_2 \right] \end{split}$$

- But what remains unique?
- Kernel and its RKHS!

Summary

reproducing kernel \iff kernel \iff positive definite

Summary

reproducing kernel \iff kernel \iff positive definite set of all kernels: $\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$ set of all subspaces of $\mathbb{R}^{\mathcal{X}}$ with continuous evaluation: $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$

Outline

- Elementary Hilbert space theory
 - Norm. Inner product. Orthogonality
 - Convergence. Complete spaces
 - Linear operators. Riesz representation
- What is an RKHS?
 - Evaluation functionals view of RKHS
 - Reproducing kernel
 - Inner product between features
 - Positive definite function.
 - Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn - Part I)

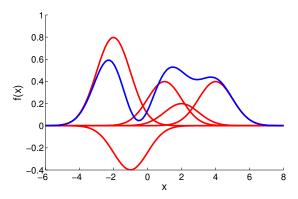
Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be positive definite. There is a **unique RKHS** $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ with reproducing kernel k.

Starting with a positive def. k, construct a **pre-RKHS** \mathcal{H}_0 with properties:

- **1** The evaluation functionals δ_{x} are continuous on \mathcal{H}_{0} ,
- ② Any Cauchy sequence f_n in \mathcal{H}_0 which converges pointwise to 0 also converges in \mathcal{H}_0 -norm to 0.

pre-RKHS $\mathcal{H}_0 = span\{k(\cdot,x) \mid x \in \mathcal{X}\}$ will be taken to be the set of functions:

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x)$$



◆□▶ ◆□▶ ◆필▶ ◆필▶ · 필 · જ)<

Theorem (Moore-Aronszajn - Part II)

Space $\mathcal{H}_0 = \text{span}\,\{k(\cdot,x)\,|\,x\in\mathcal{X}\}$ is endowed with the inner product

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where $f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, then \mathcal{H}_0 is dense in RKHS \mathcal{H} of k.

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists a Cauchy sequence $\{f_n\} \in \mathcal{H}_0$ converging **pointwise** to f.

① We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is the inner product well defined, and independent of the sequences used?

- **1** We define the inner product between $f,g \in \mathcal{H}$ as the limit of an inner product of the Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is the inner product well defined, and independent of the sequences used?
- ② An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?

- ① We define the inner product between $f,g \in \mathcal{H}$ as the limit of an inner product of the Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is the inner product well defined, and independent of the sequences used?
- ② An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- ullet Are the evaluation functionals still continuous on \mathcal{H} ?

- **1** We define the inner product between $f,g \in \mathcal{H}$ as the limit of an inner product of the Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is the inner product well defined, and independent of the sequences used?
- ② An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- ullet Are the evaluation functionals still continuous on \mathcal{H} ?
- Is \mathcal{H} complete (a Hilbert space)?

Summary

reproducing kernel \iff kernel \iff positive definite

Summary

reproducing kernel \iff kernel \iff positive definite all kernels $\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$ $\overset{1-1}{\longleftrightarrow}$ all function spaces with continuous evaluation $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$

Fact (Sum and scaling of kernels)

If k, k_1 , and k_2 are kernels on \mathcal{X} , and $\alpha \geq 0$ is a scalar, then αk , $k_1 + k_2$ are kernels.

Fact (Sum and scaling of kernels)

If k, k_1 , and k_2 are kernels on \mathcal{X} , and $\alpha \geq 0$ is a scalar, then αk , $k_1 + k_2$ are kernels.

- A difference of kernels is not necessarily a kernel! This is because we cannot have $k_1(x,x)-k_2(x,x)=\langle \phi(x),\phi(x)\rangle_{\mathcal{H}}<0$.
- This gives the set of all kernels the geometry of a closed convex cone.

Fact (Sum and scaling of kernels)

If k, k_1 , and k_2 are kernels on \mathcal{X} , and $\alpha \geq 0$ is a scalar, then αk , $k_1 + k_2$ are kernels.

- A difference of kernels is not necessarily a kernel! This is because we cannot have $k_1(x,x)-k_2(x,x)=\langle \phi(x),\phi(x)\rangle_{\mathcal{H}}<0$.
- This gives the set of all kernels the geometry of a *closed convex cone*.

$$\mathcal{H}_{k_1+k_2} = \mathcal{H}_{k_1} + \mathcal{H}_{k_2} = \{f_1 + f_2 : f_1 \in \mathcal{H}_{k_1}, f_2 \in \mathcal{H}_{k_2}\}$$

Fact (Product of kernels)

If k_1 and k_2 are kernels on $\mathcal X$ and $\mathcal Y$, then $k=k_1\otimes k_2$, given by:

$$k((x,y),(x',y')) := k_1(x,x')k_2(y,y')$$

is a kernel on $\mathcal{X} imes \mathcal{Y}$. If $\mathcal{X} = \mathcal{Y}$, then $k = k_1 \cdot k_2$, given by:

$$k(x,x') := k_1(x,x')k_2(x,x')$$

is a kernel on \mathcal{X} .

Fact (Product of kernels)

If k_1 and k_2 are kernels on \mathcal{X} and \mathcal{Y} , then $k = k_1 \otimes k_2$, given by:

$$k((x,y),(x',y')) := k_1(x,x')k_2(y,y')$$

is a kernel on $\mathcal{X} \times \mathcal{Y}$. If $\mathcal{X} = \mathcal{Y}$, then $k = k_1 \cdot k_2$, given by:

$$k(x,x') := k_1(x,x')k_2(x,x')$$

is a kernel on X.

$$\mathcal{H}_{k_1\otimes k_2}\cong\mathcal{H}_{k_1}\otimes\mathcal{H}_{k_2}$$

Summary

all kernels
$$\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$$

$$\overset{1-1}{\longleftrightarrow}$$
with continuous evaluation

all function spaces with continuous evaluation $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$

Summary

all kernels
$$\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$$
 $\stackrel{1-1}{\longleftrightarrow}$

all function spaces with continuous evaluation $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$

bijection between $\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$ and $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$ preserves geometric structure

New kernels from old:

ullet trivial (linear) kernel on \mathbb{R}^d is $k(x,x')=\langle x,x'
angle$

- ullet trivial (linear) kernel on \mathbb{R}^d is $k(x,x')=\langle x,x'
 angle$
- for any $p(t) = a_m t^m + \dots + a_1 t + a_0$ with $a_i \ge 0$ $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d

- ullet trivial (linear) kernel on \mathbb{R}^d is $k(x,x')=\langle x,x'
 angle$
- for any $p(t) = a_m t^m + \dots + a_1 t + a_0$ with $a_i \ge 0$ $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d
- polynomial kernel: $k(x, x') = (\langle x, x' \rangle + c)^m$, for $c \ge 0$

- trivial (linear) kernel on \mathbb{R}^d is $k(x,x') = \langle x,x' \rangle$
- for any $p(t) = a_m t^m + \dots + a_1 t + a_0$ with $a_i \ge 0$ $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d
- polynomial kernel: $k(x,x') = (\langle x,x' \rangle + c)^m$, for $c \ge 0$
- f(t) has Taylor series with non-negative coefficients $\implies k(x, x') = f(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d

- trivial (linear) kernel on \mathbb{R}^d is $k(x,x')=\langle x,x'\rangle$
- for any $p(t) = a_m t^m + \dots + a_1 t + a_0$ with $a_i \ge 0$ $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d
- polynomial kernel: $k(x,x') = (\langle x,x' \rangle + c)^m$, for $c \ge 0$
- f(t) has Taylor series with non-negative coefficients $\implies k(x, x') = f(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d
- exponential kernel: $k(x,x') = \exp(\sigma \langle x,x' \rangle)$, for $\sigma > 0$

New kernels from old:

• polynomial kernel:
$$k(x,x') = (\langle x,x' \rangle + c)^m$$
, for $c \ge 0$

• exponential kernel: $k(x,x') = \exp(\sigma \langle x,x' \rangle)$, for $\sigma > 0$

